田文洪,董小巖,王剛,吳小兵
1 中國疾病預(yù)防控制中心 病毒病預(yù)防控制所 病毒基因工程國家重點(diǎn)實(shí)驗(yàn)室,北京 100052 2 復(fù)旦大學(xué)生命科學(xué)學(xué)院 遺傳學(xué)研究所 遺傳工程國家重點(diǎn)實(shí)驗(yàn)室, 上海 200433 3 北京五加和分子醫(yī)學(xué)研究所有限公司,北京 100176
一種利用分泌型熒光素酶基因表達(dá)變化監(jiān)測活細(xì)胞中miRNA活性的新方法
田文洪1*,董小巖1,2,3*,王剛1,吳小兵1
1 中國疾病預(yù)防控制中心 病毒病預(yù)防控制所 病毒基因工程國家重點(diǎn)實(shí)驗(yàn)室,北京 100052 2 復(fù)旦大學(xué)生命科學(xué)學(xué)院 遺傳學(xué)研究所 遺傳工程國家重點(diǎn)實(shí)驗(yàn)室, 上海 200433 3 北京五加和分子醫(yī)學(xué)研究所有限公司,北京 100176
建立了一種以分泌型的熒光素酶Gluc為報告基因的 miRNA傳感器質(zhì)粒(命名為 Gsensor)監(jiān)測活細(xì)胞中miRNA(microRNA)活性的方法。首先構(gòu)建了 pAAV2neo-Gluc-MCS-polyA質(zhì)粒作為 Gsensor的空載體,同時其中的MCS位點(diǎn)可供插入miRNA的靶序列。以miR142-3p為檢測對象,將1個和3個拷貝的與miR142-3p完全互補(bǔ)靶序列分別插入pAAV2neo-Gluc-MCS-polyA中,構(gòu)建成miR142-3p Gsensor和miR142-3p Gsensor-3。將它們分別轉(zhuǎn)染至U937細(xì)胞中,檢測培養(yǎng)上清中Gluc的表達(dá)水平。結(jié)果顯示二者均可有效反映 U937細(xì)胞中 miR 142-3p的抑制活性(分別與Gsensor空載體相比),提示Gsensor中采用一個拷貝的miRNA靶序列即可滿足檢測要求。并且miR142-3p Gsensor也能有效地反映出Anti-miR142對miR142-3p活性的抑制作用。隨后,分析了時間、轉(zhuǎn)染劑量對Gsensor檢測結(jié)果的影響。結(jié)果表明,在U937細(xì)胞中miR142-3p Gsensor表現(xiàn)的miR142-3p活性在48 h后趨于穩(wěn)定;Gsensor轉(zhuǎn)染劑量在0.001~0.05 pg/cell范圍內(nèi)不影響其功能。最后,利用miR142-3p Gsensor 檢測了HEK293、U937、K562、SP2/0和P815細(xì)胞內(nèi)miR142-3p活性,結(jié)果發(fā)現(xiàn)miR142-3p活性在U937、K562、SP2/0和P815細(xì)胞中均較高,而在HEK293中幾乎沒有活性。用 QRT-PCR方法檢測miR142-3p的相對拷貝數(shù)。結(jié)果表明,在HEK293、U937和 K562細(xì)胞中,miR142-3p活性與其相對拷貝數(shù)呈正相關(guān)。本研究表明Gsensor可作為一種有效的miRNA活性檢測工具,為體外實(shí)時動態(tài)監(jiān)測miRNA活性提供了一種新方法。
miRNA,miRNA活性,Gsensor,監(jiān)測
Abstract:We developed a method for monitoring of miRNA activity in live cells by a secreted luciferase gene based plasmid sensor named as Gsensor.Firstly, we constructed pAAV2neo-Gluc-MCS-polyA as “empty Gsensor”, which contained multiple cloning sites(MCS)for miRNA target inserted.To detect miR142-3p activity, miR142-3p Gsensor and miR142-3p Gsensor-3 were constructed by inserting one or three complementary miR142-3p targets into pAAV2neo-Gluc-MCS-ployA.Subsequently,miR142-3p Gsensor and miR142-3p Gsensor-3 were respectively transfected