張 祎,韓日疇
(廣東省昆蟲研究所,廣州 510260)
狄斯瓦螨Varroa destructor(Anderson&Trueman,2000)是對世界養(yǎng)蜂業(yè)危害最大的蜜蜂寄生蟲,廣泛分布于東方蜜蜂、西方蜜蜂上。在歐洲和北美洲地區(qū)每年有幾百萬群意大利蜜蜂被毀滅,間接導致數十億美元的經濟損失 (Martin et al.,2004)。如今,除澳大利亞和非洲的部分地區(qū)還沒有發(fā)現狄斯瓦螨外,全世界其他地方只要有蜜蜂生存的地方就有狄斯瓦螨的危害 (周婷,2005;羅其花等,2010)。狄斯瓦螨可危害蜜蜂封蓋幼蟲、蛹和成蜂,同時攜帶并傳播蜜蜂病毒,與梅氏熱厲螨 Tropilaelaps mercedesae共感染 (Luo et al.,2011),從而造成蜂群生產力嚴重下降,乃至全群毀滅。狄斯瓦螨對意大利蜜蜂的危害遠遠大于其原始寄主——中華蜜蜂 (Peng et al.,1987)。而在南美的熱帶地區(qū),如巴西等國家的非洲化蜜蜂 (Africanized honey bees,AHB)對狄斯瓦螨也具有一定的耐受性,30多年來都沒有嚴重的螨害爆發(fā) (Calderón et al.,2010)。究其原因,狄斯瓦螨的繁殖特性與蜜蜂的生物學特性密切相關,控制狄斯瓦螨的繁殖是控制瓦螨種群數量增長的最有效的方式。本文將對狄斯瓦螨的繁殖特性、對蜜蜂的危害及目前的防治方法等展開介紹。
狄斯瓦螨的繁殖期是在蜂巢內完成的,成年雌螨進入即將封蓋的幼蟲巢房,60 h后產下第一粒卵 (雄螨),接著再產2~5粒卵 (雌螨)。發(fā)育為雌螨的卵經24 h孵化為6足的幼蟲,經48 h左右變?yōu)?足的前期若蟲,隨后蛻皮成后期若蟲,再經3 d發(fā)育為成螨,整個發(fā)育期為6~9 d。雄螨整個發(fā)育期為6~7 d。雌螨一生中有3~7個產卵周期,最多可產30粒卵。影響狄斯瓦螨繁殖力的因素主要有:1)雌螨的繁殖力;2)蜜蜂蛹的封蓋歷期;3)蜜蜂幼蟲的吸引力;4)巢房大小與類型。
雌螨的繁殖力對種群的繁殖具有關鍵作用,影響因素多 (H?nel& Koeniger,1987;Calderón et al.,2007,2012)。研究發(fā)現,雌螨在蜂房內繁殖及其后代的性別由其宿主的齡期決定:成熟雌螨進入新封蓋的預蛹房首先產雄螨卵隨后才產雌螨卵 (Garrido&Rosenkranz,2003),但是如果將轉到蛹期的蜂房中則僅有少數 (6%)的雌螨會首先產雄螨卵。如果缺少雄螨,則導致子代雌螨無法正常交配,從而不育。如果宿主發(fā)育提前或滯后都會影響雌螨的生育力 (Kirrane et al.,2011)。另外,工蜂房內子代螨發(fā)育不全 (40.6%)(Calderón et al.,2007;Carneiro et al.,2007),且子代雌螨不育 (Calderón et al.,2012)等因素也影響雌螨的繁殖力,因為當子代螨還沒有發(fā)育成熟時,蜜蜂已經出房,而不成熟的子代螨則還留在蜂房內,被清潔蜂清除。
狄斯瓦螨的的繁殖只發(fā)生在封蓋巢房內,因此封蓋歷期對狄斯瓦螨的繁殖具有重要的意義。研究發(fā)現,蜂房封蓋后約45.0±25.0 h雌螨開始產卵,隨后每產 1粒卵間隔 27.3±2.0 h(Calderón et al.,2012)。封蓋期為 14 d 的歐洲意大利蜜蜂雄蜂房中,1頭雌螨可以產生5頭成熟雌螨后代。蜜蜂的封蓋期越短,狄斯瓦螨繁殖的時間越短,能夠成熟出房的狄斯瓦螨越少,從而會導致種群群體下降。有研究表明,封蓋期減少1 h,狄斯瓦螨種群將下降8.7%。
雄蜂房的瓦螨感染率是工蜂房的8~10倍,主要原因有:(1)在蜂群中瓦螨進入工蜂巢房是在封蓋前15~20 h,而進入雄蜂房則是在封蓋前40~50 h;(2)清潔蜂身上的成年雌螨傾向于選擇5齡雄蜂房 (Calderone&Kuenen,2003);(3)工蜂房內雌螨的不育率明顯高于雄蜂房 (Calderón et al.,2007;Maggi et al.,2010),將工蜂房內不育的雌螨轉到雄蜂房,則可以重新繁殖后代。(4)雄蜂房內的次代可育螨 (次代螨中同時含有雄螨和雌螨)高于工蜂房 (Calderón et al.,2007)。(5)工蜂房內有很多發(fā)育不成熟的子代螨,而雄蜂房內不會出現子代螨不成熟的情況 (Calderón et al.,2007)。(6)工蜂房內的成年雄螨死亡率顯著高于雄蜂房 (Calderón et al.,2012)。調查 Costa Rica地區(qū)的非洲化意蜂群的工蜂房與雄蜂房內的雄螨發(fā)現,工蜂房內的雄螨死亡率達23.9%,而雄蜂房內為6.9%。另外有些雌螨可能沒有生育雄螨,使得工蜂房內雄螨缺失率達40.0%,雄蜂房內則僅為21.3%。(7)巢房的深度和寬度影響狄斯瓦螨的繁殖,在寬而淺的蜂房中容易受到狄斯瓦螨的侵染 (Piccirillo&De Jong,2003)。因此,雄蜂幼蟲較工蜂幼蟲更易于感染蜂螨。
狄斯瓦螨侵染蜜蜂是一個復雜的過程,信息素在其中具有重要的作用。狄斯瓦螨通常被清潔蜂和5齡幼蟲吸引,不同年齡的初生蜂對狄斯瓦螨的吸引力不同,小于3 h的初生蜂對狄斯瓦螨的吸引力明顯不如清潔蜂,但是18~20 h初生蜂的吸引力就相當于清潔蜂了。出勤蜂身上攜帶的信息素不但沒有吸引力,反而分泌干擾狄斯瓦螨侵染宿主的信息素,如出勤蜂攜帶的 (Z)-8-heptadecene就是一種瓦螨驅逐物質,并導致狄斯瓦螨子代數量的減少 (Nazzi et al.,2002;Del Piccolo et al.,2010)。清潔蜂的表面粗提物中也同時存在吸引和排斥狄斯瓦螨的信息素,而香葉醇和橙花叔醇可能是清潔蜂利用合成利它素從而控制種群內狄斯瓦螨數量的一種策略 (Pernal et al.,2005)。蜂王漿物質和巢脾提取物都含有抑制狄斯瓦螨繁殖的物質 (Nazzi& Milani,1996,Drijfhout et al.,2005)。
