• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    2012-08-22 08:31:57GHOZLANIBelgacemHAFSIAZouhaierMAALELKhlifa

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    NUMERICAL STUDY OF FLOW AROUND AN OSCILLATING DIAMOND PRISM AND CIRCULAR CYLINDER AT LOW KEULEGAN-CARPENTER NUMBER*

    GHOZLANI Belgacem, HAFSIA Zouhaier, MAALEL Khlifa

    Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Modélisation en’Hydraulique et Environnement, B.P. 37. Le Belvédère, 1002 Tunis, Tunisia, E-mail: ghozlanib@yahoo.fr

    (Received October 29, 2011, Revised April 23, 2012)

    In order to identify the influence of shape corners on the instantaneous forces in the case of oscillating bodies, the simulated flow field is compared for two kinds of cross sections: diamond prism and circular cylinder. For these two flow configurations, the same Reynolds number and a Keulegan-Carpenter are considered. To compute the dynamic flow field surrounding the body, the Navier-Stokes transport equations in a non-inertial reference frame attached to the body are considered. Hence, a source term is added locally to the momentum equation to take into account the body acceleration. The proposed model is solved using the PHOENICS code. For the oscillating circular cylinder, the simulated results are in good agreement with the experimental data available in the litterature. After validation of this proposed model, flow field for diamond prism is determined. For both bodies, the process of the vortex formation is similar, with the formation of a recirculation zone in the near-wake containing a symmetric pair of vortices of equal strength and opposite rotation. The length of recirculation zone varies approximately linearly with time. However, the in-line force coefficient of the oscillating diamond prism is found to be greatest, since the recirculation zone is longer compared with that of the oscillating circular cylinder.

    oscillating cylinder, diamond prism, body shape, non-inertial frame, numerical simulation, in-line and transverse force coefficient

    Introduction

    The motion of bluff bodies such as circular and square cylinders in fluid at rest is a fluid-structure interaction problem which has a practical and theoretical interest in the fields of naval hydrodynamics, aerospace and civil engineering. Moreover, the determination of the in-line and transverse variations of forces acting on the oscillating body is very important for designing offshore structures.

    The flow field induced by a moving body can be determined by considering that the body is fixed in a moving fluid with the same magnitude of the body velocity but in the opposite direction. The disturbed flow field around smooth-edged or sharp-edged cylinders has some similarities. The main distinction between these two flow configurations is that theseparation point is not fixed in the first case[1].

    Historically, the problem of flow around fixed circular cylinders has attracted a great deal of research interest experimentally and numerically. Results are presented for a single circular cylinder[2,3]and for arrangements of cylinders[4-6]. The flow field, force coefficients, pressure distributions and intensification or suppression of vortex shedding depend strongly on the Reynolds number, configuration, shape and the gap spacing between cylinders.

    In practice, the flow around an oscillating cylinder is more important than that around a fixed one because of its more complicated nature, depending on the cylinder forcing frequency and the amplitude and direction of oscillation, in addition to the Reynolds number of the flow. Based on flow visualizations at low Stokes numbers ()β, Tatsuno and Bearman[7]made an extensive study of the types of vortical motions produced when a cylinder oscillates in the fluid at rest. The flow field was grouped into eight regimes defined by the values of the Keulegan-Carpenternumber (KC) and the Stokes number (β). This classification made by Tatsuno and Bearman[7]becomes the standard description of the associated flow regimes.

    Recent advances in flow field measuring techniques and Computational Fluid Dynamics (CFD) for time varying flows have led to more comprehension of flow regimes around an oscillating cylinder. Lin and Rockwell[8]studied the vortex patterns at KC= 10 with a sequence of instantaneous Particle Image Velocimetry (PIV). Dütsch et al.[9]measured the velocity fields around an oscillating circular cylinder at KC =5, 6 and 10 with a Laser Doppler Anemometry (LDA). Due to the succession of the shedding vortex mode, measurement of the instantaneous transverse force is difficult. Hence, several numerical studies of the oscillating circular cylinder have been conducted to overcome this difficulty[10,11]. In addition, some work has been performed for the rotational oscillations of single[12]or two circular cylinders in side by side arrangement[13]to compute the hydrodynamic loads on it. They suggested that the reduction of the wake instability depending on the frequency and amplitude of oscillation. Also, they observed that the unsteady lift and drag components reach their maxima when the forced frequency is that of the natural vortex shedding frequency of the cylinder.

