• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吩噻嗪-Corrole鎵(III)配合物的合成、熒光及其光斷裂DNA性質(zhì)

    2012-12-05 02:27:40江煥峰汪華華惠張計亮年劉海洋
    物理化學學報 2012年2期
    關鍵詞:華華量子產(chǎn)率噻嗪

    史 蕾 江煥峰 尹 偉 汪華華 王 惠張 雷 計亮年 劉海洋,*

    (1廣東第二師范學院化學系,廣州510303; 2華南理工大學化學與化工學院,廣州510641; 3中山大學光電材料與技術國家重點實驗室,廣州510275)

    吩噻嗪-Corrole鎵(III)配合物的合成、熒光及其光斷裂DNA性質(zhì)

    史 蕾1,2,*江煥峰2尹 偉1汪華華2王 惠3張 雷2計亮年3劉海洋2,*

    (1廣東第二師范學院化學系,廣州510303;2華南理工大學化學與化工學院,廣州510641;3中山大學光電材料與技術國家重點實驗室,廣州510275)

    合成了吩噻嗪(PTZ)-corrole二元體1-3及其鎵(III)配合物4-6.采用穩(wěn)態(tài)吸收與穩(wěn)態(tài)發(fā)射及時間分辨的瞬態(tài)光譜技術研究了這幾種化合物的光物理特性.結合熒光量子產(chǎn)率和熒光壽命計算得到它們的輻射和無輻射速率常數(shù).穩(wěn)態(tài)吸收光譜表明:幾種二元體中,corrole鎵(III)單元表現(xiàn)出更強的Soret帶和Q帶.化合物1-3的熒光量子產(chǎn)率分別是0.156、0.134和0.139,輻射速率常數(shù)分別為4.02×107、3.47×107和2.89×107s-1.化合物4-6的熒光量子產(chǎn)率分別是0.502、0.443和0.494,輻射速率常數(shù)分別為20.90×107、16.78×107和21.11× 107s-1.可見,化合物4-6的熒光量子產(chǎn)率和輻射速率常數(shù)均高于化合物1-3.然而,化合物4-6的熒光壽命分別是2.40、2.64和2.34 ns,低于自由corrole 1-3.瓊脂糖凝膠電泳實驗表明:在光照的條件下,這些吩噻嗪-corrole鎵(III)二元體化合物能夠把超螺旋DNA(form I)切割成缺刻型DNA(form II).

    Corrole;吩噻嗪;鎵(III);熒光;DNA

    1 Introduction

    Metallocorroles have been applied in catalysis,1,2medicinal applications,3-5and recently in photophysics.6-10Since the computational investigations suggest that gallium(III)may fit perfectly into the coordination core of corroles,11gallium(III)corroles have been received interest in recent ten years.The first reported corrole gallium(III)complex was synthesized by Gross,12,13its X-ray structures,electrochemical and photophysical properties were also determined.Facile synthetic methodologies and high fluorescence yield allowing for the preparation of more gallium(III)corroles and more extensively properties have been determined.14-16Amphiphilic gallium(III)corroles could form tightly bound noncovalent conjugates with human serum albumin.17In addition,it has been discovered recently that these gallium(III)corroles could also be explored for tumor detection and elimination.18Phenothiazine(PTZ)is an interesting chromophore recognized pharmaceutical compound, which has shown diverse biological activities such as neuroleptic,antiemeic,antihistamine and anthelmintic activities.19,20Recently,we21found that phenothiazine-corrole dyads 1-3 exhibited enhanced DNA photocleavage properties,high fluorescence quantum yield,and DNA binding activities.Although Ga(III)corroles exhibited potential application in medicinal chemistry,17,18no report was found on the interaction between Ga(III) corrole complexes and DNA so far.In this paper,we report the fluorescence property and DNA photocleavage activity of orth-,meso-,and para-phenthiazine-corrole gallium(III)complexes 4-6,which are derived from free base corrole dyads 1-3,respectively.

