• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notch signaling dependent differentiation of cholangiocyte-like cells from rhesus monkey embryonic stem cells

    2011-12-25 06:39:44JINLiFangJIShaoHuiYANGJiFengJIWeiZhi
    Zoological Research 2011年4期
    關(guān)鍵詞:獼猴膽管生物學(xué)

    JIN Li-Fang, JI Shao-Hui, YANG Ji-Feng,3, JI Wei-Zhi,*

    (1. College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China; 2. Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223, China; 3. College of Life Science of Wenzhou Medical College, Shaoxing Zhejiang 325035, China)

    Notch signaling dependent differentiation of cholangiocyte-like cells from rhesus monkey embryonic stem cells

    JIN Li-Fang1,2, JI Shao-Hui2, YANG Ji-Feng2,3, JI Wei-Zhi2,*

    (1. College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China; 2. Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223, China; 3. College of Life Science of Wenzhou Medical College, Shaoxing Zhejiang 325035, China)

    Rhesus monkey embryonic stem (rES) cells have similar characteristics to human ES cells, and might be useful as a substitute model for preclinical research. Notch signaling is involved in the formation of bile ducts, which are composed of cholangiocytes. However, little is known about the role of Notch signaling in cholangiocytic commitment of ES cells. We analyzed the effect of Notch signaling on the induction of cholangiocyte-like cells from rES cells. About 80% of definitive endoderm (DE) cells were generated from rES cells after treatment with activin A. After treatment with BMP4 and FGF1 on matrigel coated wells in serum-free medium, rES-derived DE gave rise to cholangiocyte-like cells by expression of cholangiocytic specific proteins (CK7, CK18, CK19, CK20, and OV-6) and genes (GSTPi, IB4, and HNF1β). At the same time, expression of Notch 1 and Notch 2 mRNA were detected during cell differentiation, as well as their downstream target genes such as Hes 1 and Hes 5. Inhibition of the Notch signal pathway by L-685458 resulted in decreased expression of Notch and their downstream genes. In addition, the proportion of cholangiocyte-like cells declined from ~90% to ~20%. These results suggest that Notch signaling may play a critical role in cholangiocytic development from ES cells.

    Rhesus monkey; Embryonic stem cells; Cholangiocytes; Notch signaling

    Based on their ability to proliferate and their capacity to differentiate into specific cell types, embryonic stem (ES) cells are a potential source for cell transfer therapy in hepatic diseases. Although several studies have reported on the differentiation of hepatic cells from human (Duan et al, 2007), mouse (Hamazaki et al, 2001) and monkey ES cells (Ma et al, 2008; Jin et al, 2009), it remains unclear which factors are responsible for the induction of hepatic differentiation of ES cells.

    Notch proteins are cell-surface receptors activated by interactions with cell surface ligands of the Jagged/Delta family. The mammalian family of Notch receptors consists of four members: Notch 1 through 4. Binding of the ligand to the Notch receptor induces site specific cleavage resulting in the release of the Notch Intracellular Domain (NICD). The NICD translocates to the nucleus where it modulates gene expression through interaction with members of the CSL (CBF-1, Suppressor of Hairless, lag-1) family of transcription factors. Activated Notch signaling elevates the expression of specific genes, including Hes 1 and Hes 5. Notch signaling has been shown to play an important role in cell-fate determination, cell survival, proliferation, and differentiation (Ma et al, 2007). The association of Notch signaling with cholangiocytes formation has been implicated in the literature (Lozier et al, 2008; Tanimizu & Miyajima, 2004); however, little is known about the mechanism of cholangiocytic commitment of ES cells.

    In view of the close similarities between human and nonhuman primates, the rhesus monkey is a perfect animal model to better understand liver developmental processes in primates, and for preclinical assessment of cell transfer therapy protocols. In the present study, we analyzed the effect of Notch signaling on cholangiocytelike cells induction from rES cells in monolayer differentiation systems.

    1 Materials and Methods

    1.1 Culture of rhesus monkey ES cells

    The rES cell line (366.4) was obtained from Dr. James Thomson, Wisconsin National Primate Research Center. Undifferentiated rES cells were expanded on a feeder layer of mitomycin-treated mouse embryonic fibroblasts seeded on 0.1% gelatin-coated plates, and cultured in Dulbecco’s modified Eagle medium (DMEM, Invitrogen, Fremont, CA) containing 15% FBS (Hyclone, Logan, UT), 1% nonessential amino acids (Sigma-Aldrich, Louis, MO), 0.1 mmol/L 2-mercaptomethanol (Sigma-Aldrich, St. Louis, MO), 2 mmol/L L-glutamine (Sigma-Aldrich, Louis, MO), and 1% penicillin/ streptomycin (Sigma-Aldrich, Louis, MO). Medium was changed daily, and rES colonies were manually split every four days to select for undifferentiated rES cells.