    So far, there have been relatively few studies of the flow around a diamond prism and other sharpedged bluff bodies. Zheng and Dalton[14]presented a numerical model to simulate an oscillating flow around a diamond cylinder and a square cylinder. The time variation of the in-line force coefficients presents an irregular wave forms when vortex shedding became asymmetric. Bearman et al.[15]conducted flow visualization of oscillating flow past a square cylinder. In this case, the inlet angles of the oscillating flow affect the time histories of in-line and transverse force coefficients.

    The flow field features around an oscillating diamond prism are not yet considered for a detailed analysis. The present study attempts to understand and to present the effects of the body shape on the flow fields and the instantaneous force signals acting on the body. A numerical investigation is conducted of the flow around oscillating circular cylinder and diamond prisms for Re =100 and KC=5.

    1. Mathematical formulation and numerical method

    1.1 Problem description

    The aim of this study is to predict two-dimensional fluid motion induced by the oscillation of a circular cylinder (Case 1) and a diamond prism (Case 2) of the same cross-stream dimension D=0.01m in water at rest (see Fig.1). The body is allowed to oscillate only in the longitudinal direction and the body vibrating velocity is given by The considered oscillating flow is controlled by the Reynolds number (Re) and Keulegan-Carpenter number (KC). KC is defined byKC=U∞T/D = 5 (or KC=2πA/D) , whereD is the cylinder diameter, A the oscillation amplitude, T the period of oscillation and U∞the maximum velocity in the oscillation. The Reynolds number for this flow is usually defined as Re=U∞D(zhuǎn)/v =100, v being the kinematic viscosity of the fluid. The flow is affected additionally by the Stokes number which is defined by β=D2/vT[7]where Re is the product of KC and β.

    Fig.1 Schematic of the problem domain in-line in a fluid

    The body is initially located at the center of the domain so its center has coordinates 15D and 10D. The domain has a length of 30D and a width of 20D. These dimensions were chosen similar to the experiment carried out by Dütsch et al.[9]at the same conditions for an oscillating cylinder to validate the proposed model.

    1.2 Governing equations and boundaries conditions

    To handle a moving object, there are generally two categories of treatments depending on the chosen frame of reference: inertial or moving frames.

    The Navier-Stokes equations governing an incompressible Newtonian fluid flow in an inertial frame connected to the stationary fluid are written as

    where ui(u,w) are the velocity components in the directions along the axes coordinatesxi(x,z), p is the pressure, ρ is the density of the fluid, which was fixed to 998.2 Kg·m–3and μ is the dynamic viscosity taken equal to 10–3Kg·(ms)–1for all computations.

    Fig.2 Rectangular meshes refined near the surfaces

    In applying these transport equations in the inertial system, the numerical grid has to be moved and adjusted from time step to time step according to the cylinder motion. However, a long distance moving object, the remeshing of the computational fluid domain is difficult[16]. For this reason, the proposed model is based on the Navier-Stokes equations written in an accelerated reference system. The inertialix and accelerated framesare connected by the relationship

    Fig.3 Effect of grid refinement on the velocity components at section x =0.144m at phase timet=T/2+nt

    Fig.4 The effect of time step Δt/T on the velocity components at section x=0.144m at phase timet=T/2+nt

    Fig.5 Comparison of the velocity components at four cross sections at timet=T/2+nt

    Hence, the fundamental equations for the accelerated system are heredenotes the fluid velocity in the accelerated reference system. The added source termtakes into account the oscillating body acceleration. With this formulation, the grid remainsfixed during the computation. The boundary conditions are changed from the flow induced by the motion of a body to oscillating flow around a body at rest (see Fig.1).The fluid velocities at the inlet, outlet and body surface boundaries,,iBu~, is related to oscillating flow around a fixed body by

    The initial values ofthe velocity and the pressure in the whole domain are zero. The computed velocity inaccelerated frameis transformed in the inertial velocity field by velocity of the moving body Ui,c(t).

    The instantaneous in-line and transverse force coefficients (non-dimensionalized by 0.5ρU∞2D) are defined as follows

    1.3 Numerical method

    In this study, the PHOENICS code has been applied to the simulation oftheflow around an oscillating body. The transport equations are discretized by the finite volume method numerical in which the conservation equations are written in an integral form. The solution domain is subdivided into a finite number of control volume and conservation equations are applied to each control volume. The convection term was approximated by a hybrid difference scheme. This code used staggered Cartesian grid arrangement. In the PHOENICS code, the body shape is approximated by the cutting cell approach in a Cartesian grid (see Fig.2(a)).