into U937 cells and Gluc activity was assayed in the supernatant 48 h post transfection.Results showed that both of them effectively indicated miR142-3p activity of inhibiting Gluc expression compared with empty Gsensor.Simultaneously, miR142-3p Gsensor also demonstrated the inhibition of miR142-3p activity by Anti-miR142 when they were cotransfected into U937 cells.This implied one copy of miRNA target in Gsensor was sensitive enough for investigation of miRNA activity.We further analyzed factors affecting Gsensor function including time and dose, and found that miR142-3p activity sensed by miR142-3p Gsensor rose within 48 h post transfection and approached stable thereafter.Transfected dose varying among 0.001?0.05 pg/cell had little effect on its function.Using miR142-3p Gsensor, we further detected miR142-3p activity in HEK293, U937, K562, SP2/0 and P815 cells.Results suggested that miR142-3p activity was high in U937, K562, SP2/0 and P815 cells and almost negative in HEK293.miR142-3p activity was positively correlated with its relative copies in HEK293, U937 and K562 detected by QRT-PCR.In conclusion, Gsensor proved to be an effective tool for monitoring of miRNA activity in live cells, and provide a new method for monitoring miRNA activityin vitro.
Keywords:miRNA, miRNA activity, Gsensor, monitor
miRNA是生物體內(nèi)源的長度為18~25個核苷酸的非編碼RNA[1]。目前,在人類中已發(fā)現(xiàn)700多種miRNA[2]。在體內(nèi),miRNA與AGO等蛋白形成RISC(RNA Induced Silencing Complex),識別并結(jié)合mRNA 3′UTR的靶序列,導(dǎo)致mRNA的降解和翻譯抑制,在轉(zhuǎn)錄后水平上對基因的表達(dá)進(jìn)行負(fù)調(diào)控[3]。研究發(fā)現(xiàn),miRNA參與人類大約1/3基因的表達(dá)調(diào)控[4],在細(xì)胞分裂[5]、分化[6]、死亡[7]、凋亡[8]和新陳代謝[9]以及干細(xì)胞的分化[10]、腫瘤的發(fā)生[11]等諸多生理病理過程中發(fā)揮重要作用。
目前已經(jīng)有許多檢測miRNA表達(dá)水平的方法,包括Northern blotting、QRT-PCR、原位雜交、RAKE(RNA-primed array-based Klenow enzyme assay)和miRNA標(biāo)記法(Ambion)[12]。然而,這些方法均不能檢測miRNA的活性,并且操作繁瑣。雖然現(xiàn)有的以Fluc(Firefly Luciferase)為報告基因的miRNA傳感器可有效地檢測miRNA活性,但是由于Fluc不能分泌,每次檢測均需裂解細(xì)胞,因此該傳感器不能方便地應(yīng)用于 miRNA活性的連續(xù)監(jiān)測。Gluc(GaussiaLuciferase)來源于海洋橈腳類動物Gaussia princeps,具有易分泌、檢測靈敏度高、反應(yīng)不依賴于 ATP等特點(diǎn)[13-14]。本研究擬利用 Gluc的這些特點(diǎn)構(gòu)建一種以Gluc為報告基因的 miRNA活性檢測傳感器miRNA Gsensor。將miRNA Gsensor和Gsensor空載體(Empty Gsensor)分別轉(zhuǎn)染細(xì)胞,檢測細(xì)胞培養(yǎng)上清中的Gluc活性差異。利用miRNA抑制基因表達(dá)原理,推測檢測細(xì)胞內(nèi)miRNA活性。