    1.2 Growth factors induced cholangiocyte-like differentiation of rES cells

    For definitive endoderm (DE) differentiation, the rES cell colonies were manually cut into small clumps of approximately 100 cells, plated on Matrigel-coated culture dishes, and differentiated in DMEM/F12 containing 1% FBS with 100 ng/mL human activin A (R&D systems) for 4-5 days. For cholangiocytic-like differentiation, the rES-derived DE cultures were passaged with 10 mg/mL of dispase and plated at a ratio of 1:2 on type I collagen (Sigma-Aldrich, Louis, MO) coated wells, and cultured in F12 medium supplemented with 2% knockout serum replacement (Gibco, Auckland, NZ), 100 ng/mL FGF1(R&D systems), and 20 ng/mL of BMP4(R&D systems) for 5?7 days. To study the effect of Notch signaling on cell differentiation, cells were cultured with or without 50 nmol/L Notch inhibitor (L-685458) (Bachem Bioscience, King of Prussia, PA) in F12 medium supplemented with 2% knockout serum replacement, 100 ng/mL of FGF1, and 20 ng/mL of BMP4 for 5?7 days.

    1.3 Immunocytochemistry (ICC)

    Cells were fixed with 4% paraformaldehyde in PBS for 10 min and washed with PBS three times, followed by permeabilization with 0.2% Triton X-100 for 10 min and blockage with 4% goat serum for 30 min at 25 °C. Subsequently, the cells were incubated with the primary antibodies (see Tab. 1) in staining solution (PBS containing 4% goat serum) for 40 min at 37 °C, and then incubated with the appropriate Texas red, PE or FITC-conjugated secondary antibody in staining solution for 30 min at 37 °C. The negative control was incubated in thestaining solution without primary antibodies.

    Tab. 1 Primary antibodies

    1.4 Reverse transcription-polymerase chain reaction (RT-PCR)

    Total RNA was isolated with Trizol reagent (Invitrogen, Calsbad, CA) according to the manufacturer’s protocols. Reverse transcription was carried out with approximately 1 μg of total RNA in 20 μL of 1 × master mix (1 × reverse transcription buffer, 0.5 mol/L dNTPs, 50 pmol of oligo(dT) primer, 20 U of RNase inhibitor and 5 U of reverse transcriptase) at 42 °C for one hour. For PCR, 1 μL of RT products was added to 1 × PCR master mix (1 × PCR reaction buffer, 1.5 mmol/L of MgCl2, 0.5 mmol/L of dNTPs, 0.4 μmol/L of forward primer, and 0.4 μmol/L of reverse primer (see supplemental Tab. 2), 1.25 U of Taq DNA polymerase in a 25 μL final volume and amplified by 25?35 cycles of PCR (95°C 30 s; 52 ? 60 °C 30 s; 72 °C 30 s ) followed by a final extension at 72 °C for 5 min. All reagents in RT-PCR were purchased from Takara (Takara, Dalian, China) unless otherwise mentioned. Products of PCR were separated on a 2% agarose gel and stained with ethidium bromide. The primer sequence for IB4 is 5′-GCACGGACGAGATGTTCAG-3′/5′-ACTTGC CAAATCCAATAGTGTAG-3′; for GSTpi is 5′-GGACGG AGACCTCACCCTGTA-3′/5′-TCTTGCCTCCCTGGTTC TGG-3′; for HNF1β is 5′-GAAACAATGAGATCACTT CCTCC-3′/5′-CTTTGTGCAATTGCCATGACTCC-3′.

    1.5 Analysis

    For qualitative analysis, all differentiation experiments were replicated three times, andP≤0.05 was taken as significant.

    2 Results and Discussion

    2.1 Efficient generation of DE from rES cells

    The rES clumps containing approximately 100 cells were collected and seeded on Matrigel-coated 4-well plates, and cultured with 100 ng/mL of activin A and 1% FBS for 5 days. After one day of induction, more than 90% of cells were strongly positive for brachyury, and only a few of the brachyury positive cells were faintly costained for SOX17(Fig. 1A). After two days of induction, the ratio of cells staining for both SOX17 and brachyury was beyond 80% (Fig. 1A). The SOX17/ brachyury double positive populations are regarded as generation of DE from ES cells (D'Amour et al, 2005; Yasunaga et al, 2005). In addition, the brachyury expression level gradually declined while the SOX17 expression level gradually increased with culture, with the peak of SOX17 expression observed at day four of differentiation (Fig. 1A), indicating that production of DE was a gradual differentiation process. On the contrary, untreated rES did not express brachyury and Sox17 (Fig. 1B).

