劉展,于會臻,陳挺
(1.中國石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島266555;2.四川省地礦局物探隊,四川成都610072)
雙重約束下的密度三維反演
劉展1,于會臻1,陳挺2
(1.中國石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島266555;2.四川省地礦局物探隊,四川成都610072)
為增加密度三維反演過程中的約束及避免“上漂”現(xiàn)象,從定性與定量相結(jié)合的角度提出一種密度相關(guān)概率成像與基于鉆井的位場特征約束相結(jié)合的雙重約束機(jī)制,重點提出以核函數(shù)均值差作為掃描函數(shù),并給出依據(jù)剖分網(wǎng)格密度屬性與位場分布相關(guān)性差異進(jìn)行密度值雙重約束的具體方案。理論模型試驗結(jié)果表明,利用所提方法在先得到地下剖分單元的密度定性分布特征的情況下,可給出定量反演過程中的剖分網(wǎng)格密度取值范圍及其搜索順序,尤其在有鉆井資料的區(qū)域中反演結(jié)果的縱向分辨率得到了較大提高。實際資料處理結(jié)果進(jìn)一步驗證了方法的實用性。
地球物理勘探;重磁勘探;密度反演;成像技術(shù);雙重約束;黃金分割;約束擴(kuò)展;賦存空間
重磁反演模型可以大致分為兩類:形態(tài)模型和物性模型[1]。密度反演屬于物性反演,具有嚴(yán)重的多解性問題。為此,地球物理工作者做了大量工作。張貴賓等[2]建立了位場廣義線性綜合反演系統(tǒng),在重磁異常線性反演中將該理論與吉洪諾夫正則化方法相結(jié)合求解地下密度源分布及質(zhì)心位置;Bear等[3]使用線性反演方法,在源所在范圍內(nèi),使用最小二乘法反演求解,根據(jù)連續(xù)的Household變換進(jìn)行矩陣正交分解,在迭代過程中使用奇異值分解方法,從而得到重力資料的三維密度分布;Oleg Portniaguine[4]基于Tikhonov正則化方法,使用最小穩(wěn)定方程得到聚集的反演成像,迭代反演過程使用權(quán)重模型參數(shù)構(gòu)建,從而使方法收斂并穩(wěn)健;管志寧等[5]把神經(jīng)網(wǎng)絡(luò)與重磁異常反演理論相結(jié)合,提出了一種用于重磁反演的擬BP神經(jīng)網(wǎng)絡(luò)方法;還有許多學(xué)者[6-15]也提出了許多不同的方法。上述文獻(xiàn)中許多密度反演的計算方法注重了求解過程中搜索、迭代優(yōu)化方法的改進(jìn),但對優(yōu)化場源體密度約束的研究并不多,已知信息利用率較低,反演結(jié)果不穩(wěn)定。為此,筆者從約束范圍擴(kuò)展角度提出雙重約束機(jī)制。
通常密度反演方法首先將地下場源區(qū)域規(guī)則地劃分成若干小長方體網(wǎng)格,如圖1(a)所示,將場源可能分布區(qū)域Ω剖分為若干個規(guī)則網(wǎng)格單元,設(shè)XYZ方向的剖分間距分別為Δξ、Δγ、Δζ,網(wǎng)格任意節(jié)點坐標(biāo)為(ξi,ηj,ζk),其中ξi=iΔξ,ηj=jΔη,ζk=kΔζ(i=-N,N;j=-M,M;k=-K,K),圖1(b)為第ijk個剖分單元示意圖,設(shè)其密度值為σijk;之后,通過調(diào)整各單元的密度值并計算正演場數(shù)據(jù)來擬合實測數(shù)據(jù);最終反演確定各網(wǎng)格的密度最優(yōu)解。
本文中密度定量反演方法采用文獻(xiàn)[16]中提出的以單相關(guān)系數(shù)為基礎(chǔ)構(gòu)建目標(biāo)函數(shù)的多維黃金分割法。其關(guān)鍵技術(shù)是引入多元線性回歸分析中的相關(guān)系數(shù)R。R的物理意義是模型理論場與觀測場之間的誤差方差與觀測場本身方差的逼近程度,其目的是求取模型與觀測數(shù)據(jù)的擬合組成的目標(biāo)函數(shù)的極小來獲得密度值的解。R的取值為0~1,越接近1說明觀測場與核函數(shù)的相關(guān)性越好,反之則越差,使得R最接近1的密度模型就是反演最優(yōu)解。算法在解的逼近問題上采用n維黃金分割最優(yōu)化方法,密度反演中模型修改更合理、速度更快,但仍存在以下約束問題:
(1)剖分網(wǎng)格密度初始約束區(qū)間的確定問題??芍s束區(qū)間范圍越精確,反演速度越快,解越穩(wěn)定。但是由于已知資料往往較少,通常方法僅對鉆遇網(wǎng)格給出較小的密度約束區(qū)間,多數(shù)未知網(wǎng)格往往只根據(jù)地球物理資料統(tǒng)一取一個比較大的約束范圍,致使密度值搜索速度慢且不穩(wěn)定。
(2)網(wǎng)格反演順序的確定問題。通常網(wǎng)格反演計算順序按由淺到深逐層進(jìn)行,這樣容易產(chǎn)生上層剖分網(wǎng)格占據(jù)大部分異常值的“上漂”現(xiàn)象。
事實上,由于地下地質(zhì)體賦存空間內(nèi)密度值必然存在著一定的連續(xù)性且在所引起的重力場相關(guān)特征中有所體現(xiàn),以往簡單的鉆井點約束可利用該特征對附近網(wǎng)格進(jìn)行密度約束空間的擴(kuò)展。同時,剖分網(wǎng)格與觀測場之間有一定的映射關(guān)系,找到這種關(guān)系可確定任一網(wǎng)格對于整個場的貢獻(xiàn)值,按照貢獻(xiàn)值大小進(jìn)行反演可使存在場源體可能性大的區(qū)域先分配場值從而避免“上漂”。因此,按上述思想,本文中提出以下雙重約束機(jī)制:
(1)利用密度概率成像約束方法計算每個網(wǎng)格的密度分布概率值,根據(jù)概率值的大小判斷網(wǎng)格存在場源的可能性以確定反演順序,同時對概率值進(jìn)行閾值處理并對大于閾值的網(wǎng)格搜索得到場源體成像。
(2)利用基于鉆井的位場特征進(jìn)一步確定水平方向上密度分布情況,結(jié)合步驟(1)的場源體成像結(jié)果,分區(qū)域?qū)@遇網(wǎng)格的密度值擴(kuò)展到鄰近剖分網(wǎng)格中,以增加反映約束信息,把鉆井所在位置的串狀點約束變?yōu)椤疤呛J”狀體約束。
密度相關(guān)概率成像技術(shù)研究的是場源體之間的相對賦存關(guān)系,掃描函數(shù)的選取是概率成像技術(shù)的研究重點。由于某些理論上成像效果較好的掃描函數(shù)可能會引入較大的計算誤差,實際應(yīng)用效果并不理想,如導(dǎo)數(shù)掃描函數(shù)等。為避免該問題,選用的掃描函數(shù)應(yīng)具有計算簡單且可在背景場中突出目標(biāo)異常源的特點。因此,針對重磁數(shù)據(jù)的特征,本文中提出利用核函數(shù)均值差作為掃描函數(shù)并給出了成像方案。
概率成像原理可見文獻(xiàn)[17]~[21],現(xiàn)以圖1為例求改進(jìn)的重力場掃描函數(shù)。
設(shè)Δg(r)為在r=(x,y,z)處的實測重力異常,其與觀測異常均值之差為
式中,G為萬有引力常數(shù);N為觀測點數(shù)。定義掃描窗口S,對式(1)在S內(nèi)做平方積分得
取第q部分,并利用施瓦茨不等式,得
定義改進(jìn)的重力場掃描函數(shù)為
定義密度相關(guān)概率成像函數(shù)為
其中
現(xiàn)以圖2(箭頭為鉆井位置)為例介紹場源體成像方案。
(1)計算密度相關(guān)概率值。圖2(a)為利用核函數(shù)均值差作為掃描函數(shù)得到的概率值,該值反映了剖分網(wǎng)格相對實測異常的貢獻(xiàn),可確定最終密度定量反演時剖分網(wǎng)格的計算順序。
(2)閾值處理。假設(shè)根據(jù)地質(zhì)情況選閾值為0.6,概率值大于0.6的賦1,如圖2(b)所示。
圖2 成像概率值搜索結(jié)果網(wǎng)格示意圖Fig.2 Grid schemes of imaging probability value search results
(3)場源體二維成像。以第一個網(wǎng)格a1b1作為掃描起點,逐行找到第一個為1的網(wǎng)格,如網(wǎng)格a4b2。之后采用八方位鄰域搜索算法搜索相鄰為1的網(wǎng)格,圈定如圖2(b)中的4個地質(zhì)體邊界。
(4)場源體三維成像。將相鄰兩個剖面的地質(zhì)體單體成像概率值突變點作為邊界,確定場源體三維空間分布。
實際地質(zhì)體密度值在局部空間內(nèi)具有一定連續(xù)性且場源體密度橫向分布與觀測場具有一定的相關(guān)性,因此可利用基于鉆井的位場特征約束對井周圍網(wǎng)格密度分布區(qū)間進(jìn)一步劃分。
設(shè)任一鉆遇場源點(ξ,γ,ζ)在計算點(x,y,z)處的位場統(tǒng)一寫成如下形式:
式中,ΔE為位場異常;C為不依賴于xyz的常數(shù)。當(dāng)場源與觀測面足夠遠(yuǎn)或者場源足夠小時,近似為點源,N0=2。
分別對式(7)中x、y、z求導(dǎo),得