    2. Results an d discussions

    2.1 Grid and timeinde pendence

    Four grids sizes were tested for the case of an oscillating circular cylinderand three time steps were used to test the grid and time independence (see Figs.1(a) and 2(a)). Non-uniform grid dimensions were used in the x-z plane with the minimum grid size being employed near the body shape. The grid is refined near the surface body to resolve the fine flow structures in the viscous layer (see Fig.2). The effects of different grids on the velocity profiles at x= 0.144 m are shown in Fig.3. For a grid with 180× 140 cells in the x and z directions, the computed results are grid independent. For this grid the time independence study is carried out, and it is observed that the results become time step independent for =TΔ 0.049 s (see Fig.4).

    2.2 In-line oscillation of a circular cylinder

    The flow field induced by an oscillating cylinder were first simulated in order to validate the proposed model. The predicted velocity componentsat four sections x=0.144 m, 0.150 m, 0.156 m and 0.162 m at phase time t=T/2+nT are shown in Fig.5. The experimental measurements as well as numerical data reported byDütsch et al.[9]are provided in these figures for comparison. The cylinder motion velocity of -U∞cos(2π/Tt ) is also shown in these figures for comparison (at x=0.150 m ). For all velocity profiles, a good agreement is achieved.

    Fig.6 In-line force coefficient as function of the non-dimensional time

    Fig.7 In-line and transverse forces coefficients during one period of oscillation

    Fig.8Pressure and vorticity isolines for an oscillating circular cylinder at Re=100 and KC =5

    Figure 6 shows the in-line force coefficient as function of the non-dimensional time. The present res ults are in very good agreement with the numerical results obtained by Dütsch et al.[9]and Shen et al.[12]. It is found that the instantaneous in-line force signal is highly sinusoidal and periodic, due to the domination of the inertia forces at low KC. Figure 7 shows the in-line and transverse force coefficients and the cylinder velocity (non-dimensionalized by U∞) for one period of cylinder oscillation. There is about 54ophase shift when comparing the in-line force coefficient with the cylinder velocity. Both maximum in-line force coefficient and phase shift agree very well with the numerical results from Dütsch et al.[9]. Hence, the transverse coefficient is equal to zero, indicating a symmetrical flow patterns at low KC. By following Tatsuno and Bearman[7], the parameter set of the present investigation (Re=100 andKC=5) correspond to regime A. This flow regime is stable, symmetric and is characterized by a periodic vortex shedding. Therefore, the transverse coefficient as function of the non-dimensional time is equal to zero, reflected a symmetric pattern of vortical flow formation (see Fig.7). The process of the vortex formation is illustrated by the pressure and vorticity isolines in Fig.8 during the forward and backward motion of the oscillating cylinder. As the-oscillating cylinder moved in the forward direction, at the front of the cylinder an upper and lower boundary layer flows are developed, which are separated at the same upper and lower positions on the cylinder wall. The separating flow produces two counter rotating vortices of apparently the same magnitude of strength, and hence resulting in the same vortex shape. On the upper side of the cylinder a clockwise rotating vortex r emains attached to the cylinder and on the lower side, there is a counterclockwise vortex. In addition, the backward motion of the cylinder caused a splitting of the vortex pair, which was produced by the forward motion and there is inversing in the vorticity sign. The symmetrical flow is also indicated by the velocity fields and streamlines for three times of the cylinder motion, shown in Fig.9.

    2.3 In-line oscillation of diamond prism

    In this section, the flow induced by an oscillating diamond prism in fluid at rest is considered. The numerical simulation was conducted in the same computational domain shown in Fig.1(b) and the grid refinement, used for this case, near the body surface is shown in Fig.2(b). The diamond prism of diameter D=0.01 m is allowed to oscillate only in the longitudinal direction with the same cylinder vibrating velocity.