    Fig. 1 Double labeling of differentiated cells by brachyury (red), SOX17 (green), Hoechst (nuclei, blue) and merged views of the same field of DE and rES cells

    Fig. 2 FoxA2 was expressed in activin A induced rES cells

    Consistent with the expression pattern of SOX17, we observed an increase in FoxA2 levels in activin A treated rES cells as differentiation proceeded (Fig. 2A), and untreated rES did not express FoxA2 (Fig. 2A). Genetic studies of nonmammalian organisms support a role for FoxA2 factors in endoderm development (Rehorn et al, 1996). Thus, expression of FoxA2 in differentiated cells also indicated that DE cells were generated.

    To further verify that the SOX17 positive cells were DE cells, the CXCR4 expression was examined to distinguish DE from visceral endoderm (D'Amour et al, 2005). The CXCR4 positive cells were first observed on the third day of differentiation, and the proportion of CXCR4 positive cells increased up to 80% on the fourth day of differentiation (Fig. 3). Almost 100% of CXCR4 positive cells co-expressed SOX17 (Fig. 3). As previously mentioned, SOX17 was expressed in definitive, primitive and parietal endoderm cells, while CXCR4 was expressed in the mesoderm and DE cells. Thus, the SOX17/CXCR4 double positive populations should be definitive endoderm. Furthermore, the differentiated cells did not express the visceral endoderm marker alpha fetoprotein at any point during culture (data not shown). This evidence clearly indicates that activin A efficiently generated definitive endoderm from rES under low serum conditions.

    Fig. 3 Double labeling of differentiated cells by CXCR4 (red), SOX17 (green), Hoechst (nuclei, blue) and merged views of the same field at 4 days

    2.2 Cholangiocyte-like cells lineages differentiation of rES-derived definitive endoderm (DE) cells

    Growth factors, such as FGFs, BMPs, HGF, OSM and Dex, are critical for hepatic endoderm morphogenesis and can promote hepatic differentiation (Kinoshita & Miyajima, 2002), and HGF, FGF-2 and OSM/Dex are critical for generation of hepatocytes from DEin vitro. In the present study, we examined the effect of BMP4 and FGF1 on hepatic fate differentiation from rES-derived DE. After 5?7 days induction, more than 90% of cultured cells expressed CK18 and CK19 (Fig. 4A), specific markers of bile duct cells. About 40% of cultured cells were stained for CK7 and CK20 (Fig. 4A), which are present in mature bile duct cells. In addition, another important protein of cholangiocytic marker OV6 was also detected in the differentiated cells (Fig. 4A). Conversely, DE cells were negative for CK7, CK20 and OV-6 (Fig. 4A). Cells were further analyzed by RT-PCR to confirm the presence of cholangiocyte-like cells in the differentiated cells. As expected, the differentiated cells expressed HNF1β, an important transcription factor controlling bile duct cell differentiation during liver development, as well as GSTPi and IB4, which are indicative of the presence of cholangiocyte-like cells (Fig. 4B). Unexpectedly, neither AFP nor ALB were detected in induced cells at either protein or mRNA levels. Thus, expression of the CK7, CK19, CK20 and OV6 proteins as well as the HNF1β, GSTPi and IB4 genes in cells from rES indicated that cholangiocyte-like cells were generated.

    Fig. 4 Induction of cholangiocytes from rES-derived definitive endoderm by FGF1 and BMP4

    2.3 Specification of rES-derived cholangiocyte like cells was Notch dependent

    The Notch signaling pathway specifies cell fate during bipotential cell fate decisions and controls various biological events (Ehebauer et al, 2006), including the expression of transcription factors for exocrine cells, formation of bile ducts, and association with human Alagille syndrome (Crosnier et al, 2000). Notch 1 and Notch 2 are specifically expressed in proliferating hepatoblasts. Deletion of Notch 2 results in cholangiocyte and bile duct defects, while deletion of Notch 1 does not result in bile duct paucity (Lozier et al, 2008). Both the Hes1 and Hes5 genes, which encode a basic helix-loophelix protein, are downstream effectors of the Notch pathway. The Hes1-null mice formed a relatively-normal ductal plate consisting of cytokeratin- and DBA-positive cholangiocyte precursors, suggesting that the primary defect in these mice was not in the initial bipotential cell fate decision of the hepatoblasts (Kodama et al, 2004).

    Given the importance of Notch activation in cholangiocyte-like specification from rES-derived definitive endoderm, we tested the expression of Notches and downstream target genes in the differentiation cultures. Notch 1 and Notch 2 mRNA were clearly detected after five days differentiation, as well as their downstream target genes such as Hes 1 and Hes 5 (Fig. 5B, line 1). The expression of Notch genes was accompanied by the expression of Notch intracellular domain (NICD) (Fig. 5A, untreated group). These results suggested that Notch signaling was active in cholangiocyte-like differentiation from rES-derived definitive endoderm.