表1是通過模型試驗研究得到的重力異常Δg、水平一階導(dǎo)數(shù)Δgx、垂向一次導(dǎo)數(shù)Δgz和垂向二次導(dǎo)數(shù)Δgzz的零值水平區(qū)間距L與場源體橫向分布L0之間的關(guān)系。
表1 異常特征值水平范圍與異常體寬度的關(guān)系Table 1 Relationship between abnormal eigenvalue level and abnormal body width
由表1可知,L/L0的值越接近1,說明位場特征對異常體水平邊界刻畫越準(zhǔn)確。因此,同一埋深時,利用重力異常垂向二次導(dǎo)數(shù)的零值范圍圈定場源體橫向賦存空間最準(zhǔn)確。按照該結(jié)論可對鉆井附近的剖分網(wǎng)格密度值約束區(qū)間進(jìn)一步擴(kuò)展,視位場特征邊界范圍內(nèi)的網(wǎng)格為密度值接近的場源體,為下一步對剖分網(wǎng)格的區(qū)域劃分提供依據(jù)。
以場源體概率成像為主,以基于鉆井的位場特征約束范圍為輔,分4種情形對鉆遇網(wǎng)格的密度值進(jìn)行定量約束擴(kuò)展,以圖2模型為例,圖3為其位場特征三維示意圖,設(shè)鉆遇網(wǎng)格a5b2的密度取值范圍為[α,β]。
圖3 鉆井定量約束擴(kuò)展示意圖Fig.3 Sketch map of drilling quantitative constraint expansion
(1)鉆遇概率成像圈定的場源體。此時假設(shè)圈定的地質(zhì)體內(nèi)密度值相同,采用緊約束。圖2中網(wǎng)格a4b2、a6b2、a4b3、a5b3、a6b3的密度值都與a5b2相同,為[α,β]。
(2)在鉆井的位場特征范圍之內(nèi)但并非概率成像圈定的剖分網(wǎng)格。假設(shè)密度在位場特征范圍內(nèi)漸進(jìn)變化,采用漸進(jìn)約束,即以圖2(a)所示網(wǎng)格的初始概率值的比值關(guān)系對未知網(wǎng)格賦初值,所賦值均值與已知網(wǎng)格密度均值呈正比關(guān)系,上下限與已知網(wǎng)格范圍相同,則a3b2取值范圍為[0.2((β+α)/2)/0.9-(β-α)/2,0.2((β+α)/2)/0.9+(β-α)/2];a3b3取值范圍為[0.3((β+α)/2)/0.9-(β-α)/2,0.3((β+α)/2)/0.9+(β-α)/2]。若其下限小于0,則賦為0。
(3)未鉆遇但處于鉆井垂向延長線上的場源體剖分網(wǎng)格。設(shè)密度的深度分布呈指數(shù)函數(shù)形式,即σ=σ0eAΔh,Δh為深度差,A為常數(shù),則圖2中a5b5、a6b5、a7b5的密度值均為[(β+α)/2exp(AΔh)-(β-α)/2,(β+α)exp(AΔh)/2+(β-α)/2],此處Δh為a5b5與a5b2的深度差。
(4)其他未知網(wǎng)格。此時與常規(guī)方法采用同樣的約束方法,即按照研究區(qū)內(nèi)地球物理密度參數(shù)對其賦初值。
構(gòu)建兩個模型對上述方法原理進(jìn)行驗證,測網(wǎng)為2500 m×2000 m,測點距50 m,按100 m×100 m×100 m進(jìn)行網(wǎng)格剖分。
(1)模型a模擬兩個水平位置不同的密度體橫向疊加異常,兩個地質(zhì)體中心橫向間距為600 m。鉆井位于(350,0)處,深300 m處密度值為0.5 g/cm3。模型參數(shù)如表2所示。反演中概率成像閾值選為0.6,反演結(jié)果剖面等值線如圖4所示。
表2 模型a、b參數(shù)Table 2 Parameters of model a and b
圖4 模型a反演成像結(jié)果剖面等值線Fig.4 Section contour line of model a inversion imaging results
(2)模型b模擬兩個深度不同的地質(zhì)體縱向疊加異常,模型中心縱向間距為300 m。鉆井位于(0,0)處,在200、500 m處密度值為0.5 g/cm3。模型參數(shù)如表2所示。反演中概率成像閾值選為0.6,反演結(jié)果剖面等值線如圖5所示。
圖5 模型b反演成像結(jié)果剖面等值線Fig.5 Section contour line of model b inversion imaging results
模型反演結(jié)果精度如表3所示。
表3 模型反演結(jié)果相對誤差Table 3 Relative error of model inversion results%