    Fig.9 Velocity vectors and streamlines in the vicinty of the circu lar cylinder atRe=100 and KC=5

    Fig.10 Length of the separation bubble of the flow aroundat Re=100 and KC=5

    To get a quantitative check of the flow field property, the length of the recirculation zone for the oscillating diamond prism and cylinder, defined by the dista nce from its basis to th e saddle point related to the two contra rotating vortex zone in the near wake, is plotted in Fig.10 as a function of time. This figure shows that the length of the recirculation of the two bodies shape increase almost linearly. However, for a fixed time, it can be seen that the diamond prism increases slightly the length of the recirculation, as compared with that due to the cylinder.

    Fig.11 In-line force coefficient as function of the non-dimensional time

    The in-line force coefficient on the oscillating diamond prism and the cylinder is shown in Fig.11. The two in-line force coefficient curves are similar and nearly sinusoidal because of the domination of the inertia forces. However, the maximum in-line force coefficient on the oscillating diamond prism is greater than the oscillating cylinder. In fact, for a cylindrical shape the length of recirculation zone is smaller (see Fig.10) and streamlines remains attached to the body for longer distance. Moreover, there is about 5ophase shift when comparing the in-line force coefficient on the oscillating diamond prism with that of the oscillating cylinder.

    The numerical predictions of vorticity isolines around the oscillating diamond prism during the forward and backward motion of the oscillating diamond prism are shown in Fig.12. This figure shows a symmetric pair of vortices are formed from the movement of the diamond prism and they remain attached to the leeward face of the diamond prism indicate a symmetrical flow about the line of diamond prism motion.

    3. Conclusions

    In this study, the flow around an oscillating circular cylinder and diamond prism has been simulated by solving the incompressible Navier-Stokes equations with the PHOENICS code. For both body shapes, the parameter set of the present investigation is Re=100 and KC=5. For oscillating cylinder, good agreement is obtained between the predicted results, experimental and numerical results available in litterature. The periodic vortex consisting of vortices withsymmetric locations around the oscillating cylinder has been well predicted. Moreover, comparison between cylinder and diamond prism show that forin the latter the maximum in-line force and the separation length increase.

    Fig.12 Vorticity isolines for an oscillating diamond prism at Re=100 and KC=5

    Finally, it has to be emphasized that the present results have proved the applicability and accuracy of the fixed-grid approach to simulate flow around an oscillating body. From the viewpoint of computational cost, this approach has an attractive advantage as it is well known that the remeshing process requires a great amount of computational time since the movinggrid was adopted.

    Also, results have shown that the hydrodynamic characteristic of oscillating bodies depend strongly on the shape of the bluff body. This work would help bette r understand the physics of the flow around sharp-edged cylinders. Also, the presented results can be a good basis for reduction of the wake instability in the sharp-edged cylinders case. Further research should be investigated the flow around an oscillating square prism at different attack angles to determine the optimum body configuration.

    [1] SWAROOP A. Design of vortex flow meter[D]. Master Thesis, Delhi, India: Indian Institute of Technology Delhi, 1990.

    [2] NORBERG C. Fluctuating lift on a circular cylinder: Review and new measurements[J]. Journal of Fluids and Structures, 2003, 17(1): 57-96.

    [3] WANG Jia-song. Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approach[J]. Journal of Hydrodynamics, 2010, 22(2): 221-228.

    [4] KU X., LIN J. Numerical simulation of the flows over two tandem cylinders by lattice Boltzmann method[J]. Modern Physics Letters B, 2005, 19(28-29): 1551- 1554.

    [5] ZOU Lin, LIN Yu-feng and LU Hong. Flow patterns and force characteristics of laminar flow past four cylinders in diamond arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 55-64.

    [6] GHADIRI-DEHKORDI Behzad, SARVGHADMOGHADDAM Hesam and HOURI JAFARI Hamed. Numerical simulation of flow over two circular cylinders in tandem arrangement[J]. Journal of Hydrodynamics, 2011, 23(1): 114-126.

    [7]TATSUNO M., BEARMAN P. W. A visual study of the flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers and low Stokes numbers[J]. Journal of Fluid Mechanics, 1990, 211: 157-182.

    [8]LIN J.-C., ROCKWELL D. Quantitative interpretation of vortices from a cylinder oscillating in quiescent fluid[J]. Experiments in Fluids, 1997, 23(2): 99-104.

    [9] DüTSCHH., DURST F. and BECKER S. et al. Low-Reynolds-number flow around an oscillating cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.