    To further confirm the role of Notch on cholangiocytelike specification, Notch inhibitor (L-685458) was supplemented in the differentiated medium at a concentration of 50 nM. After five days of culture, the expression of Notch genes as well as Hes 1 and Hes 5 significantly declined in the treatment group compared with the control group (Fig. 5B, line 2). As expected, the expression of NICD also declined (Fig 5B, treatment group). In addition, the proportion of CK19 positive cells significantly decreased to ~20% (as a percentage of total number of CK19-positive cells in multiple fields of hoechst positive cells), compared with ~90% of CK19 positive cells in the control group. Thus, consistent with previous studies (Kodama et al, 2004; Tanimizu & Miyajima, 2004), our results suggested Notch was essential for cholangiocyte-like differentiation from rES-derived DE.

    Fig. 5 Notch signaling was critical for cholangiocytic differentiation from rES-derived definitive endoderm

    In this study, we established reproducible and efficient protocols for definitive endoderm and cholangiocyte-like cell generation from rES cells by monitoring lineage development at different stages. Furthermore, our results suggested that the cholangiocytelike development of DE was Notch signaling dependent.

    Crosnier C, Attie-Bitach T, Encha-Razavi F, Audollent S, Soudy F, Hadchouel M, Meunier-Rotival M, Vekemans M. 2000. JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome [J].Hepatology, 32(3): 574-581.

    D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. 2005. Efficient differentiation of human embryonic stem cells to definitive endoderm [J].Nat Biotechnol, 23(12): 1534-1541.

    Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA. 2007. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells invitroandin vivo[J].Stem Cells, 25(12): 3058-3068.

    Ehebauer M, Hayward P, Arias AM. 2006. Notch, a universal arbiter of cell fate decisions [J].Science, 314(5804): 1414-1415.

    Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, Terada N. 2001. Hepatic maturation in differentiating embryonic stem cellsin vitro[J].FEBS lett, 497(1): 15-19.

    Jin LF, Ji SH, Guo XY, Wang XH, Ji WZ. 2009. Induction of rhesus monkey embryonic stem cells into hepatocyte-like cells by a three-step method [J].Zool Res, 30(5): 509-514 (in Chinese).

    Kinoshita T, Miyajima A. 2002. Cytokine regulation of liver development [J].Biochim Biophys Acta, 1592(3): 303-312.

    Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. 2004. The role of notch signaling in the development of intrahepatic bile ducts [J].Gastroenterology, 127(6): 1775-1786.

    Lozier J, McCright B, Gridley T. 2008. Notch signaling regulates bile duct morphogenesis in mice [J].PLOS One, 3(3): e1851, 1-6.

    Ma A, Boulton M, Zhao B, Connon C, Cai J, Albon J. 2007. A role for notch signaling in human corneal epithelial cell differentiation and proliferation [J].IOVS, 48(8): 3576-3585.

    Ma X, Duan Y, Jung CJ, Wu J, VandeVoort CA, Zern MA. 2008. The differentiation of hepatocyte-like cells from monkey embryonic stem cells [J].Cloning Stem Cells, 10(4): 485-493.

    Rehorn KP, Thelen H, Michelson AM, Reuter R. 1996. A molecular aspect of hematopoiesis and endoderm development common to vertebrates andDrosophila[J].Development, 122(12): 4023-4031.

    Tanimizu N, Miyajima A. 2004. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors [J].J Cell Sci, 117(15): 3165-3174.

    Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa S. 2005. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells [J].Nat Biotechnol, 23(12): 1542-1550.

    Notch 信號(hào)通路調(diào)控獼猴胚胎干細(xì)胞的膽管樣細(xì)胞分化

    金立方1,2, 紀(jì)少琿2, 楊紀(jì)峰2,3, 季維智2,*

    (1.紹興文理學(xué)院 生命科學(xué)學(xué)院,浙江 紹興312000; 2.中國科學(xué)院昆明動(dòng)物研究所 云南省動(dòng)物生殖生物學(xué)重點(diǎn)實(shí)驗(yàn)室,云南 昆明650223; 3.溫州醫(yī)學(xué)院 生命科學(xué)學(xué)院,浙江 溫州325035)