將模型(b-2)在x方向上變寬至-200~200 m時,反演精度降為3.13%,尤其遠(yuǎn)離鉆井的網(wǎng)格密度反演結(jié)果精度下降明顯,這是由于離鉆遇網(wǎng)格越遠(yuǎn)密度約束值定量擴(kuò)展所得結(jié)果就越不準(zhǔn)確。因此,誤差會隨著場源體體積的增大而變大,但相比常規(guī)反演,該反演方法仍具有更高的可信度。
模型試驗表明:就密度橫向分布來說,本文中反演結(jié)果邊界更加清晰,誤差較小;對于縱向分布,在有鉆井的情況下,疊加的地質(zhì)體得到有效分離,縱向埋深歸位準(zhǔn)確,無鉆井時反演結(jié)果與真實值之間仍有一定誤差,但相對常規(guī)方法有較大改善。
為驗證方法實用性,選某研究區(qū)為試驗區(qū)。該區(qū)火成巖比較發(fā)育,主要為侵入性的輝綠巖、噴發(fā)性的玄武巖。已知研究區(qū)內(nèi)有6口井Y27、Y30、Y101、Y1、Y20、Y29鉆遇火成巖,選取其中3口井(Y27、Y30和Y101)的資料作已知先驗約束,另外3口井(Y1、Y20和Y29)的資料作為結(jié)果驗證。采用插值切割方法計算火成巖體引起剩余重力異常(圖6(a));采用半徑為10 km的四階趨勢面分析計算,利用原始化極異常減去趨勢面分析場計算所得的磁異常即為火成巖體引起的磁力異常(圖6(b))。
圖6 火成巖引起的重磁異常等值線Fig.6 Gravity and magnetic anomaly contour caused by igneous rock
依據(jù)本文方法反演得到研究區(qū)內(nèi)密度值分布(圖7),其中概率閾值選為0.6。由得到重磁三維定量反演的視密度和視磁化強(qiáng)度數(shù)據(jù)體確定火成巖分布情況(圖8),其中火成巖圈定的物性值下限視密度為0.1 g/cm3,視磁化強(qiáng)度為0.5 A/m。
將反演結(jié)果與Y1、Y20、Y29三口井資料進(jìn)行多深度綜合對比,統(tǒng)計所得視密度相對誤差分別為4.02%、2.53%、3.54%,火成巖深度相對誤差為3.48%、4.11%、3.01%??梢婋p重約束方法求得視密度三維空間分布精度較高。由圖8看出,研究區(qū)內(nèi)火成巖較發(fā)育,多發(fā)育在沙三段、沙四段。侵入火成巖體多發(fā)育于Y1北部、Y14、Y27和Y29等井區(qū)附近,在Y29與Y1井之間,發(fā)育了多套火成巖體。由實際資料處理可知,雙重約束方法圈定出了火成巖體三維空間位置,展示了其空間賦存狀況。
圖7 不同深度切片火成巖密度等值線Fig.7 Density contour lines for different depth igneous rock petrophysics slice
圖8 不同深度火成巖圈定圖Fig.8 Delineating different depth location of igneous rocks
針對實際應(yīng)用中重磁物性三維定量出現(xiàn)的約束不充分的問題,從約束范圍擴(kuò)展角度提出了雙重約束機(jī)制。關(guān)鍵采用了兩種手段:一是采用核函數(shù)均值差作為掃描函數(shù),其更加適合密度反演成像,同時可為后續(xù)定量反演提供網(wǎng)格計算順序,在一定程度上改善了“上漂”現(xiàn)象;二是將基于鉆井的位場特征研究與成像結(jié)果結(jié)合起來,并分4種有效情況對所有剖分網(wǎng)格進(jìn)行定量約束。利用該方法進(jìn)行密度反演在一定程度上改善了常規(guī)方法中的已知約束利用率低的問題,提高了反演計算速度和合理性。但是,
還需注意:概率閾值應(yīng)在對比反演結(jié)果與已知資料后進(jìn)行最優(yōu)選擇;若能對不同深度范圍內(nèi)地質(zhì)體引起的異常進(jìn)行更有效地分離,則會使反演結(jié)果更加合理;在研究區(qū)內(nèi)無鉆井區(qū)域內(nèi)需通過結(jié)合其他物探資料來提高反演精度。
[1]姚長利,郝天珧,管志寧.重磁反演約束條件及三維物性反演技術(shù)策略[J].物探與化探,2002,26(1):253-256.YAO Chang-li,HAO Tian-yao,GUAN Zhi-ning.Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J].Geophysical&Geochemical Exploration,2002,26(1):253-256.