pGluc-Basic質(zhì)粒購自NEB公司;pAAV2neo、pAAV2neo-Fluc和攜帶 3個 miR142-3p靶序列的pAAV2neo-tri142T質(zhì)粒由本室構(gòu)建保存;Max Efficiency DH5аTM為 Invitrogen公司產(chǎn)品;HEK293、U937、K562、P815和SP2/0細(xì)胞購自ATCC,由本室保存,用含10%胎牛血清的DMEM培養(yǎng)液培養(yǎng)。
限制酶和連接酶購自NEB公司;質(zhì)粒大提試劑盒購自Qiagen公司;DMEM培養(yǎng)基、胎牛血清和脂質(zhì)體lipofectamineTM2000均為Invitrogen公司產(chǎn)品;Gaussialuciferase assay kit購自 NEB 公司;Luciferase assay system購自Promega公司。
按照標(biāo)準(zhǔn)的分子克隆方法構(gòu)建Gsensor空載體:pAAV2neo-Gluc-MCS-polyA。首先根據(jù)pGluc-Basic序列設(shè)計引物。上游引物:5′-TTAGGTACC CCAGC CACCATGGGAGTC-3′,下游引物:5′-TGCCGAATT CCTCGAGCGGCCGCTTAGT-3′,下劃線標(biāo)記處為酶切位點(diǎn),上游引物酶切位點(diǎn)為KpnI,下游為EcoR I,用于將 PCR產(chǎn)物克隆入 pAAV2neo載體。引物由Invitrogen公司合成。然后,以pGluc-Basic為模板,PCR擴(kuò)增得到含Gluc目的片段,插入pAAV2neo載體,獲得 Gsensor空載體,酶切測序鑒定。設(shè)計并由Invitrogen公司合成2條寡聚核苷酸:5′-AATTC TCCATAAAGTAGGAAACACTACA-3′和 5′-GATCT GTAGTGTTTCCTACTTTATGGAG-3′,下劃線標(biāo)記處分別為 miR142-3p序列和與其完全互補(bǔ)的靶序列,于95℃ 10 min,室溫放置2 h退火后,形成包含EcoR I、BglII粘性末端和miR142-3p靶序列的接頭,插入Gsensor空載體,獲得pAAV2neo-Gluc-142T,命名為 miR142-3p Gsensor,測序鑒定。將含有Gluc片段的PCR產(chǎn)物插入pAAV2neo-tri142T載體,獲得 pAAV2neo-Gluc-tri142T,命名為 miR142-3p Gsensor-3,酶切測序鑒定。
用100 μL含10% FBS的DMEM培養(yǎng)液將細(xì)胞接種于96孔細(xì)胞培養(yǎng)板,立即進(jìn)行轉(zhuǎn)染實(shí)驗(yàn)。參照說明書用lipofectamineTM2 000將empty Gsensor、miR142-3p Gsensor或miR142-3p Gsensor-3分別轉(zhuǎn)染至細(xì)胞中。每孔具體轉(zhuǎn)染過程為:DNA加入25 μL OPTI-MEM培養(yǎng)液,0.25 μL lipofectamineTM2 000加入25 μL OPTI-MEM培養(yǎng)液,分別混勻,于室溫放置5 min。然后將2種液體混勻,于室溫放置20 min后,加入細(xì)胞中,并前后搖晃96孔細(xì)胞培養(yǎng)板使液體混勻,于37℃的5% CO2孵箱中培養(yǎng)。
為了進(jìn)一步驗(yàn)證Gsensor的功能,empty Gsensor或miR142-3p Gsensor與Anti-miR142共轉(zhuǎn)染U937細(xì)胞,并同時轉(zhuǎn)染pAAV2neo-Fluc質(zhì)粒作為內(nèi)參,校正轉(zhuǎn)染效率。具體過程為:U937細(xì)胞接種于 96孔細(xì)胞培養(yǎng)板(1×104cells/孔),empty Gsensor 或miR142-3p Gsensor、pAAV2neo-Fluc各 50 ng和0~15 pmol Anti-miR142 加入 25 μL OPTI-MEM 培養(yǎng)液,0.75 μL lipofectamineTM2 000 加入 25 μL OPTI-MEM培養(yǎng)液,分別混勻,于室溫放置5 min。然后將2種液體混勻,于室溫放置20 min后,加入細(xì)胞中,并前后搖晃96孔細(xì)胞培養(yǎng)板使液體混勻,于37℃的5% CO2孵箱中培養(yǎng)。
