• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      廣義磁流體方程組弱解的正則準(zhǔn)則

      2012-07-05 14:32:50李鳳萍
      關(guān)鍵詞:磁流體正則方程組

      李鳳萍

      (河南理工大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南 焦作 454000)

      廣義磁流體方程組弱解的正則準(zhǔn)則

      李鳳萍

      (河南理工大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南 焦作 454000)

      利用能量估計(jì)法和Littlewood-Paley分解技術(shù)研究三維廣義磁流體方程組軸對(duì)稱弱解的正則性,并得到用速度場(chǎng)和磁場(chǎng)的旋度的方位角分量控制的正則準(zhǔn)則.

      廣義磁流體方程組;軸對(duì)稱弱解;正則準(zhǔn)則

      1 引言

      2 預(yù)備知識(shí)

      3 主要結(jié)論的證明

      參考文獻(xiàn)

      [1]Cannone M,M iao C X,Prioux N,et al.The cauchy problem for the magneto-hydrodynam ic system[J]. Banach Center Publ.2006,74:59-93.

      [2]Chen Q L,M iao C X,Zhang Z F.The Beale-Kato-M a jda criterion for the 3D m agneto-hydrodynam ics equations[J].Comm.M ath.Phys.,2007,275:861-872.

      [3]He C,Wang Y.On the regu larity criteria for weak solutions to them agnetohydrodynam ic equations[J].J. D iff erential Equations,2007,238:1-17.

      [4]He C,X in Z P.On the regularity ofweak solutions to them agnetohyd rodynam ic equations[J].J.Diff erential Equations,2005,213:235-254.

      [5]Yuan B Q.B low-up criterion of sm ooth solutions to the MHD equations in Besov spaces[J].J.Syst.Sci. Com p lex,2005,18:277-284.

      [6]Yuan B Q.On the blow-up criterion of sm ooth solutions to the MHD system in BMO space[J].Acta.M ath. App l.Sinica(English Series),2006,22:413-418.

      [7]Zhou Y,Gala S.A new regu larity criterion for weak solutions to the viscous MHD equations in term s of the vorticity field[J].Nonlinear Anal.,2010,72:3643-3648.

      [8]李鳳萍,原保全.廣義磁流體方程組軸對(duì)稱弱解的正則準(zhǔn)則[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào),2010,25(3):319-325.

      [9]李鳳萍.廣義磁流體方程光滑解的爆破準(zhǔn)則[J].山東大學(xué)學(xué)報(bào):理學(xué)版,2010,45(3):90-94.

      [10]Luo Y W.On the regularity of generalized MHD equations[J].J.M ath.Anal.App l.,2010,365:806-808.

      [11]W u G.Regularity criteria for the 3D generalized MHD equations in term s of vorticity[J].Nonlinear Anal., 2009,71:4251-4258.

      [12]Wu J H.Regu larity criteria for the generalized MHD equations[J].Comm.Partial Diff erential Equations, 2008,33:285-306.

      [13]Wu J H.Generalized MHD equations[J].J.Diff erential Equations,2003,195:284-312.

      [14]Yuan J.Existence theorem and regu larity criteria for the generalized MHD equations[J].Non linear Anal. RealW orld App l.,2010,11(3):1640-1649.

      [15]Zhou Y.Regularity criteria for the generalized viscous MHD equations[J].Ann.Inst.H.Poincare.Anal. Non.Lineaire,2007,24:491-505.

      The regu larity criterion to the w eak solu tions of the generalized m agnetohyd rodynam ic equations

      Li Fengping

      (School of M athem atics and Inform atics,Henan Polytechnic University,Jiaozuo 454000,China)

      In this paper,we study the regularity criterion of the axisymm etric weak solutions to the generalized magneto-hydrodynam ic equations in R3by means of energy method and Littlewood-Paley decom position,and obtain a criterion by the azimuthal com ponents of vorticities to velocity and m agnetic field.

      generalized magnetohyd rodynam ic equations,axisymmetric weak solution,regu larity criterion

      O175.2

      A

      1008-5513(2012)06-0735-09

      2012-07-02.

      數(shù)學(xué)天元基金(11126119);河南省科技創(chuàng)新人才計(jì)劃(2009HASTIT 007);河南理工大學(xué)青年骨干教師資助計(jì)劃(649177);河南省杰出青年計(jì)劃(104100510015);河南理工大學(xué)青年基金(Q 2011-14A).

      李鳳萍(1980-),碩士,講師,研究方向:應(yīng)用偏微分方程.

      2010 M SC:76W 05,35B65

      猜你喜歡
      磁流體正則方程組
      磁流體·吸引力
      深入學(xué)習(xí)“二元一次方程組”
      磁流體音箱
      《二元一次方程組》鞏固練習(xí)
      一類次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
      非均勻磁場(chǎng)下磁流體形態(tài)的研究
      電子制作(2019年9期)2019-05-30 09:42:16
      不可壓縮磁流體方程組在Besov空間中的爆破準(zhǔn)則
      剩余有限Minimax可解群的4階正則自同構(gòu)
      類似于VNL環(huán)的環(huán)
      有限秩的可解群的正則自同構(gòu)
      文成县| 固始县| 镇沅| 河西区| 昌都县| 美姑县| 福鼎市| 荃湾区| 新密市| 丹棱县| 麦盖提县| 峨山| 黎川县| 台北市| 平泉县| 镇宁| 资源县| 永仁县| 若羌县| 宿州市| 望城县| 昆山市| 广安市| 会宁县| 彩票| 塘沽区| 玉田县| 徐汇区| 定兴县| 安乡县| 大同市| 卓资县| 黑龙江省| 苍南县| 郯城县| 台中县| 翼城县| 富蕴县| 邛崃市| 吉安县| 银川市|