    獼猴胚胎干細(xì)胞(rhesus monkey embryonic stem (rES))與人胚胎干細(xì)胞有相似的生物學(xué)特性, 因此是理想的臨床前研究的替代模型。Notch信號(hào)通路在膽管及膽管上皮細(xì)胞的形成中有重要的作用, 然而, 有關(guān)Notch信號(hào)通路在ES細(xì)胞的膽向分化中的作用了解甚少。該實(shí)驗(yàn)以rES為模型, 對(duì)Notch信號(hào)通路對(duì)ES細(xì)胞的膽向分化過程中的作用進(jìn)行了較為系統(tǒng)的研究。rES在細(xì)胞因子Activin A誘導(dǎo)作用下產(chǎn)生約80%的限定性內(nèi)胚層細(xì)胞。以Matrigel作為細(xì)胞外基質(zhì), 在含BMP4和FGF1的無血清培養(yǎng)體系中繼續(xù)誘導(dǎo)5~7 d, rES細(xì)胞來源的限定性內(nèi)胚層細(xì)胞分化產(chǎn)生約膽管樣細(xì)胞。分化的細(xì)胞表達(dá)膽管細(xì)胞的特異性蛋白((CK7、CK18、CK19、CK20 和OV-6)及基因(GSTPi、IB4 和 HNF1β)。在膽管樣細(xì)胞的分化過程中檢測(cè)到了Notch 1和Notch 2基因及下游信號(hào)分子hes 1和hes 5的表達(dá)。用Notch抑制劑L-685458處理分化過程中的細(xì)胞可導(dǎo)致Notch 1和Notch 2基因及下游信號(hào)分子hes 1和hes 5的表達(dá)下降, 同時(shí)CK19陽性的膽管樣細(xì)胞分化比率也從90%下降至約20%。這一研究提示Notch信號(hào)通路可能在ES細(xì)胞的膽管樣分化過程中扮演重要的角色。

    獼猴; 胚胎干細(xì)胞; 膽管細(xì)胞; Notch 信號(hào)通路

    Q813; Q959.848

    A

    0254-5853-(2011)04-0391-05

    2011-01-21;接受日期:2011-06-11

    金立方(1978-),男,浙江上虞人,講師,博士,研究方向?yàn)楦杉?xì)胞生物學(xué);E-mail: lifangj@sohu.com

    10.3724/SP.J.1141.2011.04391

    date: 2011-01-21; Accepted date: 2011-06-11

    s: This work was supported by research grants from Zhejiang Natural Sciences Foundation of China (Y2110911; Y2080996), and the National Key Technologies R&D Program of China (2007CB947701)

    *Corresponding author (通信作者), Tel/Fax: +86-0871-5139413, E-mail: wji@mail.kiz.ac.cn