轉(zhuǎn)染不同時間點(diǎn)后,每孔取20 μL細(xì)胞培養(yǎng)上清,加入Gaussialuciferase assay kit中的底物 50 μL,用發(fā)光檢測儀(ModulusTMLuminometer)測定其相對光強(qiáng)度單位(Relative light unit,RLU),每次測定收集光子10 s。
參照luciferase assay system(Promega)說明書制備細(xì)胞裂解液,每孔取20 μL細(xì)胞裂解液,加入luciferase assay system(Promega)中的底物 100 μL,并按照Gluc活性測定方法檢測發(fā)光強(qiáng)度。
按照說明書,用 Trizol試劑(Invitrogen)提取細(xì)胞內(nèi)總RNA。用BioPhotometer plus(Eppendorf)測定提取RNA濃度。參照TaqMan MicroRNA Assay(Ambion)說明書,在96孔板中,加入0.6 μg總RNA于15 μL反應(yīng)體系中,放入Applied Biosystems 9 700 Thermocycler中,按程序(16℃ 30 min,42℃ 30 min,85℃ 5 min)進(jìn)行逆轉(zhuǎn)錄過程。然后,應(yīng)用Applied Biosystems 7900HT fast real-time PCR system進(jìn)行Real-time PCR 過程。具體為:根據(jù)TaqMan MicroRNA Assay說明書,在96孔板中加入1.33 μL逆轉(zhuǎn)錄產(chǎn)物于20 μL反應(yīng)體系中,按以下過程擴(kuò)增:95 ℃ 1 0 min ;95℃ 15 s,60℃ 1 min,40個循環(huán)。所有反應(yīng)均重復(fù)4次。
利用單因素方差分析(One-way ANOVA)處理數(shù)據(jù),當(dāng)P<0.05時,具有顯著性差異。
Gluc基因分別插入 pAAV2neo、pAAV2neotri142T載體,獲得 empty G-sensor和 miR142-3p Gsensor-3(圖1A,C)。將單個拷貝的完全互補(bǔ)的miR142-3p靶序列克隆入empty Gsensor的EcoR I和BglII之間,獲得 miR142-3p Gsensor(圖1B)。為了驗(yàn)證 Gsensor的有效性,empty Gsensor、miR142-3p Gsensor和miR142-3p Gsensor-3分別轉(zhuǎn)染 U937細(xì)胞。轉(zhuǎn)染48 h后,測定細(xì)胞培養(yǎng)上清中Gluc活性,結(jié)果如圖2A所示,轉(zhuǎn)染 miR142-3p Gsensor和miR142-3p Gsensor-3的細(xì)胞培養(yǎng)上清中Gluc活性明顯低于 empty Gsensor(P<0.01);雖然轉(zhuǎn)染miR142-3p Gsensor 的細(xì)胞培養(yǎng)上清中Gluc活性高于miR142-3p Gsensor -3,但兩者之間并無顯著性差異(P=0.21345>0.05)。這表明Gsensor中包含單拷貝miRNA靶序列就可有效地指示細(xì)胞內(nèi)miRNA活性。由于插入單拷貝miRNA靶序列在載體構(gòu)建上的簡便性,因此選擇其作為后續(xù)細(xì)胞內(nèi)miR142-3p活性檢測的工具。
圖1 Gsensor結(jié)構(gòu)示意圖Fig.1 Schematic map of Gsensors.ITR: AAV2 inverted terminal repeat; CMV: cytomegalovirus promoter;Gluc:Gaussialuciferase; BGH: bovine growth hormone polyA signal.miR142T: miR142-3p target sequence.(A)Schematic map of empty Gsensor.(B)Schematic of miR142-3p Gsensor.(C)Schematic map of miR142-3p Gsensor-3.
