• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aq-Analogof the Weideman's Formula

    2011-12-23 03:08:00ZHENGDeyinCHENGuang
    關(guān)鍵詞:理學(xué)院二項式恒等式

    ZHENG De-yin,CHEN Guang

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    Aq-Analogof the Weideman's Formula

    ZHENG De-yin,CHEN Guang

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    1 Introduction

    Recently,Weideman's formula[1,Eq.(20)]called one of the hardest challenge identities:

    is closely concerned,where the harmonic numbers Hnand the second order harmonic number H(2)nare defined by

    respectively.Schneider[2,Eq.(16)](cf.[3,Eq.(12)]also)proved the formula(1)via computer algebra package Sigma,while Chu proved it using partial fraction method in[4,Eq.(6)]and hypergeometric series method in[5,Eq.(3)].The main purpose of this paper is to find q-analogs of Weideman's formula by means of partial fraction decomposition.

    We use the standard notation on q-series.The q-shifted factorial(a;q)nis defined by

    The q-binomial coefficient,or the Gauss coefficient,is given by

    The paper investigated the decomposition of a class of rational function by partial fraction method,established a generalized identity about q-harmonic numbers,and obtained twelve striking q-like-Weideman formulas from twelve special cases of this general identity.

    q-binomial coefficients;q-harmonic numbers;algebraic identities

    With the above preparations,we can establish the following general q-algebraicidentity.

    2 Partial fraction decompositions

    Theorem 1 Let xbe an indeterminate and napositive integer.For any polynomial Q(x)of degree≤2+3n,we have

    Multiplying by xacross equation(4)and then letting x→+∞,we can obtain immediately the following general identity on q-binomial-harmonic number.

    Theorem 2 Let n be a positive integer.For any polynomial Q(x)of degree≤1+3n,there holds

    3 q-Harmonic number identities

    Some interesting identities can be obtained by choosing different Q(x)in identity(5).We will display some examples of this class of q-harmonic number identities in this section.

    The list can be endless.However,we are not bothered to extend it further.The interested reader can do that for enjoyment.

    [1]Weideman J A C.Padéapproximations to the logarithm I:derivation via differential equations[J].Quaestiones Mathematicae,2005,28(3):375-390.

    [2]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithmⅡ:identities,recurrences,and symbolic computation[J].Ramanujan Journal,2006,11(2):139-158.

    [3]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithm Ⅲ:alternative methods and additional results[J].Ramanujan Journal,2006,12(3):299-314.

    [4]Chu Wenchang.Partial-fraction decompositions and harmonic number identities[J].Journal of Combinatorial Mathematics and Combinatorial Computating,2007,60:139-153.

    [5]Chu Wenchang,F(xiàn)u Mei.Dougall-Dixon formula and harmonic number identities[J].Ramanujan Journal,2009,18(1):11-31.

    Weideman公式的一種q-模擬

    鄭德印,陳 廣
    (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

    使用部分分式方法將一類有理函數(shù)分解為部分分式,進而建立了一個一般化的q-harmonic數(shù)恒等式.作為例子,列出了此恒等式的12種特殊情況,得到了12個漂亮的類q-Weideman公式.

    q-二項式系數(shù);q-harmonic數(shù);代數(shù)恒等式

    date:2010-06-24

    Supported by the Natural Science Foundation of Zhejiang Province of China(Y7080320).

    Biography:ZHENG De-yin(1964—),male,born in Tongbai,Henan Province,associate professor,engaged in combinatorics,hypergeometric series and special function.E-mail:deyinzheng@yahoo.com.cn

    O157.1 MSC2010:05A30;11B65Article character:A

    1674-232X(2011)01-0011-04

    10.3969/j.issn.1674-232X.2011.01.002

    猜你喜歡
    理學(xué)院二項式恒等式
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    活躍在高考中的一個恒等式
    民族文匯(2022年23期)2022-06-10 00:52:23
    聚焦二項式定理創(chuàng)新題
    二項式定理備考指南
    二項式定理??碱}型及解法
    一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
    Weideman公式的證明
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    自主招生與數(shù)學(xué)競賽中的計數(shù)與二項式定理(二)
    安顺市| 怀仁县| 秭归县| 合川市| 彰化县| 竹溪县| 五寨县| 剑川县| 色达县| 黄山市| 加查县| 新巴尔虎右旗| 定结县| 商城县| 沙洋县| 蛟河市| 集安市| 鱼台县| 女性| 梨树县| 常熟市| 阿拉善右旗| 伊宁市| 丹巴县| 贡觉县| 镇远县| 巴南区| 隆子县| 神池县| 东安县| 水城县| 额尔古纳市| 桐城市| 南召县| 隆回县| 文成县| 定南县| 台北市| 卢氏县| 襄樊市| 台北县|