    猜你喜歡
    獼猴膽管生物學(xué)
    小獼猴征集令
    谷稗的生物學(xué)特性和栽培技術(shù)
    小獼猴話跆拳道
    童話世界(2020年32期)2020-12-25 02:59:14
    初中生物學(xué)糾錯(cuò)本的建立與使用
    初中生物學(xué)糾錯(cuò)本的建立與使用
    小獼猴偵探社
    小獼猴偵探社
    PEDF抗腫瘤的生物學(xué)作用
    腹腔鏡膽囊切除術(shù)膽管損傷12例
    膽管支氣管瘺1例
    精品少妇内射三级| 日本色播在线视频| 色吧在线观看| 男男h啪啪无遮挡| 亚洲精品成人av观看孕妇| 国产精品麻豆人妻色哟哟久久| 亚洲欧美日韩东京热| 伊人亚洲综合成人网| 少妇人妻 视频| 成人漫画全彩无遮挡| 精品卡一卡二卡四卡免费| 黄色视频在线播放观看不卡| 国产高清三级在线| 亚洲国产日韩一区二区| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| av在线播放精品| 秋霞在线观看毛片| 日韩精品免费视频一区二区三区 | 亚洲国产精品成人久久小说| 丁香六月天网| 国产有黄有色有爽视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区三区| 免费在线观看成人毛片| 在线观看一区二区三区激情| 最近中文字幕2019免费版| 3wmmmm亚洲av在线观看| 一二三四中文在线观看免费高清| 在线亚洲精品国产二区图片欧美 | 肉色欧美久久久久久久蜜桃| 色吧在线观看| 中文字幕av电影在线播放| 色视频www国产| 99久久精品一区二区三区| 精品国产露脸久久av麻豆| 成人国产麻豆网| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 高清在线视频一区二区三区| 女人久久www免费人成看片| 日本色播在线视频| 伦理电影免费视频| 亚洲精品第二区| 日韩视频在线欧美| 国产成人精品久久久久久| 成人国产麻豆网| 国产黄片视频在线免费观看| 欧美成人精品欧美一级黄| 一个人看视频在线观看www免费| 亚洲一区二区三区欧美精品| 免费大片18禁| 狠狠精品人妻久久久久久综合| 国产探花极品一区二区| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 国产69精品久久久久777片| 男人添女人高潮全过程视频| 永久免费av网站大全| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 九九在线视频观看精品| www.色视频.com| 国产免费一区二区三区四区乱码| 丁香六月天网| 国产精品一区二区性色av| 又粗又硬又长又爽又黄的视频| 在现免费观看毛片| 大又大粗又爽又黄少妇毛片口| 精品视频人人做人人爽| 老司机影院毛片| 草草在线视频免费看| 亚洲国产av新网站| 一区二区三区免费毛片| 国产亚洲一区二区精品| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 妹子高潮喷水视频| www.av在线官网国产| 国产精品成人在线| 欧美性感艳星| 晚上一个人看的免费电影| 国产成人精品福利久久| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 成人国产av品久久久| 夫妻午夜视频| 少妇的逼好多水| 高清不卡的av网站| 国产黄色视频一区二区在线观看| 中文字幕制服av| 黑人巨大精品欧美一区二区蜜桃 | 欧美性感艳星| 人妻人人澡人人爽人人| 韩国av在线不卡| 又黄又爽又刺激的免费视频.| 久久亚洲国产成人精品v| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 国产在视频线精品| 久久婷婷青草| 亚洲精品久久久久久婷婷小说| 激情五月婷婷亚洲| 免费黄色在线免费观看| 在线精品无人区一区二区三| 3wmmmm亚洲av在线观看| 免费观看性生交大片5| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 亚洲av.av天堂| 亚洲色图综合在线观看| 国产成人精品一,二区| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 日韩免费高清中文字幕av| 国产成人精品一,二区| 亚洲精品aⅴ在线观看| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 内射极品少妇av片p| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 亚洲成人一二三区av| 91精品一卡2卡3卡4卡| 男女无遮挡免费网站观看| 女的被弄到高潮叫床怎么办| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 亚洲精品国产av成人精品| 特大巨黑吊av在线直播| 国产精品人妻久久久久久| 亚洲欧美精品自产自拍| 国产极品粉嫩免费观看在线 | 一本—道久久a久久精品蜜桃钙片| 91精品国产国语对白视频| 国产精品伦人一区二区| 亚洲精华国产精华液的使用体验| 成年美女黄网站色视频大全免费 | 51国产日韩欧美| 亚洲无线观看免费| 国产精品秋霞免费鲁丝片| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| av黄色大香蕉| 国产av精品麻豆| 国产成人91sexporn| 99久久精品国产国产毛片| 久久婷婷青草| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| av线在线观看网站| freevideosex欧美| 日韩欧美精品免费久久| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 91精品国产国语对白视频| videos熟女内射| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 国产色婷婷99| 成人国产麻豆网| 国产老妇伦熟女老妇高清| 中文资源天堂在线| 亚洲精品色激情综合| 麻豆精品久久久久久蜜桃| 色94色欧美一区二区| 丰满少妇做爰视频| 内射极品少妇av片p| www.