為了進(jìn)一步驗(yàn)證 Gsensor的有效性,empty Gsensor或 miR142-3p Gsensor與Anti-miR142共轉(zhuǎn)染 U937細(xì)胞,并同時轉(zhuǎn)染 pAAV2neo-Fluc以校正轉(zhuǎn)染效率。轉(zhuǎn)染24 h后,測定細(xì)胞培養(yǎng)上清中Gluc活性,并用Fluc活性校正轉(zhuǎn)染效率差異,比較empty Gsensor和 miR142-3p Gsensor 表達(dá)Gluc差異,換算成相對熒光素酶水平(Relative luciferase level,RLL),即 miR142-3p Gsensor表達(dá) Gluc占 empty Gsensor表達(dá)Gluc的百分比。結(jié)果見圖2B,RLL隨著轉(zhuǎn)染Anti-miR142濃度的增加而升高。
為了分析時間對 Gsensor作用的影響,等量的empty Gsensor和miR142-3p Gsensor分別轉(zhuǎn)染U937細(xì)胞,轉(zhuǎn)染后不同時間點(diǎn)測定細(xì)胞培養(yǎng)上清中Gluc活性,并換算成 RLL。結(jié)果如圖3A所示,轉(zhuǎn)染后RLL逐漸開始下降,直到48 h趨于平穩(wěn)。
圖2 Gsensor功能驗(yàn)證Fig.2 Validation of Gsensor.(A)Indicating miR142-3p activity by miR142-3p Gsensor and miR142-3p Gsensor-3 in U937 cells.Results were shown with±s.Data was analyzed using one-way ANOVA.RLU, relative light unit.**,P<0.01.(B)Enhancing miR142-3p activity by Anti-miR142.Differences in transfection efficiency were normalized using Fluc activity.Relative luciferase level=SGluc/CGluc.Gluc, Gluc activity.S, cells transfected with miR142-3p Gsensor.C, cells transfected with empty Gsensor.Results were represented with±s.
為了分析轉(zhuǎn)染劑量對 Gsensor功能的影響,首先保持轉(zhuǎn)染細(xì)胞數(shù)量不變,將不同劑量(0.01、0.1、0.2 μg/孔)的 empty Gsensor和 miR142-3p Gsensor轉(zhuǎn)染U937細(xì)胞。轉(zhuǎn)染48 h后測定細(xì)胞培養(yǎng)上清中Gluc活性(圖3B),同時換算成RLL(圖3C),單因素方差分析發(fā)現(xiàn)不同劑量組間未見統(tǒng)計學(xué)差異(P=0.2883)。然后固定每孔轉(zhuǎn)染的Gsensor劑量(0.1 μg/孔),變化轉(zhuǎn)染的U937細(xì)胞數(shù)量(2 000~100 000/孔)。同樣轉(zhuǎn)染48 h后檢測細(xì)胞培養(yǎng)上清中Gluc活性(圖3D),換算成圖3E表示的RLL值,單因素方差分析發(fā)現(xiàn)不同數(shù)量細(xì)胞組間(2 000~20 000/孔)沒有統(tǒng)計學(xué)差異(P=0.1567)。
圖3 Gsensor功能影響因素分析Fig.3 Factors affect miRNA Gsensor.(A)miR142-3p activity variation with time in U937 cells.Relative luciferase level was represented with±s.(B)Gluc activity in the supernatant of U937 cells transfected with different doses of DNA.Results were represented with±s.RLU, relative light unit.(C)Relationship between relative luciferase level and DNA doses transfected.(D)Gluc activity in the supernatant of U937 cells with different cell number.Results were represented with±s.(E)Relationship between relative luciferase level and cell number.