[2]張貴賓,申寧華,王喜臣,等.位場廣義線性綜合反演系統(tǒng)的建立[J].長春地質(zhì)學(xué)院學(xué)報,1993,23(2):197-204.ZHANG Gui-bin,SHEN Ning-hua,WANG Xi-chen,et al.Location-field generalized linear inversion system establishment[J].Journal of Changchun University of Earth Science,1993,23(2):197-204.
[3]BEAR G W,AL-SHUKRI H J,RUDMAN A J.Linear inversion of gravity data for 3-D density distributions[J].Geophysics,1995,60(5):1354-1364.
[4]PORTNIAGUINE O,ZHDANOV M S.3-D magnetic inversion with data compression and image focusing[J].Geophysics,2002,67(5):1532-1541.
[5]管志寧,侯俊勝,黃臨平,等.重磁異常反演的擬BP神經(jīng)網(wǎng)絡(luò)方法及其應(yīng)用[J].地球物理學(xué)報,1998,41(2):242-251.GUAN Zhi-ning,HOU Jun-sheng,HUANG Lin-ping,et al.Inversion of gravity and magnetic anomalies using pseduo-BP neural network method and its application[J].Chinese Journal of Geophysics,1998,41(2):242-251.
[6]劉展,王萬銀.曲面位場的正則化線性規(guī)劃直接反演技術(shù)[J].地質(zhì)與勘探,1999,35(3):62-66.LIU Zhan,WANG Wan-yin.A method of regularized linear programming applying to directly inversion of potential fields on A C[J].Geology and Exploration,1999,35(3):62-66.
[7]王妙月,底青云,許琨,等.磁化強(qiáng)度矢量反演方程及二維模型正反演研究[J].地球物理學(xué)報,2004,47(3):528-534.WANG Miao-yue,DI Qing-yun,XU Kun,et al.Magnetization vector inversion equations and 2D forward and inversed model study[J].Chinese Journal of Geophysics,2004,47(3):528-534.
[8]楊輝.重力、地震聯(lián)合反演基巖密度及綜合解釋[J].石油地球物理勘探,1998,33(1):496-502.YANG Hui.Basement density inversion using gravimetricand seismic data and the integrative interpretation[J].Oil Geophysical Prospecting,1998,33(1):496-502.
[9]柯小平,王勇,許厚澤.用遺傳算法反演地殼的變密度模型[J].武漢大學(xué)學(xué)報,2004,29(11):981-984.KE Xiao-ping,WANG Yong,XU Hou-ze.Inversion of variable density model of crust from genetic algorithms[J].Geomatics and Information Science of Wuhan University,2004,29(11):981-984.
[10]MONTESIONS F G,ARNOSO J,VIEIRA R.Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura[J].Int J Sci(Geol Rundsch),2005,94(2):301-316.
[11]柯小平,王勇,許厚澤.三維密度分布的遺傳算法反演[J].大地測量與地球動力學(xué),2009,29(1):41-45.KE Xiao-ping,WANG Yong,XU Hou-ze.3D density inversion with genetic algorithm[J].Journal of Geodesy and Geodynamics,2009,29(1):41-45.
[12]王德人.非線性方程組解法與最優(yōu)化方法[M].北京:人民教育出版社,1980:13-17.