    [10] ZHENG Z. C., ZHANG N. Frequency effects on lift and drag for flow past an oscillating cylinder[J]. Journal of Fluids and Structures, 2008, 24(3): 382-399.

    [12] SHEN L., CHAN E.-S. and LIN P. Calculation of hydrodynamic forces acting on a submerged moving

    object using immersed boundary method[J]. Compu- ters and Fluids, 2009, 38(3): 691-702.

    [13] LU X.-Y., SATO J. A numerical study of flow past a rotationally oscillating circular cylinder[J]. Journal of Fluids and Structures, 1996, 10(8): 829-849.

    [14] ZHENG W., DALTON C. Numerical prediction of force on rectangular cylinders in oscillating viscous flow[J]. Journal of Fluids and Structures, 1999, 13(2): 225-249.

    [15] BEARMAN P. W., GRAHAM J. M. R. and OBASAJU E. D. et al. The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow[J]. Applied Ocean Research, 1984, 6(2): 83-89.

    [16] TEZDUYAR T. E., BEHR M. and LIOU J. A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatialdomain/space-time procedure[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.

    10.1016/S1001-6058(11)60302-8

    * Biography: GHOZLANI Belgacem (1982-), Male, Ph. D. Candidate, Physics Instructor

    91九色精品人成在线观看| 97在线人人人人妻| 一区二区日韩欧美中文字幕| 在线看a的网站| 日本撒尿小便嘘嘘汇集6| 日本av手机在线免费观看| 精品少妇一区二区三区视频日本电影| 日韩欧美一区二区三区在线观看 | 人妻 亚洲 视频| 一夜夜www| 亚洲免费av在线视频| av国产精品久久久久影院| 亚洲欧美激情在线| 天堂动漫精品| 欧美人与性动交α欧美精品济南到| 丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人 | 老熟女久久久| 久久精品人人爽人人爽视色| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 嫩草影视91久久| 国产午夜精品久久久久久| 久久午夜亚洲精品久久| 国产人伦9x9x在线观看| 另类精品久久| 高清视频免费观看一区二区| 黄片大片在线免费观看| 脱女人内裤的视频| 亚洲少妇的诱惑av| 在线看a的网站| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频 | 夫妻午夜视频| 日韩一区二区三区影片| 亚洲精品美女久久av网站| 香蕉国产在线看| 色94色欧美一区二区| 后天国语完整版免费观看| 亚洲情色 制服丝袜| 侵犯人妻中文字幕一二三四区| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| a级毛片在线看网站| 高清av免费在线| 国产精品久久久久久精品电影小说| 国产精品久久久av美女十八| 亚洲av日韩在线播放| 久久久久视频综合| 成年版毛片免费区| 在线永久观看黄色视频| 波多野结衣一区麻豆| 国产成人av激情在线播放| 动漫黄色视频在线观看| 大香蕉久久网| 老司机午夜十八禁免费视频| 香蕉久久夜色| av欧美777| 欧美精品一区二区大全| 国产在线精品亚洲第一网站| 国产无遮挡羞羞视频在线观看| 亚洲av美国av| 久久九九热精品免费| 色视频在线一区二区三区| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 国产精品久久电影中文字幕 | 黄网站色视频无遮挡免费观看| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 99国产精品一区二区三区| 日韩视频在线欧美| 青草久久国产| 国产成人精品久久二区二区免费| 免费少妇av软件| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 久久国产精品影院| tube8黄色片| 久久精品亚洲熟妇少妇任你| av国产精品久久久久影院| 午夜福利影视在线免费观看| 午夜视频精品福利| 欧美av亚洲av综合av国产av| 欧美老熟妇乱子伦牲交| 超色免费av| 国产精品一区二区免费欧美| 精品人妻1区二区| 