利用已建立的 Gsensor方法,本研究檢測了HEK293、U937、K562、P815和 SP2/0細(xì)胞中的miR142-3p活性。細(xì)胞培養(yǎng)上清中的Gluc活性如圖4A所示,RLL值如圖4B所示。從圖4B的結(jié)果可知,HEK293細(xì)胞的RLL值大約為100%,表明該細(xì)胞內(nèi)未檢測到miR142-3p活性,但K562、U937、P815和 SP2/0的 RLL值均小于 20%,提示miR142-3p活性較高。
圖4 HEK293、U937、K562、P815和 SP2/0細(xì)胞中miR142-3p活性測定Fig.4 miR142-3p activity in HEK293, U937, K562, P815 and SP2/0 cells.(A)Gluc activity varied in the supernatant of HEK293, U937, K562, P815 and SP2/0 cells.Results were represented with±s.(B)Relative luciferase level in HEK293,U937, K562, P815 and SP2/0 cells.Relative luciferase level=SGluc/CGluc.Gluc:Gaussialuciferase activity; S: cells transfected with miR142-3p Gsensor; C: cells transfected with empty Gsensor.Results were represented with±s.
為了分析miRNA拷貝數(shù)與其活性之間的關(guān)系,應(yīng)用TaqMan MicroRNA Assay(Ambion)系統(tǒng),檢測了 HEK293、U937和K562細(xì)胞中miR142-3p的相對拷貝數(shù)。由圖5的結(jié)果可知,miR142-3p在細(xì)胞中的相對拷貝數(shù)為:K562>U937>HEK293,與細(xì)胞內(nèi)的miR142-3p活性一致。
圖5 HEK293、U937和K562細(xì)胞中miR142-3p相對拷貝數(shù)測定Fig.5 Relative copies of miR142-3p in HEK293, U937 and K562 cells.Relative copy number was assayed using QRT-PCR(Ambion).?CT=CT-miR142-3p?CT-EC.CT-miR142-3p: CTvalue of miR142-3p; EC: endogenous control and U6B selected as endogenous control in this assay; CT-EC: CTvalue of EC.
實(shí)時動態(tài)地監(jiān)測細(xì)胞內(nèi) miRNA活性變化有助于認(rèn)識miRNA參與調(diào)節(jié)體內(nèi)生理病理過程的機(jī)制。遺憾的是,現(xiàn)有 Northern blotting和 QRT-PCR等miRNA檢測技術(shù)只能檢測miRNA表達(dá)水平不能檢測miRNA活性。而且,需要裂解細(xì)胞和提取RNA,操作過程繁瑣、費(fèi)時。本研究描述了一種利用Gsensor靈敏、簡便和無創(chuàng)傷檢測細(xì)胞內(nèi)miRNA活性的方法,使實(shí)時動態(tài)監(jiān)測細(xì)胞內(nèi)miRNA活性成為可能。
本研究通過計算轉(zhuǎn)染miRNA Gsensor的細(xì)胞中的Gluc活性與轉(zhuǎn)染empty Gsensor的Gluc活性的比值(RLL值)來表示細(xì)胞內(nèi)的 miRNA活性。由于Gluc分泌性好,不用裂解細(xì)胞直接取細(xì)胞培養(yǎng)上清即可檢測細(xì)胞內(nèi)Gluc表達(dá)情況,催化反應(yīng)不依賴于ATP,因此相比于Fluc(Firefly luciferase),Gluc表達(dá)檢測更加簡單、方便和快捷。同時不用裂解細(xì)胞,可以長期持續(xù)地檢測相同細(xì)胞的Gluc表達(dá),使實(shí)時動態(tài)監(jiān)測miRNA活性成為可能。