色视频.com| 老司机影院成人| 色5月婷婷丁香| 亚洲av成人精品一二三区| 亚洲国产色片| 亚洲经典国产精华液单| 97在线视频观看| 色视频www国产| 99热这里只有精品一区| a级毛片在线看网站| 视频中文字幕在线观看| 欧美97在线视频| 成人黄色视频免费在线看| 欧美日韩视频高清一区二区三区二| 乱人伦中国视频| a级毛片在线看网站| 视频中文字幕在线观看| a级毛色黄片| 国产亚洲精品久久久com| 久久人人爽av亚洲精品天堂| 亚洲av电影在线观看一区二区三区| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频 | h日本视频在线播放| 久久国产乱子免费精品| 一级a做视频免费观看| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 亚洲无线观看免费| 婷婷色麻豆天堂久久| 97在线视频观看| 亚洲欧美一区二区三区国产| 少妇被粗大的猛进出69影院 | 亚洲综合精品二区| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 国产av一区二区精品久久| 日韩av在线免费看完整版不卡| 国产精品欧美亚洲77777| 久久久久网色| 人妻 亚洲 视频| 久久久午夜欧美精品| 丰满迷人的少妇在线观看| 少妇熟女欧美另类| 日韩一区二区视频免费看| 99视频精品全部免费 在线| 一级毛片 在线播放| 成年人午夜在线观看视频| av视频免费观看在线观看| 国产精品久久久久久久电影| 丝瓜视频免费看黄片| 国产色婷婷99| 亚洲成人av在线免费| 日韩中字成人| 男男h啪啪无遮挡| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 久久精品熟女亚洲av麻豆精品| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 精品一区在线观看国产| 热99国产精品久久久久久7| 在线亚洲精品国产二区图片欧美 | 精品亚洲乱码少妇综合久久| 成人亚洲欧美一区二区av| 七月丁香在线播放| 国产老妇伦熟女老妇高清| 日韩一区二区视频免费看| 国产黄色免费在线视频| 午夜免费鲁丝| 国产91av在线免费观看| 国产av精品麻豆| 777米奇影视久久| 狂野欧美激情性bbbbbb| 国产欧美日韩精品一区二区| 亚洲精品视频女| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| 精品亚洲成a人片在线观看| 夜夜看夜夜爽夜夜摸| 成人影院久久| 人妻 亚洲 视频| 国产精品国产三级国产av玫瑰| 男人狂女人下面高潮的视频| 国产黄频视频在线观看| 秋霞在线观看毛片| 久久免费观看电影| 免费大片18禁| 最近中文字幕高清免费大全6| 黑人高潮一二区| 久久 成人 亚洲| 国产一级毛片在线| 亚洲性久久影院| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 国产在线男女| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 在线观看一区二区三区激情| 亚洲精品乱码久久久久久按摩| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 9色porny在线观看| 精品99又大又爽又粗少妇毛片| 午夜福利在线观看免费完整高清在| 欧美另类一区| 久热久热在线精品观看| 99精国产麻豆久久婷婷| 精品久久国产蜜桃| 色视频www国产| 亚洲国产精品一区二区三区在线| 春色校园在线视频观看| 九九在线视频观看精品| 丰满少妇做爰视频| 欧美日韩综合久久久久久| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 秋霞伦理黄片| 久久久久视频综合| 亚洲av成人精品一区久久| 国产精品秋霞免费鲁丝片| 亚洲精品456在线播放app| 男人舔奶头视频| 男人和女人高潮做爰伦理| 人体艺术视频欧美日本| 热re99久久国产66热| 国产在线视频一区二区| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 狂野欧美激情性xxxx在线观看| 日本欧美视频一区| xxx大片免费视频| av在线app专区| 久久国产乱子免费精品| 国产一级毛片在线| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 午夜av观看不卡| a级毛色黄片| 日韩av不卡免费在线播放| 成年人午夜在线观看视频| 国产毛片在线视频| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 精品一品国产午夜福利视频| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品第二区| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av | 三级国产精品片| 午夜福利在线观看免费完整高清在| 美女内射精品一级片tv| av有码第一页| 色哟哟·www| 亚洲国产欧美日韩在线播放 | 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 国产视频首页在线观看| 两个人免费观看高清视频 | 亚洲国产日韩一区二区| 久久6这里有精品| 99re6热这里在线精品视频| 久久影院123| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院 | 成人毛片60女人毛片免费| 精品少妇久久久久久888优播| av在线老鸭窝| freevideosex欧美| 色视频www国产| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 国产黄色免费在线视频| 日韩一区二区三区影片| 国产精品无大码| 天堂俺去俺来也www色官网| 一区二区三区精品91| 国产日韩欧美视频二区| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 人妻系列 视频| 国产精品偷伦视频观看了| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 色视频www国产| 欧美日韩在线观看h| 欧美3d第一页| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区 | av在线观看视频网站免费| 日韩一区二区三区影片| 日本av免费视频播放| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 老熟女久久久| 各种免费的搞黄视频| 日本欧美视频一区| 国产亚洲午夜精品一区二区久久| a级片在线免费高清观看视频| 亚洲精品国产色婷婷电影| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| www.av在线官网国产| 国产精品久久久久久av不卡| 黑丝袜美女国产一区| 春色校园在线视频观看| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 街头女战士在线观看网站| 国产一级毛片在线| 亚洲美女视频黄频| 国产成人精品一,二区| 2018国产大陆天天弄谢| kizo精华| 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 热re99久久国产66热| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 免费黄色在线免费观看| 亚洲天堂av无毛| 狠狠精品人妻久久久久久综合| 九九久久精品国产亚洲av麻豆| videos熟女内射| 国产男人的电影天堂91| 蜜桃在线观看..