    2 Experimental

    2.1 Materials and methods

    Tetraphenylporphyrin(TPP)was synthesized by Adler?s method.22Calf thymus deoxyribonucleic acid(CT DNA)was purchased from Sigma-Aldrich Corporation and pBR 322 plasmid DNA was purchased from TaKaRa Biotechnology Co., Ltd.(TaKaRa Dalian,China).All other reagents and solvents were reagent grade and used without further purification.Silica gel(100-200 mesh)were used for column chromatography. Reactions were monitored by thin layer chromatography and spectrophotometry.Mass spectra were obtained using a Bruker Esquire HCT PLUS mass spectrometer(Bruker Company, USA).1H-NMR spectra were recorded with a VARIAN 300 MHz NMR spectrometer in CDCl3(Varian Company,USA). Absorption spectra of all samples were measured by a Perkin Elmer Lambda 850 UV-Vis Spectrometer(PE Company, USA).Fluorescence spectra were recorded by a Perkin Elmer LS55 Luminescence Spectrometer(PE Company,USA).The fluorescence decay curves were measured by a time-resolved fluorescence spectroscopic experimental setup.A Nd:YAG laser(EKSPLA PL2143)andanOPGsystem(EKSPLA PG401SH/DFG2-10)generated the laser pulse(420 nm,10 Hz)with a full width at half maximum(FWHM)of 22 ps as a light source(EKSPLA Company,Lithuania).The fluorescence was collected with a pair of lenses with big caliber.After passing through a monochromator,it was recorded by a streak camera(Hamamatsu C1587)and a CCD(Hamamatsu C4742-95). The fluorescence lifetime can be determined with a 30 ps resolution by the deconvolution procedure.Photoirradiation was carried out using a simple system consisting of an 11 W fluorescence lamp placed 10 cm away from a sample compartment thermostatted in a water jacket at 25°C.Supercoiled pBR 322 DNA(0.1 μg)was treated with phenothiazine-corrole gallium(III)complexes in 50 mmol·L-1tris-HCl,18 mmol·L-1NaCl buffer,pH=7.2,and the solutions were incubated for 1 h in the dark,then irradiated.The samples were analyzed by electrophoresis for 2 h at 50 V and 30 mA in tris-HCl buffer containing 1%(mass fraction)agarose gel.The gel was stained with 1 μg mL-1ethidium bromide and then photographed under UV light(365 nm).All measurements were carried out at room temperature.

    2.2 Synthesis

    2.2.1 Synthesis of the phenothiazine-corrole dyads

    Phenothiazine-corrole dyads 1-3 were prepared previously.21

    2.2.2 Preparation of phenothiazine-corrole gallium(III) complex(4)

    A solution of phenothiazine-corrole dyad 1(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 50:0.5,volume ratio),affording 17.0 mg(16.8 μmol,80.0% yield)of the pyridine gallium(III)complex of 4.1H-NMR(CDCl3,300 MHz):δ,3.18-3.19(m,2H,pyridine-H),5.48-5.49 (m,2H,pyridine-H),6.30-6.32 (m,1H,pyridine-H), 7.16-7.21(m,2H,Ph),7.28-7.33(m,2H,Ph),7.36-7.40(m, 2H,Ph),7.55-7.60(m,3H,Ph),7.64-7.66(m,1H,Ph), 7.75-7.80(m,1H,Ph),8.01-8.04(m,1H,Ph),8.62-8.64(m, 2H,Ph),8.82-8.84(m,4H,pyrrole-H),9.21-9.23(m,2H,pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.43--162.24 (m,4F),-153.91(t,J=44.1 Hz,2F),-138.06--137.95(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 288.0(0.230),423.0(2.45),574.0(0.251),598.0(0.335);Atmosphericpressurechemicalionization MS (APCI-MS): 1014.1[M-pyridine+H+].

    Fig.1 Structure and synthesis of phenothiazine-corrole gallium(III)complexes

    2.2.3 Preparation of phenothiazine-corrole gallium(III) complex(5)

    A solution of phenothiazine-corrole dyad 2(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 70:0.5),affording 19.1 mg(18.9 μmol,90.0%yield)of the pyridine gallium(III)complex of 5.1H-NMR(CDCl3,300 MHz): δ,3.10-3.22(m,2H,pyridine-H),5.87-5.92(m,2H,pyridine-H),6.63-6.70(m,1H,pyridine-H),7.18-7.23(m,2H, Ph),7.30-7.35(m,2H,Ph),7.38(d,J=8.4 Hz,2H,Ph),7.56 (d,J=9.1 Hz,1H,Ph),7.67-7.75(m,3H,Ph),7.96(d,J=8.4 Hz,2H,Ph),8.77-8.82(m,6H,pyrrole-H),9.20-9.21(m,2H, pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.68--162.38 (m,4F),-154.16(t,J=44.1 Hz,2F),-138.15--137.92(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 293.0(0.209),424.0(2.59),574.0(0.245),602.0(0.366); APCI-MS:1014.1[M-pyridine+H+].