本研究中,基于miRNA調(diào)節(jié)基因表達(dá)的機(jī)制,構(gòu)建了以Gluc為報告基因的攜帶單個和 3個拷貝miR142-3p完全互補(bǔ)靶序列的miR142-3p Gsensor和miR142-3p Gsensor-3(圖1B、1C),同時構(gòu)建不攜帶miRNA 靶序列的 empty Gsensor(圖1A)。選用miR142-3p活性較高的造血干細(xì)胞系來源細(xì)胞株U937[15-16],驗(yàn)證 miR142-3p Gsensor和 miR142-3p Gsensor-3的功能,發(fā)現(xiàn)這兩種Gsensor均可有效地指示 U937細(xì)胞內(nèi) miR142-3p活性,且兩者之間無統(tǒng)計學(xué)上差異(圖2A)。應(yīng)用miR142-3p Gsensor檢測了Anti-miR142對U937細(xì)胞內(nèi)mR142-3p活性的抑制作用,采用RLL值表示細(xì)胞內(nèi)的miRNA活性,結(jié)果表明 miR142-3p Gsensor有效地揭示了Anti-miR142的抑制作用。這表明Gsensor中插入某種miRNA的單拷貝的靶序列已經(jīng)能夠用于miRNA活性檢測。為了更好地模擬體內(nèi)一個基因通常只攜帶單個拷貝某種 miRNA靶序列的情況,以及考慮Gsensor構(gòu)建的簡便性,選擇miR142-3p Gsensor進(jìn)行其余實(shí)驗(yàn)。
Gsensor連續(xù)96 h監(jiān)測U937細(xì)胞內(nèi)miR142-3p活性,結(jié)果發(fā)現(xiàn) Gsensor所指示的 miR142-3p活性隨時間逐漸增加,48 h后達(dá)到峰值并保持不變(圖3A)。這可能是由于miRNA形成RISC并識別其靶序列,從而抑制基因表達(dá)是一個過程,導(dǎo)致miRNA的抑制作用滯后于基因表達(dá),但隨著時間的延長,miRNA的抑制作用與基因表達(dá)達(dá)到動態(tài)平衡,因此Gsensor表現(xiàn)出的miRNA活性趨于平穩(wěn)。提示選擇合適的檢測時間點(diǎn),有助于真實(shí)地反映細(xì)胞內(nèi)miRNA活性。因此,本研究選擇轉(zhuǎn)染后48 h測定細(xì)胞中的miRNA活性。另外,本研究結(jié)果表明,轉(zhuǎn)染劑量在 0.001~0.05 pg/cell范圍內(nèi)變化時,不影響Gsensor的功能,降低了轉(zhuǎn)染操作時對劑量的限制,方便了操作過程。
質(zhì)粒對某些細(xì)胞轉(zhuǎn)染效率低,可能成為質(zhì)粒型miRNA傳感器應(yīng)用的障礙。但在本研究中,Gsensor對不易轉(zhuǎn)染的懸浮細(xì)胞 SP2/0細(xì)胞也能靈敏地反映出細(xì)胞內(nèi)的miR142-3p活性,分析原因可能有以下2點(diǎn):首先,Gluc檢測靈敏度高,分別是Fluc的100倍[13],SEAP(secreted alkaline phosphatase)的 1 000倍[17];其次,由于 Gluc活性可在 37℃細(xì)胞培養(yǎng)液中穩(wěn)定保持48 h[14],因此Gluc在細(xì)胞培養(yǎng)液中的積累可顯著提高Gsensor的靈敏度。
此外,本研究還應(yīng)用miR142-3p Gsensor測定了HEK293、U937、K562、P815和 SP2/0中 miR142-3p活性。結(jié)果表明,在造血干細(xì)胞系來源的U937、K562、P815和SP2/0細(xì)胞中miR142-3p活性較高,在非造血干細(xì)胞來源的HEK293細(xì)胞中miR142-3p活性則幾乎測不到。這提示miR142-3p在造血干細(xì)胞系中具有一定的保守性,可能在造血干細(xì)胞系的發(fā)育中發(fā)揮重要作用。而且miR142-3p活性與其相對拷貝數(shù)呈正相關(guān)。這也說明在細(xì)胞生長適宜的條件下,miRNA活性與其拷貝數(shù)呈現(xiàn)相似的變化規(guī)律。
總之,本研究提出了一種基于Gsensor的簡單、方便和非創(chuàng)傷的miRNA活性檢測方法,可實(shí)時動態(tài)檢測細(xì)胞內(nèi)miRNA活性,為miRNA的活性檢測提供了新的選擇工具。
REFERENCES
[1]Bartel DP.MiRNAs: genomics, biogenesis, mechanism,and function.Cell, 2004, 116(2): 281–297.