| 色视频在线一区二区三区| 成年人免费黄色播放视频 | 亚洲在久久综合| 免费观看无遮挡的男女| 成人亚洲精品一区在线观看| 大香蕉97超碰在线| 精品人妻熟女毛片av久久网站| 国产高清有码在线观看视频| 国产av精品麻豆| 男人和女人高潮做爰伦理| a级毛片在线看网站| 久久99热6这里只有精品| 日本午夜av视频| 亚洲国产精品国产精品| 久久久国产一区二区| 午夜视频国产福利| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 在线看a的网站| 99热6这里只有精品| 国产真实伦视频高清在线观看| 久久久久久久亚洲中文字幕| 街头女战士在线观看网站| 国产淫片久久久久久久久| 精品酒店卫生间| 免费大片18禁| 久久毛片免费看一区二区三区| 一级片'在线观看视频| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 91精品国产九色| 在线观看免费日韩欧美大片 | 免费在线观看成人毛片| 边亲边吃奶的免费视频| 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 久久久久久久精品精品| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 亚洲美女视频黄频| 国产精品蜜桃在线观看| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 美女大奶头黄色视频| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 久久久久国产精品人妻一区二区| 3wmmmm亚洲av在线观看| 成人美女网站在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 在线看a的网站| 久久精品国产亚洲网站| 成人国产麻豆网| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 18+在线观看网站| 国产成人免费无遮挡视频| 中文字幕人妻丝袜制服| a级毛色黄片| 少妇人妻 视频| 青春草视频在线免费观看| 免费大片18禁| 国产av码专区亚洲av| 国产精品一区www在线观看| 亚洲欧美精品专区久久| 乱码一卡2卡4卡精品| av一本久久久久| 欧美激情极品国产一区二区三区 | 久久 成人 亚洲| 国产有黄有色有爽视频| 曰老女人黄片| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 国产精品无大码| 乱码一卡2卡4卡精品| 国产视频首页在线观看| .国产精品久久| 精品人妻熟女av久视频| 视频区图区小说| 男女无遮挡免费网站观看| 黄色怎么调成土黄色| 久久久久久久久久久丰满| 国产国拍精品亚洲av在线观看| 精品少妇黑人巨大在线播放| 大香蕉97超碰在线| 欧美日韩视频精品一区| 免费少妇av软件| 一级毛片久久久久久久久女| 熟女电影av网| 韩国高清视频一区二区三区| 最近最新中文字幕免费大全7| 国产av一区二区精品久久| 国产成人免费无遮挡视频| 高清黄色对白视频在线免费看 | 各种免费的搞黄视频| 熟女av电影| 亚洲国产最新在线播放| 亚洲精品自拍成人| 免费看日本二区| 精品午夜福利在线看| 国产精品99久久久久久久久| 日本欧美国产在线视频| 久久国产乱子免费精品| 久久国产精品男人的天堂亚洲 | 亚洲精品国产成人久久av| 久久久国产精品麻豆| 国产精品99久久99久久久不卡 | 91精品国产国语对白视频| 午夜福利网站1000一区二区三区| 女的被弄到高潮叫床怎么办| 精品久久久久久久久av| 久久久国产精品麻豆| 国产黄色视频一区二区在线观看| 亚洲av成人精品一二三区| 人妻 亚洲 视频| 精品卡一卡二卡四卡免费| 男人舔奶头视频| 极品少妇高潮喷水抽搐| 国产高清国产精品国产三级| 最近中文字幕2019免费版| 99热6这里只有精品| 亚洲av男天堂| 亚洲性久久影院| 亚洲四区av| 观看av在线不卡| 午夜影院在线不卡| 久久97久久精品| 成人毛片a级毛片在线播放| 亚洲国产欧美日韩在线播放 | 不卡视频在线观看欧美| 亚洲精品日本国产第一区| 精品国产乱码久久久久久小说| 亚洲丝袜综合中文字幕| 精品少妇内射三级| 国产极品天堂在线| 国产精品麻豆人妻色哟哟久久| 视频中文字幕在线观看| 永久免费av网站大全| 内地一区二区视频在线| 亚洲欧洲精品一区二区精品久久久 | 欧美变态另类bdsm刘玥| 成人无遮挡网站| av播播在线观看一区| 国产成人精品一,二区| 亚洲,一卡二卡三卡| 久久免费观看电影| av黄色大香蕉| 天美传媒精品一区二区| 欧美精品一区二区大全| 久久精品国产鲁丝片午夜精品| 美女xxoo啪啪120秒动态图| 欧美xxⅹ黑人| 亚洲人成网站在线播| 搡老乐熟女国产| 欧美三级亚洲精品| 纯流量卡能插随身wifi吗| 亚洲欧洲日产国产| 大陆偷拍与自拍| 国产精品久久久久久精品古装| 高清av免费在线| 欧美最新免费一区二区三区| 韩国高清视频一区二区三区| 国产男人的电影天堂91| 久久久国产精品麻豆| 99热这里只有是精品在线观看| 国产精品人妻久久久影院| 欧美日本中文国产一区发布| 狂野欧美激情性bbbbbb| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| 丝袜在线中文字幕| 欧美另类一区| 日本免费在线观看一区| 18禁动态无遮挡网站| 国产亚洲最大av| 国产成人精品久久久久久| 99热这里只有精品一区| 一级二级三级毛片免费看| 国产女主播在线喷水免费视频网站| 亚洲美女搞黄在线观看| 偷拍熟女少妇极品色| 天天操日日干夜夜撸| 国产日韩欧美亚洲二区| av国产精品久久久久影院| 亚洲精品视频女| 免费少妇av软件| 国产免费一区二区三区四区乱码| 日本av免费视频播放|