极品教师在线免费播放| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 日本黄色日本黄色录像| 久久久久视频综合| 久热爱精品视频在线9| 亚洲成人国产一区在线观看| 一进一出抽搐动态| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 国精品久久久久久国模美| 国产深夜福利视频在线观看| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 国产精品自产拍在线观看55亚洲 | 国产精品一区二区免费欧美| 亚洲国产成人一精品久久久| 男女免费视频国产| 久久久久久久久免费视频了| 十八禁高潮呻吟视频| 老司机影院毛片| 精品久久蜜臀av无| 不卡一级毛片| 国产免费福利视频在线观看| 亚洲欧美日韩高清在线视频 | 国产亚洲欧美精品永久| 婷婷成人精品国产| 日本a在线网址| √禁漫天堂资源中文www| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 日韩中文字幕视频在线看片| 精品一区二区三区视频在线观看免费 | 伦理电影免费视频| 男人舔女人的私密视频| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 成人影院久久| 午夜免费成人在线视频| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 国产又爽黄色视频| av福利片在线| 国产精品一区二区精品视频观看| 国产三级黄色录像| 国产精品久久电影中文字幕 | tube8黄色片| 中亚洲国语对白在线视频| 青青草视频在线视频观看| 国产精品影院久久| 丝袜人妻中文字幕| 国产在视频线精品| 国产伦理片在线播放av一区| 成人国语在线视频| 国产一区二区三区视频了| 天天添夜夜摸| 国产一区二区 视频在线| 韩国精品一区二区三区| 久久精品成人免费网站| 男男h啪啪无遮挡| 欧美在线黄色| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 久久九九热精品免费| 午夜91福利影院| 久久精品国产亚洲av香蕉五月 | 在线观看免费高清a一片| 日本欧美视频一区| 国产国语露脸激情在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄频视频在线观看| 久久精品国产综合久久久| 一个人免费看片子| 日本av免费视频播放| 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 蜜桃国产av成人99| 大型av网站在线播放| 天堂8中文在线网| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲专区字幕在线| 在线天堂中文资源库| 在线av久久热| 在线亚洲精品国产二区图片欧美| 久久精品成人免费网站| 国产精品熟女久久久久浪| 99精品欧美一区二区三区四区| 桃花免费在线播放| 亚洲国产欧美日韩在线播放| 中国美女看黄片| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| aaaaa片日本免费| 欧美激情久久久久久爽电影 | 色综合婷婷激情| 两个人免费观看高清视频| 99热国产这里只有精品6| 757午夜福利合集在线观看| 久久av网站| 欧美黄色淫秽网站| 在线亚洲精品国产二区图片欧美| 亚洲人成电影观看| 岛国在线观看网站| 国产成人精品在线电影| 成人影院久久| 国产又色又爽无遮挡免费看| 亚洲人成伊人成综合网2020| 亚洲精品中文字幕在线视频| 中国美女看黄片| 午夜91福利影院| a级片在线免费高清观看视频| 精品一区二区三区四区五区乱码| 久久婷婷成人综合色麻豆| 一夜夜www| 免费在线观看日本一区| av视频免费观看在线观看| 三级毛片av免费| 黑人巨大精品欧美一区二区mp4| 人人妻人人澡人人爽人人夜夜| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 大香蕉久久成人网| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 大陆偷拍与自拍| 国产一区二区 视频在线| 国产精品久久久av美女十八| 99久久国产精品久久久| 悠悠久久av| 欧美在线一区亚洲| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 免费在线观看日本一区| 久久av网站| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 成年人黄色毛片网站| 五月天丁香电影| 欧美激情极品国产一区二区三区| 91老司机精品| 另类亚洲欧美激情| 欧美另类亚洲清纯唯美| 少妇精品久久久久久久| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 国产精品一区二区在线观看99| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 女警被强在线播放| 蜜桃国产av成人99| 一级,二级,三级黄色视频| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| av网站在线播放免费| 黑人巨大精品欧美一区二区蜜桃| 免费观看a级毛片全部| 九色亚洲精品在线播放| 中文字幕人妻丝袜制服| 成人精品一区二区免费| 捣出白浆h1v1| 天堂8中文在线网| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| 麻豆乱淫一区二区| 又大又爽又粗| 久热爱精品视频在线9| 一夜夜www| 亚洲欧洲精品一区二区精品久久久| 建设人人有责人人尽责人人享有的| 他把我摸到了高潮在线观看 | 久热这里只有精品99| 国产成人免费观看mmmm| www.