[13]陳東敬,張新兵.帶模擬退火的擬BP神經(jīng)網(wǎng)絡(luò)在伊朗某地區(qū)重力資料反演中的應(yīng)用[J].勘探地球物理進(jìn)展,2005,28(3):215-218.CHEN Dong-jing,ZHANG Xin-bing.Application of SABPNN in inversion of gravity data from Iran[J].Progress in Exploration Geophysics,2005,28(3):215-218.
[14]裴正林,余欽范,牟永光.小波多尺度井間地震層析成像方法[J].地球?qū)W報,2002,23(1):383-386.PEI Zheng-lin,YU Qin-fan,MU Yong-guang.Crosshole seismic tomography by wavelet multiscale[J].Acta Geosicientia Sinica,2002,23(1):383-386.
[15]姚長利,鄭元滿.重磁異常三維物性反演隨機(jī)子域法方法技術(shù)[J].地球物理學(xué)報,2007,50(2):1576-1583.YAO Chang-li,ZHENG Yuan-man.3-D gravity and magnetic inversion for physical properties using stochastic subspaces[J].Chinese Journal of Geophysics,2007,50(2):1576-1583.
[16]劉展,班麗,魏巍,等.濟(jì)陽坳陷花溝地區(qū)火成巖重磁成像解釋方法[J].中國石油大學(xué)學(xué)報:自然科學(xué)版,2007,31(1):30-34.LIU Zhan,BAN Li,WEI Wei,et al.A method of inversing igneous rock by gravity and magnetic imaging in Huagou area of Jiyang depression[J].Journal of China University of Petroleum(Edition of Natural Science),2007,31(1):30-34.
[17]許令周,關(guān)繼騰,房文靜.高次導(dǎo)數(shù)的概率成像原理[J].青島大學(xué)學(xué)報,2003,16(1):32-36.XU Ling-zhou,GUAN Ji-teng,F(xiàn)ANG Wen-jing.Theory of probability tomography about second derivative formula[J].Journal of Qingdao University,2003,16(1):32-36.
[18]徐世浙,余海龍,李海俠,等.基于位場分離與延拓的視密度反演[J].地球物理學(xué)報,2009,52(6):1592-1598.XU Shi-zhe,YU Hai-long,LI Hai-xia,et al.The inversion of apparent density based on the separation and continuation of potential field[J].Chinese Journal of Geophysics,2009,52(6):1592-1598.
[19]PATELLA D.Introduction to ground surface selfpotential tomography[J].Geophysics Prospecting,1997,45(4):653-681.
[20]IULIANO T,MAURIELLO P,PATELLA D.Looking inside Mount Vesuvius by potential fields integrated probability tomographies[J].Journal of Volcanology and Geothermal Research,2002,113(3/4):363-378.
[21]毛立峰,王緒本,高永才.大地電磁概率成像的效果評價[J].地球物理學(xué)報,2005,48(2):429-433.MAO Li-feng,WANG Xu-ben,GAO Yong-cai.Appraisement on the MT probability tomography[J].Chinese Journal of Geophysics,2005,48(2):429-433.
(編輯 修榮榮)
3D inversion method of density based on double constraint
LIU Zhan1,YU Hui-zhen1,CHEN Ting2
(1.School of Geosciences in China University of Petroleum,Qingdao 266555,China;2.Prospecting Team in Sichuan Department of Geology and Mineral,Chengdu 610072,China)
To increase the density of the restriction of 3D inversion process and avoid"resting on"phenomenon,from a combination of qualitative and quantitative point of view,a dual constraints mechanism was proposed using the combination of the probability density associated with the imaging and field characteristics based drilling bit constraint method.In the mechanism,the mean difference of core function was taken as scanning function,and specific programs for the density's dual constraints based on the relevant difference between subdivision grid density distribution of property and field were given.The theoretical model test results show that if the qualitative distribution characteristics are given,the value range and the search order of decomposing mesh in the process of quantitative inversion can be obtained by using this method,especially in the area of drilling data of seismic data,the inversion vertical resolution is greatly improved.Finally,the actual data processing results further prove that this method is of practicability.
geophysical prospecting;gravity and magnetic prospecting;density inversion;imaging techniques;double constraint;golden section;constraint expansion;occurrence space
P 631.1
A
10.3969/j.issn.1673-5005.2011.06.007
2011-01-10
國家重大專項課題(2008ZX05020-006)
劉展(1957-),男(漢族),四川內(nèi)江人,教授,博士,博士生導(dǎo)師,從事物探資料處理與解釋研究工作。
1673-5005(2011)06-0043-08