2.1.1 影響蜜蜂的體重
狄斯瓦螨以蜜蜂的血淋巴為食,成年雌螨在蜂蛹的表皮上打孔喂養(yǎng)它的子代,研究表明狄斯瓦螨的唾液蛋白能夠抑制血細胞凝集,阻止蜜蜂的傷口愈合并減少相應的宿主反應 (Richards et al.,2011)。因此,狄斯瓦螨可以從1個孔重復多次吸食血淋巴 (Kanbar&Engels,2003)。它們通常在腹部第二節(jié)打1個孔,極少數有3個孔,隨著蜂蛹的發(fā)育生長,孔的直徑也隨著增加。在1頭幼蟲房中通常有4~5個雌螨及其后代侵染的話,傷口的愈合就會延遲直到蛻皮成蜂 (Kanbar&Engels,2003),但造成蜜蜂發(fā)育不良,體重下降(Yang&Cox-foster,2005)。體重的下降幅度依賴雌螨及其繁殖力的變化,但是即使只有1頭雌螨也會導致工蜂體重下降約 7% (de Jong et al.,1982);若是雄蜂體重則下降11%~19%(Duay et al.,2002)。
2.1.2 影響蜜蜂的生理狀態(tài)
狄斯瓦螨的寄生會改變蜜蜂的生理學特征。研究表明,工蜂在蛹期被螨寄生過的蜜蜂發(fā)育至成蜂時其體內的卵黃蛋白原濃度、血淋巴中總蛋白存量、血細胞特征和蛻皮激素含量都發(fā)生變化,很難維持蜜蜂過冬(Amdam et al.,2004)。雄蜂被侵染后則導致缺少3個中分子和小分子蛋白,且酸性蛋白的活性顯著 (P<0.05)降低,堿性蛋白的活性升高,但總蛋白含量沒有顯著變化(Zó?towska et al.,2005)。狄斯瓦螨的寄生顯著降低蜜蜂的體重,削弱了蜜蜂的免疫系統,缺乏可誘導的酚氧化酶(Gregory et al.,2005;Yang&Cox-foster,2005)。最近研究表明花粉可以激活蜜蜂的營養(yǎng)傳感和代謝途徑,并且使得與壽命相關和抗菌肽相關的基因表達上調。但是狄斯瓦螨導致的病毒增殖以及抑制蜜蜂的基本需求蛋白的代謝不會因為食取花粉而得到改善或者說逆轉 (Alaux et al.,2011)。
2.1.3 影響蜜蜂的飛行學習等能力
工蜂在發(fā)育過程中被狄斯瓦螨侵染則會導致過早轉變?yōu)槌銮诜?,并顯著縮短其壽命(De Jong et al.,1982;Amdam et al.,2004),雄蜂則會削弱其飛行能力和降低產精量 (Duay et al.,2002)。成年的出勤蜂被狄斯瓦螨寄生則降低其學習能力,干擾其方向感,降低認知功能,缺乏對環(huán)境刺激的響應能力,削弱對巢門的定位,降低其返巢率,可能狄斯瓦螨嚴重影響蜜蜂神經系統 (Kralj et al.,2007)。目前,還沒有研究表明狄斯瓦螨是否直接對蜂王造成危害 (Drijfhout et al.,2005)。
2.1.4 影響蜂群的生存和發(fā)展
蜜蜂蜂群也會由于狄斯瓦螨的侵害而崩潰。在合適的條件下,只要狄斯瓦螨感染率超過7%,過冬蜂群可全群覆滅;夏天的蜂群中成年蜂的狄斯瓦螨寄生率如達到30% 而不采取防治措施的話,則幾乎無法渡過同年冬天 (Rosenkranz et al.,2010)。意大利蜜蜂被狄斯瓦螨的寄生后抗壓能力減弱,難以承受低溫 (de Guzman et al.,2005)。因此,建議蜂農在過冬前和冬天維持較低的螨水平。一般來說,人們把過冬蜂群的消失歸結為單因素影響的結果,如DWV是影響蜜蜂過冬能力的主要因素 (Dainat et al.2012)。但是,Hedtke et al.(2011)經過6年監(jiān)測22個蜂場的220群蜂發(fā)現:過冬蜂群消失大概維持在4.8% ~22.4%之間,在此期間監(jiān)測狄斯瓦螨、病毒、微孢子蟲的動態(tài)變化發(fā)現:春季和夏季狄斯瓦螨的感染導致蜂群隨后受到DWV、微孢子蟲的感染以及白堊病的爆發(fā)。蜂群的消失是多因素共同作用的結果。狄斯瓦螨可以作為過冬蜂群是否消失的預警信號之一,具有非常關鍵的作用,但具有季節(jié)依賴性(Dainat et al.,2012)。
2.2.1 促進蜜蜂病毒的傳播
狄斯瓦螨攜帶并傳播各種蜜蜂病毒(Tentcheva et al.,2004;Shen et al.,2005;Parrella et al.,2006;Chen et al.,2006;Chantawannakul et al.,2006)。目前為止,被分離的蜜蜂病毒有18種,其中大部分都可被狄斯瓦螨攜帶。主要有卡什米爾病病毒 (Kashmir Bee Virus,KBV),腐幼病病毒(Sacbrood Virus,SBV),急性麻痹病病毒(A-cute Bee Paralysis Virus,ABPV),以色列麻痹病病毒(Israeli Acute Paralysis Virus,IAPV)和殘翅病病毒(Deformed Wing Virus,DWV)。狄斯瓦螨可以通過水平傳播和垂直傳播病毒并通過誘導宿主免疫抑制反應激活這些潛伏病毒 (Yang&Coxfoster,2005;Santillán-Galicia et al.,2008)。如,DWV病毒首先在狄斯瓦螨體內復制繁殖,再大量傳至蜂蛹使得蜂蛹發(fā)育不全,導致殘翅 (Genersch&Aubert,2010),甚至直接影響蜂群的過冬能力(Dainat et al.,2012)。研究表明,蜜蜂病毒的單獨存在并不威脅蜜蜂的健康,如果將病毒粒子注射到蜂蛹的血腔,同時注射狄斯瓦螨的唾液蛋白類物質則激活潛伏的病毒才能產生典型的病毒病癥狀 (Genersch&Aubert,2010)。而當狄斯瓦螨和病毒同時存在時,可能會導致降低蜂王的卵巢功能 (Gauthier et al.,2011)。一般來說蜜蜂群勢越強對病毒的抵抗力越強,了解病毒動態(tài)變化對于了解蜜蜂疾病的發(fā)病機理非常關鍵。影響病毒動態(tài)變化的因素有蜂群中狄斯瓦螨的密度和感染時間、溫度的變化 (Di Prisco et al.,2011)及殺螨劑的殘留 (Locke et al.,2012)。了解宿主與病毒的關系有助于開發(fā)病害的有效防控方法 (Di Prisco et al.,2011)。
