• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      The Morphic Properties of Subring-Extension

      2011-11-22 09:04:20ZHANGLiting
      關(guān)鍵詞:理學(xué)院安徽師范大學(xué)正則

      ZHANG Li-ting

      (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

      The Morphic Properties of Subring-Extension

      ZHANG Li-ting

      (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

      LetRbe a ring,Cbe a subring ofR, and 1R∈C. Set

      subring-extension; (left) morphic ring; strongly morphic

      1 Introduction

      In [1], Nicholson and Sánchez Campós introduced and studied left morphic rings, which were extensively studied in the literatures[2-7]. An elementain a ringRis called left morphic ifR/Ra?l(a). A ringRis called left morphic in case every element inRis left morphic. Right morphic rings are defined analogously. It is well known thatais left morphic in a ringRif and only if there exists someb∈Rsuch thatRa=l(b) andRb=l(a). In [2], the authors investigate when the trivial extensionR∝Mof a ringRand a bimoduleMoverRis (left) morphic. In this paper, we introduce a new extension ring of a ringR-subring-extension, and investigate the relation between the morphic property ofRand its subring-extension.

      2 Subring-extensions

      ProofFor anya∈C, we have (a,0)∈Sis left morphic. Then there exists (b,c)∈Ssuch thatlS(a,0)=S(b,c) andlS(b,c)=S(a,0). We can easily to verify thatlC(a)=CbandlC(b)=Ca. ThusCis a left morphic ring.

      Analogously, for anyy∈R, we have (0,y)∈Sis left morphic. Then there exists (x,t)∈Ssuch thatlS(0,y)=S(x,t) andlS(x,t)=S(0,y). It is clear thatRy?lR(x+t) andR(x+t)?lR(y). Next, letm∈lR(x+t). It follows that (0,m)∈lS(x,t), and so (0,m)∈S(0,y). Immediately we getm∈Ry, whenceRy=lR(x+t). And letn∈lR(y), we derive (0,n)∈lS(0,y)=S(x,t), say (0,n)=(h,r)(x,t) for some (h,r)∈S. Then 0=hxandn=ht+r(x+t). Son=h(x+t)+r(x+t)=(h+r)(x+t)∈S(x+t). HenceR(x+t)=lR(y). The proof is complete.

      The following example shows that the converse of Corollary 1 is not true.

      Proposition2LetRbe a ring, and leta∈R. Then the following are equivalent:

      (1)a∈Ris left morphic.

      (1)?(2) Sincea∈Ris left morphic, then there existsb∈Rsuch thatlR(a)=RbandlR(b)=Ra. It can be verified thatlS(a,0)=S(b,0) andlS(b,0)=S(a,0).

      (2)?(1) If (a,0)∈Sis left morphic, it follows thatlS(a,0)=S(b,c) andlS(b,c)=S(a,0) for some (b,c)∈S. It is easy to verify thatlR(a)=RbandlR(b)=Ra, as required.

      Lemma1LetRbearing anda,b∈R,u∈U(R). Then the following are equivalent:

      ProofBy [7, Lemma 3].

      ProofSinceeis an idempotent inR, then (0,e) is an idempotent inS, and so (0,e)∈Sis left morphic. We know (0,eu)=(0,e)(u,0) and (0,ue)=(u,0)(0,e) where (u,0)∈U(S), so (0,eu) and (0,ue) are both left morphic inS.

      Lemma2If eachCiis a subring of the ringRi, fori=1,2,…,n, then

      ProofThe map

      defined by

      is the required ring isomorphism.

      ProofThe map

      defined by

      is the required ring isomorphism.