自偷自拍.com| 精品熟女少妇八av免费久了| 在线观看免费视频日本深夜| 亚洲精品自拍成人| 国产精品99久久99久久久不卡| 免费观看av网站的网址| 精品久久久精品久久久| 国产一区二区三区在线臀色熟女 | 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| 国产男女内射视频| 亚洲第一av免费看| 久久久久视频综合| 国产成人系列免费观看| 成人国产av品久久久| 91国产中文字幕| 老熟妇乱子伦视频在线观看| 满18在线观看网站| av不卡在线播放| 成人亚洲精品一区在线观看| 啦啦啦在线免费观看视频4| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 欧美午夜高清在线| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 一本色道久久久久久精品综合| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频| 国产亚洲一区二区精品| 超色免费av| 久久国产精品影院| 久久免费观看电影| 老司机在亚洲福利影院| 人成视频在线观看免费观看| 国产老妇伦熟女老妇高清| 国产精品九九99| 精品一区二区三区av网在线观看 | 2018国产大陆天天弄谢| 久久狼人影院| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 狂野欧美激情性xxxx| 国产日韩欧美亚洲二区| 亚洲免费av在线视频| 乱人伦中国视频| 国产欧美日韩综合在线一区二区| 亚洲 国产 在线| 成年人黄色毛片网站| 黄网站色视频无遮挡免费观看| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 国产黄色免费在线视频| 日本黄色视频三级网站网址 | 9色porny在线观看| 99国产精品免费福利视频| 久久国产精品人妻蜜桃| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 丝袜在线中文字幕| 日韩有码中文字幕| 国产成人欧美| 国产精品久久久久久人妻精品电影 | 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 一区二区三区激情视频| 波多野结衣一区麻豆| 蜜桃国产av成人99| 日韩有码中文字幕| 国产在线一区二区三区精| 国产精品美女特级片免费视频播放器 | 黄片大片在线免费观看| 欧美日韩黄片免| 免费人妻精品一区二区三区视频| 另类精品久久| 在线观看免费午夜福利视频| 伊人久久大香线蕉亚洲五| 无人区码免费观看不卡 | 午夜久久久在线观看| 国产不卡一卡二| 欧美一级毛片孕妇| 国产精品香港三级国产av潘金莲| 黄色丝袜av网址大全| 国产不卡av网站在线观看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av香蕉五月 | 国产视频一区二区在线看| 十八禁人妻一区二区| 亚洲精品成人av观看孕妇| 久久精品成人免费网站| 另类精品久久| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 亚洲天堂av无毛| 一本久久精品| 欧美av亚洲av综合av国产av| 中文字幕制服av| 男女免费视频国产| 亚洲中文日韩欧美视频| 久久狼人影院| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| av在线播放免费不卡| 操出白浆在线播放| 一二三四在线观看免费中文在| 捣出白浆h1v1| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| www.999成人在线观看| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av高清一级| 精品一区二区三区av网在线观看 | 日韩三级视频一区二区三区| 精品午夜福利视频在线观看一区 | 国产欧美亚洲国产| 亚洲第一欧美日韩一区二区三区 | 成人亚洲精品一区在线观看| 免费av中文字幕在线| 免费黄频网站在线观看国产| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 人人澡人人妻人| www.999成人在线观看| 国产成人免费无遮挡视频| 露出奶头的视频| 女人爽到高潮嗷嗷叫在线视频| 黄频高清免费视频| 在线十欧美十亚洲十日本专区| 人成视频在线观看免费观看| 成人特级黄色片久久久久久久 | 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 狂野欧美激情性xxxx| h视频一区二区三区| 国产高清videossex| 亚洲成av片中文字幕在线观看| 国产精品电影一区二区三区 | 99热网站在线观看| 午夜福利视频在线观看免费| www.