目前,隨著狄斯瓦螨的傳播,DWV演化出新的變種,命名為狄斯瓦螨病毒 (Varroa destructor virus 1,VDV-1)(Ongus et al.,2007;Moore et al.,2011;Zioni et al.,2011)。該病毒與 DWV 共感染蜜蜂,并產生重組體VDV-1-DWV,重組體是強毒株使得蜜蜂表現明顯殘翅癥狀 (Zioni et al.,2011)。
2.2.2 殺螨劑對蜜蜂的危害
隨著各種殺螨劑的施用,殺螨劑本身對蜜蜂的毒性問題也逐漸受到關注。Pettis et al.(2004)發(fā)現用抗生素防治瓦螨會導致蜜蜂幼蟲的死亡,將200 mg四環(huán)素溶于20 g蔗糖水中飼喂蜜蜂會導致80% 的幼蟲死亡,而溶菌素和林肯霉素則當含量達到1000 mg每20 g蔗糖水時也會導致57%的幼蟲死亡。草酸是研究最多的有機殺螨劑,能有效殺死瓦螨,但是實驗室測定草酸對蜜蜂有慢性毒力作用 (Aliano et al.,2006)。而蜂箱實驗表明,春天使用甲酸和草酸治螨,夏天蜂群難以復壯且蜂產品產量降低,而甲酸對蜂王有明顯的直接毒性,甚至可以致死蜂王 (Giovenazzo&Dubreuil,2011)。Apiguard?(主要成分是百里酚,也叫麝香草酚)則影響蜜蜂的行為,特別是出勤蜂 (Mondet et al.,2011)。百里酚、蠅毒磷則改變蜜蜂的解毒功能,干擾蜜蜂的發(fā)育,削弱免疫系統(Boncristiani et al,2011)。氟蟲腈有可能引起蜂群的消失 (Bernal et al.,2011)。而巢脾中殺螨劑的殘留會導致蜜蜂出現亞致死現象,即幼蟲發(fā)育羽化的時間延長,成蜂壽命縮短,衛(wèi)生蜂過早的轉化為出勤蜂。另外,發(fā)育歷期的延長,使得狄斯瓦螨的繁殖時間延長,有可能使得螨害更加嚴重 (Wu et al.,2011)。更值得注意的是有些有機磷殺螨劑會導致人的紅血球細胞變形(Szatkowska et al.,2011)。因此,殺螨劑的殘留問題越來越引起人們的重視。
當然,并不是所有殺螨劑都會產生副作用,左旋咪唑(levamisol)則不會擾亂蜜蜂的生長發(fā)育,而是使蜜蜂血淋巴中的總蛋白含量上升,降低瓦螨的侵染,但是并不清楚是哪些蛋白含量增加(Sokó? et al.,2003)。另外,有些藥物一直施用的話,蜜蜂也會習慣(Mondet et al.,2011)??赡苁且驗槊鄯渚哂薪舛緳C制,研究表明蜜蜂的細胞色素P450家族中的 CYP9Q能夠使蜜蜂不受合成除蟲菊酯和有機磷毒蠅磷的毒害。CYP9Q可以將合成除蟲菊酯代謝成羧酸酯酶能夠代謝的物質,而毒蠅磷具有與合成除蟲菊酯相同的催化位點,因此也能夠被降解,從而不對蜜蜂造成危害(Mao et al.,2011)。
狄斯瓦螨的防治技術有物理防治、化學防治及生物防治。
物理防治有熱處理、細粉末處理、分蜂處理等,這些方法能在一定程度上減少蜂螨的數量,但是這種方法耗時也耗力,在實際工作中很難進行。割除雄蜂房可以減少瓦螨的數量,而不影響蜂群的健康,因此作為害蟲綜合防治的一個有用部分 (Calderone,2005;Wantuch et al.,2009)。
最有名的殺螨劑是化學合成藥劑“庫蠅磷”、擬除蟲菊酯、氟氯苯菊酯、甲脒 (雙甲瞇)。這些殺螨劑經濟有效,易使用,不危害蜜蜂。不過易殘留并累積,如果同時使用多種殺螨劑則可能危害蜜蜂,污染蜂脾和蜂產品。另外,狄斯瓦螨16年前已經對氟胺氰菊酯產生抗性,特別是除蟲菊酯類已產生交叉抗性,比如氟丙菊酯(acrinathrin)和氟氯苯菊酯 (flumethrin);還有是有機磷酸鹽,比如庫蠅磷和甲瞇??剐则漠a生與傳播將使瓦螨的防治效果更難以預料 (Lodesani,2004)。因此,科學家們傾向于開發(fā)天然物質這種相對溫和的殺螨劑,主要有甲酸、草酸、乳酸、麝香草酚、百里酚、β-環(huán)糊精攜帶單帖烯類化合物等 (Ariana et al.,2002;Ostermann& Currie,2004;Elzen et al.,2004;Satta et al.,2005;Underwood&Currie,2005;胡福良等,2005;Bacandritsos et al., 2007;van Engelsdorp et al.,2008),這些物質的防治效果與施用方式、劑量以及蜂箱內的環(huán)境條件 (溫度和濕度)或者當地氣候相關 (Underwood&Currie,2003;Ostermann&Currie,2004;Elzen et al.,2004),實驗室測定發(fā)現,溫度和換氣率會直接影響瓦螨的壽命 (Kozak&Currie,2011)。也許調整施用方式可以避免或者減少傷害,比如蟻酸防治瓦螨,低濃度長時間比高濃度短時間的要更好,因為可以有效控制瓦螨而不危害蜂王 (Underwood&Currie,2005),而熏蒸也許是更好的施用方式,用50%的蟻酸熏蒸17 h可以有效殺死封蓋子中和成年蜂體上的螨,而對蜂王和未封蓋子均無害 (van Engelsdorp et al.,2008)。最近,人們又發(fā)現桃心木屬提取物 (El Zalabani et al.,2012)、百里香、大茴香,桉樹提取物 (Ghasemi et al.,2011)、以及苦楝種子油(González-Gómez et al.,2012)等具有殺螨效果的天然產物,且百里香精油和苦楝種子油的殺螨效果很好,有望開發(fā)成新的殺螨劑。