      4) Ifa≠0 andb≠-a, then we claim (a,b)∈Sis invertible. In fact, (a,b)(a-1,-(a+b)-1ba-1)=(a-1,-a-1b(a+b)-1)(a,b)=(1,0). This implies (a,b) is morphic inS, as required.

      a) If allaij=0, butblm≠0 for somelandm. Again, by a series of elementary operations,xlmcan be moved to the (1,1)-entry, and all entries in the first row and the first column, except the (1,1)-entry, can be reduced to 0.

      b) If allaij=-bij≠0. We can also take proper elementary operations, such that all entries in the first row and the first column, except the (1,1)-entry can be reduced to 0.

      c) If there are bothaij=0 andalm=-blm≠0 for somei,j,landm. First, we movexij=(aij,bij)=(0,bij) to the (1,1)-entry, and by a series of elementary operations, we can change all the (1,k)-entries and (k,1)-entries fork>1 which have the formation (0,b1k) and (0,bk1) to 0. Second, movexlm=(alm,blm)=(alm,-alm) to the (1,1)-entry, then we can change all the (1,k)-entries and (k,1)-entries fork>1 which have the formation (a1k,-a1k) and (ak1,-ak1) to 0.

      Hence,Xcan be reduced to

      Corollary4IfRis a semisimple ring, thenRis strongly morphic.

      For further study, we end this article by several problems.

      [1] Nicholson W K, Sánchez Campós E. Rings with the dual of the isomorphism theorem[J]. J Algebra,2004,271(1):391-406.

      [2] Chen Jianlong, Zhou Yiqiang. Morphic rings as trivial extensions[J]. Glasg Math J,2005,47(1):139-148.

      [3] Chen Jianlong, Li Yuanlin, Zhou Yiqiang. Constructing morphic rings[C]//Advance in Ring Theory, Najing: Hackensack,2005:26-32.

      [4] Lee T K, Zhou Yiqiang. Morphic rings and unit regular rings[J]. Journal of Pure and Applied Algebra,2007,210(2):501-510.

      [5] Huang Qinghe, Chen Jianlong. π-morphic rings[J]. Kyungpook Math J,2007,47:363-372.

      [6] 許秀玲,儲茂權(quán).關(guān)于Morphic環(huán)的推廣[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2008,31(6):522-524.

      [7] Lee T K, Zhou Yiqiang. Morphic rings and unit regular rings[J]. Journal of Pure and Applied Algebra,2007,210(2):501-510.

      [8] 葛平紅,儲茂權(quán).單位正則環(huán)和SF-環(huán)[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(4):322-324.

      子環(huán)擴(kuò)張的morphic性質(zhì)

      張麗婷

      (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

      子環(huán)擴(kuò)張;(左)morphic環(huán);強(qiáng)morphic

      10.3969/j.issn.1674-232X.2011.02.004

      date: 2010-03-02

      Supported by National Natural Science Foundation of Zhejiang Province (Y6090404); Supported by the Graduate Innovation Seed Project of Hangzhou Normal University.

      Biography: ZHANG Li-ting(1986—), female, born in Zigong, Sichuan province, master, engaged in non-commutative ring theory. E-mail: zhangting138137@126.com

      16E50;14F99MSC2010O153.3ArticlecharacterA

      1674-232X(2011)02-0109-05

      猜你喜歡
      理學(xué)院安徽師范大學(xué)正則
      昆明理工大學(xué)理學(xué)院學(xué)科簡介
      昆明理工大學(xué)理學(xué)院簡介
      《安徽師范大學(xué)學(xué)報(bào)》(人文社會科學(xué)版)第47卷總目次
      剩余有限Minimax可解群的4階正則自同構(gòu)
      類似于VNL環(huán)的環(huán)
      西安航空學(xué)院專業(yè)介紹
      ———理學(xué)院
      Hemingway’s Marriage in Cat in the Rain
      《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
      有限秩的可解群的正則自同構(gòu)
      元陽梯田
      海峽影藝(2012年1期)2012-11-30 08:17:00
      富川| 罗江县| 怀仁县| 海伦市| 安徽省| 宜兰县| 贵港市| 沭阳县| 遂宁市| 冀州市| 宜都市| 酒泉市| 辽阳市| 梓潼县| 七台河市| 云浮市| 固原市| 娱乐| 隆化县| 绥芬河市| 兴国县| 丰城市| 古丈县| 雷州市| 沂水县| 南召县| 大足县| 海南省| 仁寿县| 基隆市| 岑巩县| 醴陵市| 新干县| 静乐县| 清水县| 宁远县| 沂源县| 衡水市| 铜山县| 永靖县| 唐河县|