    2.2.4 Preparation of phenothiazine-corrole gallium(III) complex(6)

    A solution of phenothiazine-corrole dyad 3(19.9 mg,21 μmol)in pyridine(10 mL)was added to a flask that contained a large excess(about 0.2 g)of flame-dried GaCl3,and the reaction mixture was heated to reflux for 1 h under N2,followed by evaporation of the solvent.The inorganic salts were separated by column chromatography on silica(Vhexane:VCH2Cl2:Vpyridine=100: 70:0.5),affording 19.1 mg(18.9 μmol,90.0%yield)of the pyridine gallium(III)complex of 6.1H-NMR(CDCl3,300 MHz): δ,2.88-2.98(m,2H,pyridine-H),5.81-5.89(m,2H,pyridine-H),6.62-6.70(m,1H,pyridine-H),7.29-7.32(m,2H, Ph),7.40-7.45(m,2H,Ph),7.48-7.51(m,2H,Ph),7.54(d,J= 8.4 Hz,2H,Ph),7.82-7.85(m,2H,Ph),8.10(d,J=8.4 Hz, 2H,Ph),8.77-8.82(m,6H,pyrrole-H),9.20-9.22(m,2H,pyrrole-H);19F-NMR(CDCl3,380 MHz):δ,-162.59--162.45 (m,4F),-154.18(t,J=44.1 Hz,2F),-138.28--138.02(m, 4F);UV-Vis(toluene),λmax,unit in nm,(relative intensity): 293.0(0.192),424.0(2.58),574.0(0.238),603.0(0.365); APCI-MS:1014.1[M-pyridine+H+].

    3 Results and discussion

    Phenothiazin-corrole dyads 1-3 was prepared according to previous published procedure in the literature.21Phenothiazine-corrole gallium(III)complexes 4-6 could efficiently be obtained(Fig.1)in yields ranging from 80.0%to 90.0%according the method reported by Gross.12Fig.2 shows the absorption spectra of phenothiazine-corrole dyad 3,PTZ,and their gallium complexes 4-6 in toluene.The absorption spectra of 4-6 reveal a band at 290 nm corresponding to the phenothiazine entity,a Soret band and a Q band related to corrole unit.The S0→S2(Soret band)and S0→S1(Q band)transition of 4-6 are obviously enhanced compared to their free base corroles.This may be explained by the fact that the corrole macrocycle intends to be more planar or the changed acidity when the gallium is introduced,12resulting in the increase of the matrix element of the π-π*electronic transitions and stronger absorption.23This phenomenon is similar to the previously reported gallium(III) corroles.13,24While the molar absorption coefficient(ε)of the PTZ is nearly identical to the phenothiazine entity of 3,4-6, which means that the phenothiazine unit can be introduced without affecting the absorption characteristics of these gallium(III)corroles.

    Fig.2 UV-Vis absorption spectra of PTZ (phenothiazine-10-carbonyl chloride),3 and 4-6 in toluene

    In our reported studies,21we found that the phenothi-azine-corrole dyads exhibited higher fluorescence quantum yields compared to their corrole units.During the metallation by gallium,we noted a stronger red fluorescence.The fluorescence spectra of 3,4-6,and TPP in toluene at room temperature upon excitation at the Q band(560 nm)are displayed in Fig.3 and the most relevant photophysical values are collected in Table 1.The luminescence peaks of our synthesized gallium complexes are all shifted to higher energies(ca 45 nm)as compared to their free base corroles,which maybe attributed to the larger energy between HOMO and LUMO of gallium(III)corroles.23The major points of interest are that three gallium(III) complexes exhibit higher fluorescence quantum yields than phenothiazine-corrole dyads,which can be explained by the more planar structure of metallic corroles.16,24,25What?s more, sample 4 exhibits the highest fluorescence quantum yields among the reported gallium(III)complexes we can find.Their lifetimes were also determined by the method described in experimental section.Samples were excitated at 420 nm and the fluorescences were focused into the spectrometer before being collected by a streak camera and the collected wavelength was 608 nm.The resultant decay profiles for all samples could be explained satisfactorily in terms of a single exponential fit (Fig.4)and the calculated lifetimes(τ)are summarized in Table 1.The fluorescence lifetime decreases when the gallium is introduced.The emission rate constant(kf)and nonemission rate constant(knr)constant can be determined from kf=Φf/τ and knr= (1-Φf)/τ.26For phenothiazine-corrole gallium(III)complexes 4-6,the values of the kfare 20.90×107,16.78×107,and 21.11× 107s-1.Note that the kfof 4 and 5 are about 5-fold more than their free base corroles,and the kfof 6 is about 7-fold more than that of 3,while the value of knrisalmost identical.