不可否認,藥物治螨起了一定的積極作用。但是,連續(xù)和大范圍使用導致的狄斯瓦螨抗藥性和蜂產品污染問題嚴重 (Maggi et al.,2010,2011)。1994年,最先發(fā)現蠅毒磷在蜂蜜中的殘留,2005年之后,殺螨劑殘留問題日益嚴重,各個國家相繼發(fā)表研究報告:西班牙發(fā)現麝香草酚(thymol)等揮發(fā)性香油在蜂蜜中殘留嚴重 (Adamczyk et al.,2005),蜂蠟中氟氰胺菊酯 (fluvalinate)殘留嚴重 (Adamczyk et al.,2010);希臘,各種殺螨劑在蜂蜜中都有殘留 (Karazafiris et al.,2008);意大利,魚藤酮 (rotenone)在蜂蜜和蜂蠟中殘留量 (Satta et al.,2005)大大超過歐盟標準。藥物的殘留給環(huán)境帶來污染 (Wiest et al.,2011),也使得瓦螨具有抗性 (Lipiński et al.,2007)??剐援a生的原因可能是瓦螨體內細胞色素單加氧酶活性升高有關 (Miozes-Koch et al.,2000)。Hillesheim(1998)發(fā)現瓦螨的抗藥性與其體內的多功能氧化酶活性增強有關,將酶的抑制劑添加到瓦螨防治藥液中,可增加藥液的毒殺效果。也有研究表明與瓦螨的體型大小有關(Maggi et al.,2011)??剐缘漠a生可能是一個綜合影響因素,有待進一步研究。
根據蜜蜂的抗螨特性,如工蜂和蜂王巢房內狄斯瓦螨繁殖率低,推測該幼蟲的表皮信息物質或者蜂王漿的成分對瓦螨有趨避作用 (曾志將等,2007),提取到了烴類物質(Nazzi et al.,2002)和脂肪酸類物質 (Pernal et al.,2005;Drijfhout et al.,2005),其中用8-十七碳烯酸能夠減少30%的子代螨 (Nazzi et al.,2002)。另外,利用抗螨特性的可遺傳性,可以人工培育抗螨蜂群 (Danka et al.,2011)。
自然界中許多真菌能夠殺死小壁虱和蜱螨,是非常有潛力的生防微生物。Shaw et al.(2002)分離到40種對瓦螨有抑制作用真菌,分別屬于6個屬,如輪枝孢菌 Verticillium lecanii,被毛孢屬Hirsutella spp.,擬青霉屬 Paecilomyces spp.,白僵菌Beauveria bassiana,綠僵菌 Metarhizium spp.和彎頸霉屬 Tolypocladium spp.。通過實驗室測定,防治效果最好的是輪枝孢菌、白僵菌和綠僵菌,7天內致死率達100%。Peng et al.(2002)發(fā)現湯普森被毛孢H.thompsonii對瓦螨也有明顯抑制作用。隨后,Kanga et al.(2002,2003)將綠僵菌和湯普森被毛孢的孢子應用于蜂箱內防治狄斯瓦螨,21 d后可以看到致死的瓦螨,42 d后仍能觀察到孢子,并且在對照蜂箱內可以觀察到所施用的孢子,說明真菌孢子能夠通過成蜂在蜂箱之間傳播,但是對于封蓋內的瓦螨沒有防治效果。Kanga et al.(2006)將綠僵菌與化學殺蟲劑Tau-xuvalinate(Apistan?)同時在蜂箱內施用,比較兩者的殺螨效果。施用42 d后,Apistan處理組瓦螨減少了69倍,施用綠僵菌的則減少了25倍,空白對照則增加了1.3倍;但是Apistan處理組中封蓋巢房內的瓦螨增加了13倍,真菌處理組的增加了3.6倍。由此可見,真菌的殺螨效果與藥物相當,但是真菌不容易引起抗性,是非常有效的生防因子,不過,仍需要開發(fā)更加有效、方便的施用方式。Kanga et al.(2010)把綠僵菌孢子制成小餅狀混合物放在蜂箱內,7 d后孢子萌發(fā)率達98%,殺螨率達到97%,顯著降低封蓋巢房內的瓦螨數量。但是,蜂箱內真菌孢子的毒力和致病力會隨著時間的延長而降低,也許可以通過提高孢子的發(fā)芽效率和延長儲存時間來解決這一問題,或者真菌與棕櫚蠟粉末共處理也可以到達很好的防治效果(Meikle et al.,2008)。目前并沒有研究真菌的殺螨機制。
細菌的次生代謝物也有殺螨潛力,Tsagou et al.(2004)發(fā)現微球菌Micrococcaceae和桿菌Bacillus sp.分泌的內毒素和外毒素可以加速瓦螨的死亡。粘質沙雷氏菌Serratia marcescens分泌的幾丁質酶對瓦螨具有致死作用 (Tu et al.,2010)。開發(fā)有效的細菌生物殺螨劑也許是一個可行的研究方向。
從目前的研究來看,人們對狄斯瓦螨與蜜蜂的相互作用、與病毒的相互作用等了解有限。如病毒是繼發(fā)感染還是協同作用?對于“狄斯瓦螨綜合癥”只能根據當地的環(huán)境條件而采取綜合管理防控方法,不足以提出一個徹底的解決方案,很難在短時間內研發(fā)“安全,有效,易用性強”的防治技術,或者培育耐受性蜂種。因此,我們需要更多的研究狄斯瓦螨生物學和蜜蜂病理學,借助于交叉學科共同研究蜂螨與蜜蜂以及病原物的相互作用關系。狄斯瓦螨基因組序列的初步測定 (Cornman et al.,2010)以及RNAi等生物技術和基因工程技術的不斷成熟和應用 (Campbell et al.,2010),環(huán)境友好型瓦螨防治方法終將會取代傳統的化學藥劑。
References)
Adamczyk S,Lázaro R,Pérez-Arquillué C,Bayarri S,Herrera A,2010.Impact of the use of fluvalinate on different types of beeswax from Spanish hives.Arch.Environ.Contam.Toxicol.,58(3):733-739.
Adamczyk S,Lázaro R,Pérez-Arquillué C,Conchello P,Herrera A,2005.Evaluation of residues of essential oil components in honey after different anti-Varroa treatments.J.Agric.Food.Chem.,53(26):10085-10090.