[2]Griffiths-Jones S.The microRNA registry,Nucl Acids Res,2004, 32: D109–D111.
[3]Doench JG, Sharp PA.Specificity of microRNA target selection in translation repression.Genes Dev, 2004, 18(5): 504–511.
[4]Lewis BP, Burge CB, Bartel DP.Conserved seed pairing,often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell, 2005, 120(1):15–20.
[5]Careton M, Cleary MA, Linsley PS.MicroRNAs and cell cycle regulation.Cell Cycle, 2007, 6(17): 2127–2132.
[6]Iovino N, Pane A, Gaul U.miR-184 has multiple roles inDrosophilafemale germline development.Dev Cell, 2009,17(1)123–133.
[7]Ambros V.MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing.Cell, 2003, 113(6):673–676.
[8]Jovanovic M, Henqartner MO.miRNAs and apoptosis:RNAs to die for.Oncogene, 2007, 25(46): 6176–6187.
[9]Dang CV, Le A, Gao P.MYC-induced cancer cell energy metabolism and therapeutic opportunities.Clin Cancer Res, 2009, 15(21): 6479–6483.
[10]Xu N, Papagiannakopoulos T, Pan GJ,et al.MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells.Cell, 2009, 137(4): 647–658.
[11]Schichel R, Boyerinas B, Park SM,et al.MicroRNAs: key players in the immune system, differentiation,tumorigenesis and cell death.Oncogene, 2008, 27(45):5959–5974.
[12]Lu J, Tsourkas A.Imaging individual microRNAs in single mammalian cellsin situ.Nucleic Acids Res, 2009,37(14): e100.
[13]Tannous BA, Kim DE, Fernandez JL,et al.Codon-optimizedGaussialuciferase cDNA for mammalian gene expression in culture andin vivo.Mol Ther, 2005, 11(3): 435–443.
[14]Wurdinger T, Badr C, Pike L,et al.A secreted luciferase forex vivomonitoring ofin vivoprocesses.Nat Methods,2008, 5(2): 171–173.
[15]Chen CZ, Li L, Lodish HF,et al.MicroRNAs modulate hematopoietic lineage differentiation.Science, 2004,303(5654): 83–86.
[16]Brown BD, Venneri MA, Zingale A,et al.microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer.Nat Med, 2006, 12(5): 585–591.
[17]Tannous BA.Gaussialuciferase reporter assay for monitoring biological processes in culture andin vivo.Nat Protoc, 2009, 4(4): 582–591.
A novel method for monitoring miRNA activity by expression changes of secreted luciferase gene in live cells
Wenhong Tian1*, Xiaoyan Dong1,2,3*, Gang Wang1, and Xiaobing Wu1
1 State Key Laboratory for Molecular Virology and Genetic Engineering, Institute for Viral Disease Prevention and Control, Chinese Center for Disease Prevention and Control, Beijing 100052, China 2 State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China 3 Beijing Fiveplus Molecular Medicine Institute, Beijing 100176, China
Received:January 28, 2010;Accepted:March 26, 2010
Supported by:Special Key Program on Infectious Diseases of China(No.2008ZX10002-023).
Corresponding author:Xiaobing Wu.Tel: +86-10-63523187; Fax: +86-10-63532053; E-mail: wuxb0168@vip.sina.com*These authors contributed equally to this study.傳染病重大專項(No.2008ZX10002-023)資助。