精华液| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 国产精品一区二区在线观看99| 又黄又粗又硬又大视频| 麻豆av在线久日| 999久久久精品免费观看国产| 久9热在线精品视频| 国产深夜福利视频在线观看| 欧美成人免费av一区二区三区 | 五月开心婷婷网| 一本综合久久免费| 久久天躁狠狠躁夜夜2o2o| 国产亚洲一区二区精品| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 成人影院久久| 性高湖久久久久久久久免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美中文综合在线视频| 久久久欧美国产精品| 看免费av毛片| 久久人妻福利社区极品人妻图片| 欧美精品亚洲一区二区| 美女主播在线视频| 国产亚洲精品第一综合不卡| 午夜成年电影在线免费观看| 亚洲精品美女久久av网站| 黑人操中国人逼视频| 亚洲七黄色美女视频| 国产视频一区二区在线看| 亚洲人成电影免费在线| 天天影视国产精品| 精品第一国产精品| 亚洲av电影在线进入| 757午夜福利合集在线观看| 久久久久国内视频| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区 | 高清av免费在线| 免费在线观看完整版高清| 中文字幕高清在线视频| 天天操日日干夜夜撸| 一区二区三区激情视频| aaaaa片日本免费| 在线观看免费视频网站a站| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 国产精品久久久久久精品电影小说| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区三区在线| 可以免费在线观看a视频的电影网站| 久久毛片免费看一区二区三区| 精品国内亚洲2022精品成人 | 在线观看免费日韩欧美大片| 精品人妻1区二区| 亚洲免费av在线视频| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av| 一级黄色大片毛片| 18在线观看网站| 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区 | 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 老司机影院毛片| 亚洲午夜理论影院| 亚洲av电影在线进入| 午夜日韩欧美国产| videosex国产| 免费一级毛片在线播放高清视频 | 国产极品粉嫩免费观看在线| 老熟妇仑乱视频hdxx| 69精品国产乱码久久久| 亚洲精品国产区一区二| 国产av又大| 精品人妻1区二区| 欧美国产精品一级二级三级| av有码第一页| 精品福利观看| 最黄视频免费看| 精品国产一区二区三区四区第35| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲综合一区二区三区_| 侵犯人妻中文字幕一二三四区| 国产成人av教育| 国产精品香港三级国产av潘金莲| 亚洲精品av麻豆狂野| 99国产精品一区二区蜜桃av | 19禁男女啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 久9热在线精品视频| 天天影视国产精品| 久久青草综合色| 国产福利在线免费观看视频| 久久久久久人人人人人| 国产精品免费大片| 欧美激情极品国产一区二区三区| 国产精品久久久久久精品电影小说| 久久香蕉激情| 在线观看免费视频网站a站| 国产成人免费无遮挡视频| 啪啪无遮挡十八禁网站| 亚洲全国av大片| 夫妻午夜视频| 免费高清在线观看日韩| 亚洲成人免费电影在线观看| 成人国语在线视频| 亚洲成av片中文字幕在线观看| 亚洲自偷自拍图片 自拍| 免费看十八禁软件| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 男女免费视频国产| 日韩免费av在线播放| 午夜成年电影在线免费观看| 露出奶头的视频| 一边摸一边做爽爽视频免费| 国产成人免费观看mmmm| 日本精品一区二区三区蜜桃| 五月天丁香电影| 日韩有码中文字幕| 少妇被粗大的猛进出69影院| 91九色精品人成在线观看| 久久精品亚洲av国产电影网| 国产精品久久久av美女十八| 日日夜夜操网爽| 一级片免费观看大全| 国产深夜福利视频在线观看| 久久影院123| 91av网站免费观看| 丝袜在线中文字幕| 国产成人啪精品午夜网站| 日韩熟女老妇一区二区性免费视频| av免费在线观看网站| aaaaa片日本免费| 亚洲,欧美精品.| 又黄又粗又硬又大视频| 午夜精品久久久久久毛片777| 日韩 欧美 亚洲 中文字幕| 在线观看免费高清a一片| 国产黄色免费在线视频| 少妇精品久久久久久久| 国产av国产精品国产| 久久天躁狠狠躁夜夜2o2o| videos熟女内射| 一级毛片女人18水好多| av网站免费在线观看视频| 韩国精品一区二区三区| 国产一区二区 视频在线| 亚洲av日韩在线播放| 91字幕亚洲| 黄色丝袜av网址大全| 狠狠婷婷综合久久久久久88av| 老汉色∧v一级毛片| √禁漫天堂资源中文www| 极品教师在线免费播放| 美女视频免费永久观看网站| 国产激情久久老熟女| 极品教师在线免费播放| 黄色 视频免费看| 色尼玛亚洲综合影院| 久久中文字幕一级| 老司机靠b影院| 丰满人妻熟妇乱又伦精品不卡| 91av网站免费观看| 亚洲国产成人一精品久久久| 正在播放国产对白刺激| 亚洲欧美一区二区三区黑人| 在线亚洲精品国产二区图片欧美| 成人影院久久| 久久99一区二区三区| 午夜免费成人在线视频| 怎么达到女性高潮| 亚洲国产欧美一区二区综合| 国产日韩欧美亚洲二区| 国产精品电影一区二区三区 | 91老司机精品| 一级片免费观看大全| 波多野结衣av一区二区av| 窝窝影院91人妻|