Alaux C,Dantec C,Parrinello H,Le Conte Y,2011.Nutrigenomics in honey bees:digital gene expression analysis of pollen's nutritive effects on healthy and Varroa-parasitized bees.BMC Genomics,12:496.
Aliano NP,Ellis MD,Siegfried BD,2006.Acute contact toxicity of oxalic acid to Varroa destructor(Acari:Varroidae)and their Apis mellifera(Hymenoptera:Apidae)hosts in laboratory bioassays.J.Econ.Entomol.,99(5):1579-1582.
Amdam GV,Hartfelder K,Norberg K,Hagen A,Omholt SW,2004.Altered physiology in worker honey bees(Hymenoptera:Apidae)infested with the mite Varroa destructor(Acari:Varroidae):a factor in colony loss during overwintering?J.Econ.Entomol.,97(3):741-747.
Anderson DL,Trueman JW,2000.Varroa jacobsoni(Acari:Varroidae)is more than one species.Exp.Appl.Acarol.,24(3):165-189.
Ariana A,Ebadi R,Tahmasebi G,2002.Laboratory evaluation of some plant essences to control Varroa destructor(Acari:Varroidae).Exp.Appl.Acarol.,27(4):319-327.
Bacandritsos N,Papanastasiou I,Saitanis C,Nanetti A,Roinioti E,2007.Efficacy of repeated trickle applications of oxalic acid in syrup for varroosis control in Apis mellifera:influence of meteorological conditions and presence of brood.Vet.Parasitol.,148(2):174-178.
Bernal J,Martin-Hernandez R,Diego JC,Nozal MJ,Gozalez-Porto AV,Bernal JL,Higes M,2011.An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain.Pest Manag.Sci.,5.
Boncristiani H,Underwood R,Schwarz R,Evans JD,Pettis J,Vanengelsdorp D,2011.Direct effect of acaricides on pathogen loads and gene expression levels of honey bee Apis mellifera.J.Insect Physiol.,28.
Calderón RA,Zamora LG,Van Veen JW,Quesada MVA,2007.Comparison of the reproductive ability of Varroa destructor(Mesostigmata:Varroidae)in worker and drone brood of Africanized honey bees(Apis mellifera).Exp.Appl.Acarol.,43(1):25-32.
Calderón RA,van Veen JW,Sommeijer MJ,Sanchez LA,2010.Reproductive biology of Varroa destructor in Africanized honey bees(Apis mellifera).Exp.Appl.Acarol.,50:281-297.
Calderone NW,2005.Evaluation of drone brood removal for management of Varroa destructor(Acari:Varroidae)in colonies of Apis mellifera(Hymenoptera:Apidae)in the northeastern United States.J.Econ.Entomol.,98(3):645-650.
Campbell EM,Budge GE,Bowman AS,2010.Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach:studies on a glutathione S-transferase. Parasit. & Vectors,3:73.
Chantawannakul P,Ward L,Boonham N,Brown M,2008.A scientific note on the detection of honeybee viruses using real-time PCR(TaqMan)in Varroa mites collected from a Thai honeybee(Apis mellifera)apiary.J.Invertebr.Pathol.,91(1):69-73.
Chen Y,Evans J,Feldlaufer M,2006.Horizontal and vertical transmission of viruses in the honey bee,Apis mellifera. J.Invertebr.Pathol.,92(3):152-159
Cornman SR,Schatz MC,Johnston SJ,Chen YP,Pettis J,Hunt G,Bourgeois L,Elsik C,Anderson D,Grozinger CM,Evans JD,2010.Genomic survey of the ectoparasitic mite Varroa destructor,a major pest of the honey bee Apis mellifera. BMC Genomics,11:602.
Dainat B,Evans JD,Chen YP,Gauthier L,Neumann P,2012.Dead or alive:deformed wing virus and Varroa destructor reduce the life span of winter honeybees.Appl.Environ.Microbiol.,78(4):981-987.
Dainat B,Evans JD,Chen YP,Gauthier L,Neumann P,2012.Predictive markers of honey bee colony collapse. PLoS One, 7(2):e32151.
Danka RG,Harris JW,Villa JD,2011.Expression of Varroa sensitive hygiene(VSH)in commercial VSH honey bees(Hymenoptera:Apidae).J.Econ.Entomol.,104(3):745-749.
de Guzman LI,Rinderer TE,Bigalk M,Tubbs H,Bernard SJ,2005.Russian honey bee(Hymenoptera:Apidae)colonies:Acarapis woodi(Acari:Tarsonemidae)infestations and overwintering survival.J.Econ.Entomol.,98(6):1796-1801.
de Jong D,De Jong PH,Gon?alves LS,1982.Weight loss and other damage to developing worker honeybees from infestation with V.jacobsoni.J.Apicult.Res.,21:165-216.
Del Piccolo F,Nazzi F,Vedova GD,Milani N,2010.Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons.Parasitology,137:967-973.
Di Prisco G,Zhang X,Pennacchio F,Caprio E,Li J,Evans JD,Degrandi-Hoffman G,Hamilton M,Chen YP,2011.Dynamics of persistent and acute deformed wing virus infections in honey bees,Apis mellifera.Viruses,3(12):2425-2441.
Drijfhout FP,Kochansky J,Lin S,Calderone NW,2005.Components of honeybee royal jelly as deterrents of the parasitic Varroa mite,Varroa destructor.J.Chem.Ecol.,31(8):1747-1764.
Duay P,De Jong D,Engels W,2002.Decreased flight performance and sperm production in drones of the honey bee(Apis mellifera)slightly infested by Varroa destructor mites during pupal development.Genet.Mol.Res.,1(3):227-232.
El Zalabani SM,El-Askary HI,Mousa OM,Issa MY,Zaitoun AA,Abdel-Sattar E,2012.Acaricidal activity of Swietenia mahogani and Swietenia macrophylla ethanolic extracts against Varroa destructor in honeybee colonies.Exp.Parasitol.,130(2):166-170.
Elzen PJ,Westervelt D,Lucas R,2004.Formic acid treatment for control of Varroa destructor(Mesostigmata:Varroidae)and safety to A-pis mellifera(Hymenoptera:Apidae)under southern United States conditions.J.Econ.Entomol.,97(5):1509-1512.
Garrido C,Rosenkranz P,2003.The reproductive program of female Varroa destructor mites is triggered by its host,Apis mellifera.Exp.Appl.Acarol.,31(3-4):269-273.
Gauthier L,Ravallec M,Tournaire M,Cousserans F,Bergoin M,Dainat B,de Miranda JR,2011.Viruses associated with ovarian degeneration in Apis mellifera L.queens.PLoS One,25;6(1):e16217.
Genersch E,Aubert M,2010.Emerging and re-emerging viruses of the honey bee(Apis mellifera L.).Vet.Res.,41:11-12.
Ghasemi V,Moharramipour S,Tahmasbi G,2011.Biological activity of some plant essential oils against Varroa destructor(Acari:Varroidae),an ectoparasitic mite of Apis mellifera(Hymenoptera:Apidae).Exp.Appl.Acarol.,12.
Giovenazzo P,Dubreuil P,2011.Evaluation of spring organic treatments against Varroa destructor(Acari:Varroidae)in honey bee A-pis mellifera(Hymenoptera:Apidae)colonies in eastern Canada.Exp.Appl.Acarol.,55(1):65-76.
González-Gómez R,Otero-Colina G,Villanueva-Jiménez JA,Pe?na-Valdivia CB,Santizo-Rincón JA,2012.Repellency of the oily extract of neem seeds(Azadirachta indica)against Varroa destructor(Acari:Varroidae).Exp.Appl.Acarol.,24.
Gregory PG,Evans JD,Rinderer T,de Guzman L,2005.Conditional immune-gene suppression of honeybees parasitized by Varroa mites.J.Insect.Sci.,5:7.
H?nel H,Koeniger N.1987.Possible regulation of the reproduction of the honey bee mite Varroa jacobsoni(Mesostigmata:Acari)by a host's hormone:Juvenile hormone III.J.Invertebr.Pathol.,49(3):259-264.
Hedtke K,Jensen PM,Jensen AB,Genersch E,2011.Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood.J.Invertebr.Pathol.,108(3):167-173.
Hu FL,Zhu W,Li YH,2005.Use of essential oils for controlling Varroa destructor in honey bee colonies.Chinese Bulletin of Entomology,42(4):375-379.[胡福良,朱威,李英華,2005.香精油的抗蜂螨作用及其在蜂群中的應用.昆蟲知識,42(4):375-379]
Kanbar G,Engels W,2003.Ultrastructure and bacterial infection of wounds in honey bee(Apis mellifera)pupae punctured by Varroa mites.Parasitol.Res.,90(5):349-354.
Kanga LH,James RR,Boucias DG,2002.Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor,a honey bee parasite.J.Invertebr.Pathol.,81(3):175-184.
Kanga LH,Jones WA,James RR,2003.Field trials using the fungal pathogen,Metarhizium anisopliae(Deuteromycetes:Hyphomycetes)to control the ectoparasitic mite,Varroa destructor(Acari:Varroidae)in honey bee,Apis mellifera(Hymenoptera:Apidae)colonies.J.Econ.Entomol.,96(4):1091-1099.
Kanga LH,Jones WA,Gracia C,2006.Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor(Acari:Varroidae)in honey bee colonies in Texas and Florida.Exp.Appl.Acarol.,40(3-4):249-258.
Kanga LH,Adamczyk J,Marshall K,Cox R,2010.Monitoring for resistance to organophosphorus and pyrethroid insecticides in Varroa mite populations.J.Econ.Entomol.,103(5):1797-1802.
Kanga LH,Adamczyk J,Patt J,Gracia C,Cascino J,2010.Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee,Apis mellifera,colonies.Exp.Appl.Acarol.,52(4):327-342.
Karazafiris E,Tananaki C,Menkissoglu-Spiroudi U,Thrasyvoulou A,2008.Residue distribution of the acaricide coumaphos in honey following application of a new slow-release formulation.Pest.Manag.Sci.,64(2):165-171.
Kirrane MJ,De Guzman LI,Rinderer TE,Frake AM,Wagnitz J,Whelan PM,2011.Asynchronous development of honey bee host and Varroa destructor(Mesostigmata:Varroidae)influences reproductive potential of mites.J.Econ.Entomol.,104(4):1146-1152.
Kozak PR,Currie RW,2011.Laboratory study on the effects of temperature and three ventilation rates on infestations of Varroa destructor in clusters of honey bees(Hymenoptera:Apidae).J.Econ.Entomol.,104(6):1774-1782.
Kralj J,Brockmann A,Fuchs S,Tautz J,2007.The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers,Apis mellifera L.J.Comp.Physiol.A Neuroethol.Sens.Neural.Behav.Physiol.,193(3):363-370.
Lipiński Z,Szubstarski J,Szubstarska D,2007.Detection of the high risk pyrethroid resistant Varroa destructor mites in apiaries of the Warmia-Mazury province in Poland.Wiad.Parazytol.,53(3):245-249.
Locke B,Forsgren E,Fries I,de Miranda JR,2012.Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control.Appl.Environ.Microbiol.,78(1):227-235.
Lodesani M,2004.Control strategies against Varroa mites.Parassitologia.,46(1-2):277-279.
Luo QH,Zhou T,Dai PL,Song HL,Wu YY,Wang Q,2011.Prevalence,intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China.Exp.Appl.Acarol.,18.
Luo QH,Zhou T,Wang Q,Dai PL,Wu YY,2010.Advances in research on classification and major species of bee mites.Scientia Agricultura Sinica,43(3):585-593.[羅其花,周 婷,王 強,代平禮,吳艷艷,2010.蜂螨的種類及蜜蜂主要害螨研究進展.中國農業(yè)科學,43(3):585-593]
Maggi MD,Ruffinengo SR,Negri P,Eguaras MJ,2010.Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina. Parasitol.Res.,107(5):1189-1192.
Maggi M,Peralta L,Ruffinengo S,Fuselli S,Eguaras M,2011.Body size variability of Varroa destructor and its role in acaricide tolerance.Parasitol.Res.,22.
Mao W,Schuler MA,Berenbaum MR,2011.CYP9Q-mediated detoxification of acaricides in the honey bee(Apis mellifera).Proc.Natl.Acad.Sci.USA.,108(31):12657-12662.
Martin SJ,Medina LM,2004.Africanized honeybees have unique tolerance to Varroa mites.Trends Parasitol.,20(3):112-114.
Meikle WG,Mercadier G,Holst N,Girod V,2008.Impact of two treatments of a formulation of Beauveria bassiana(Deuteromycota:Hyphomycetes)conidia on Varroa mites(Acari:Varroidae)and on honeybee(Hymenoptera:Apidae)colony health.Exp.Appl.Acarol.,28.
Miozes-Koch R,Slabezki Y,Efrat H,Kalev H,Kamer Y,Yakobson,Dag A,2000.First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods.Exp.Appl.Acarol.,24(1):35-43.
Mondet F,Goodwin M,Mercer A,2011.Age-related changes in the behavioural response of honeybees to Apiguard(?),a thymolbased treatment used to control the mite Varroa destructor.J.Comp.Physiol.A Neuroethol.Sens.Neural.Behav.Physiol.,15.
Moore J,Jironkin A,Chandler D,Burroughs N,Evans DJ,Ryabov EV,2011.Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies.J.Gen.Virol.,92(Pt 1):156-161.
Nazzi F,Milani N,1996.The presence of inhibitors of the reproduction of Varroa jacobsoni Oud.(Gamasida:Varroidae)in infested cells.Experim.Appli.Aearol.,20(11):617-623.
Nazzi F,Milani N,Vedova GD,2002.(Z)-8-heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions.J.Chem.Ecol.,28(11):2181-2190.
Ongus JR,Zhang Q,Boot WJ,Calis J,Bonmatin JM,Bengsch E,Peters D,2007.Detection and localisation of picorna-like virus particles in tissues of Varroa destructor,an ectoparasite of the honey bee,Apis mellifera.J.Invertebr.Pathol.,96(2):97-105.
Ostermann DJ,Currie RW,2004.Effect of formic acid formulations on honey bee(Hymenoptera:Apidae)colonies and influence of colony and ambient conditions on formic acid concentration in the hive.J.Econ.Entomol.,97(5):1500-1508.
Parrella G,Caprio E,Mazzone P,2006.Development of improved molecular methods for the detection of deformed wing virus(DWV)in honeybees(Apis mellifera L.)and mites(Varroa destructor Oud.).Commun.Agric.Appl.Biol.Sci.,71(2 Pt B):625-629.
Peng CYS,Fang Y,Xu S,Ge L,1987.The resistance mechanism of the Asian honey bee Apis cerana Fabr.,to an ectoparasitic mite Varroa jacobsoni Oudemans.J.Invertebr.Pathol.,(49):54-60.
Peng CYS,Zhou XS,Kaya HK,2002.Virulence and site of infection of the fungus,Hirsutella thompsonii,to the honey bee ectoparasitic mite,Varroa destructor.J.Invertebr.Pathol.,(81):185-195.
Pernal SF,Baird DS,Birmingham AL,Higo HA,Slessor KN,Winston ML,2005.Semiochemicals influencing the host-finding behaviour of Varroa destructor.Exp.Appl.Acarol.,37(1-2):1-26.
Pettis JS,Kochansky J,Feldlaufer MF,2004.Larval Apis mellifera L.(Hymenoptera:Apidae)mortality after topical application of antibiotics and dusts.J.Econ.Entomol.,97(2):171-176.
Piccirillo GA,De Jong D,2003.The influence of brood comb cell size on the reproductive behavior of the ectoparasitic mite Varroa destructor in Africanized honey bee colonies.Genet.Mol.Res.,2(1):36-42.
Richards EH,Jones B,Bowman A,2011.Salivary secretions from the honeybee mite,Varroa destructor:effects on insect haemocytes and preliminary biochemical characterization.Parasitology,138(5):602-608.
Rosenkranz P,Aumeier P,Ziegelmann B,2010.Biology and control of Varroa destructor.J.Invertebr.Pathol.,103(Suppl.1):S96-119.
Santillán-Galicia MT,Carzaniga R,Ball BV,Alderson PG,2008.Immunolocalization of deformed wing virus particles within the mite Varroa destructor.J.Gen.Virol.,89(Pt 7):1685-1689.
Satta A,Floris I,Eguaras M,Cabras P,Garau VL,Melis M,2005.Formic acid-based treatments for control of Varroa destructor in a Mediterranean area.J.Econ.Entomol.,98(2):267-273.
Shaw KE,Davidson G,Clark SJ,Ball BV,Pell JK,Chandler D,Sunderland KD,2002.Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor(Acari:Mesostigmata),an ectoparasitic mite of the honeybee,Apis mellifera.Biologil.Contr.,24(3):266-276.
Shen M,Cui L,Ostiguy N,Cox-Foster D,2005.Intricate transmission routes and interactions between picorna-like viruses(Kashmir bee virus and sacbrood virus)with the honeybee host and the parasitic varroa mite.J.Gen.Virol.,86(Pt 8):2281-2289.
Sokó? R,2003.The influence of levamisol on the level of total protein in haemolymph of bees infected with Varroa destructor.Wiad Parazytol.,49(2):219-224.
Szatkowska B,Bukowska B,Huras B,2011.The effect of bromfenvinphos and its impurities on human erythrocyte.Food Chem.Toxicol.,49(2):502-507.
Tentcheva D,Gauthier L,Zappulla N,Dainat B,Cousserans F,Colin ME,Bergoin M,2004.Prevalence and seasonal variations of six bee viruses in Apis mellifera L.and Varroa destructor mite populations in France. Appl.Environ.Microbiol.,70(12):7185-7191.
Tsagou V,Lianou A,Lazarakis D,Emmanouel N,Aggelis G,2004.Newly isolated bacterial strains belonging to Bacillaceae(Bacillus sp.)and Micrococcaceae accelerate death of the honey bee mite,Varroa destructor(V.jacobsoni),in laboratory assays.Biotechenol.Lett.,26(6):529-532.
Tu S,Qiu XH,Cao L,Han RC,Zhang Y,Liu XJ,2010.Expression and characterization of the chintiases from Serratia marcescens GEI strain for the control of Varroa destructor,a honey bee parasite.J.Invertebr.Pathol.,(104):75-82.
Underwood RM,Currie RW,2003.The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor(Acari:Varroidae),a parasite of Apis mellifera(Hymenoptera:Apidae).Exp.Appl.Acarol.,29(3-4):303-313.
Underwood RM,Currie RW,2005.Effect of concentration and exposure time on treatment efficacy against Varroa mites(Acari:Varroidae)during indoor winter fumigation of honey bees(Hymenoptera:Apidae)with formic acid. J.Econ.Entomol.,98(6):1802-1809.
van Engelsdorp D,Underwood RM,Cox-Foster DL,2008.Shortterm fumigation of honey bee(Hymenoptera:Apidae)colonies with formic and acetic acids for the control of Varroa destructor(Acari:Varroidae).J.Econ.Entomol.,101(2):256-264.
Wantuch HA,Tarpy DR,2009.Removal of drone brood from Apis mellifera(Hymenoptera:Apidae)colonies to control Varroa destructor(Acari:Varroidae)and retain adult drones.J.Econ.Entomol.,102(6):2033-2040.
Wiest L,Buleté A,Giroud B,Fratta C,Amic S,Lambert O,Pouliquen H,Arnaudguilhem C,2011.Multi-residue analysis of 80 environmental contaminants in honeys,honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection.J.Chromatogr.A,1218(34):5743-5756.
Wu JY,Anelli CM,Sheppard WS,2011.Sub-lethal effects of pesticide residues in brood comb on worker honey bee(Apis mellifera)development and longevity.PLoS One,6(2):e14720.
Yang X,Cox-Foster DL,2005.Impact of an ectoparasite on the immunity and pathology of an invertebrate:evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci.U.S.A.,102(21):7470-7475.
Zeng ZZ,Peng WJ,Liu YB,2007.Pheromone of honeybee and control mite.Apicult.Chin.,58(11):25-26.[曾志將,彭文君,劉益波,2007.蜜蜂信息素與蜂螨的防治.中國蜂業(yè),58(11):25-26]
Zhou T,2005.The biological characteristics and the natural distribution of Varroa destructor in China.Ph.D Dissertation.[周婷,2005.狄斯瓦螨的生物學特性及在我國的自然分布.博士學位論文]
Zioni N,Soroker V,Chejanovsky N,2001.Replication of Varroa destructor virus 1(VDV-1)and a Varroa destructor virus 1-deformed wing virus recombinant(VDV-1-DWV)in the head of the honey bee.Virology,417(1):106-112.
Zó?towska K,Lipiński Z,Dmitryjuk M,2005.The total protein content,protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.Wiad Parazytol.,51(1):43-47.