    Fig.3 Fluorescence emission spectra of TPP,complexes 3 and 4-6 in toluene at room temperature

    Table 1 Fluorescence emission peak(λmax),quantum yields(Φfl), life time(τ),radiative rate constant(kf),and nonradiative rate constant(knr)data of complexes 1-6 in toluene at 295 K

    Fig.5 Stability of supercoiled pBR 322 DNAwith irradiationReaction mixtures(10 μL)contained 0.1 μg of plasmid DNAand 5%DMF. lanes 1-8:samples with 0,30,60,90,120,150,200,250 min irradiation, respectively.c(form II):conversion of form I to form II

    Fig.6 Agarose gel electrophoresis pattern for the cleavage of supercoiled pBR 322 DNAReaction mixtures(10 μL)contained 0.1 μg of plasmid DNA,400 μmol·L-1 samples,and 5%DMF.lane 1:DNAalone(no hν);lane 2:DNA+4(no hν); lanes 3-5:complexes 4-6 with DNA,respectively(2 h hν).

    Fig.4 Fluorescence decay curves of complexes 4-6 in toluene

    The DNA photocleavage activities were examined using supercoiled pBR 322 DNA.A mixture of corrole in DMF and the plasmid DNA in tris-HCl buffer(pH=7.2)was illuminated for 2 h at room temperature in a system consisting of an 11 W fluorescent lamp light source placed 10 cm away.The stability of supercoiled pBR 322 DNA with irradiation and agarose gel electrophoresis patterns for the photocleavage of DNA are shown in Fig.5 and Fig.6,respectively.Lane 1 is the control DNA.Without illumination,all phenothiazine-corrole dyads or their gallium complexes exhibited no DNA cleavage activity (exampled by lane 2).Phenothiazine-corrole dyads 1-3 exhibited 85%-100%conversion of supercoiled DNA(form I)to nicked-circular DNA(form II)at the concentration of 100 μmol·L-1under illumination.12In contrast,their gallium complexes could cleave form I DNA to form II at the concentration of 400 μmol·L-1and the DNA photocleavage activity follows an order of 4<5=6.The descendent DNA photocleavage activities of 4-6 maybe explained by the reduction of singlet oxygen quantum yield(ФΔ)photosensitized by corroles.Phenothiazine-corrole dyads 1-3 show the ФΔof 0.89-0.93,while we can not detect the singlet oxygen luminescence spectra of 4-6 in the same experimental conditions,which maybe because of the amazing radiative transition of 4-6.

    4 Conclusions

    In summary,we synthesized three phenothiazine-corrole dyads 1-3 and their novel gallium(III)complexes 4-6.The corrole unit exhibits stronger Soret band and Q band.The steady-state emission spectra and the temporal fluorescence decay profiles reveal that the fluorescence quantum yield and radiative decay constant are enhanced when the gallium is introduced.The quantum yields are 0.502,0.443,and 0.494 for 4-6,respectively.To our knowledge,the quantum yield of sample 4 is the highest among the reported gallium(III)complexes.The radiative and nonradiative rate constants were determined using a kinetic scheme:the values of radiative rate constant are 20.90×107,16.78×107,and 21.11×107s-1for 4-6, respectively,which are obviously higher than their free base corroles,but the nonradiative rate constant is almost identical. Agarose gel electrophoresis shows that these gallium(III)corrolescould photocleave supercoiled DNA (form I)to nicked-circular DNA(form II)at the concentration of 400 μmol·L-1,which are the first observation of DNA photocleavage by corrole gallium(III)complexes.This information is of importance for potential utilization of corroles in photophysical and therapeutic applications.

    (1) Fang,H.F.;Ling,Z.;Brothers,J.P.;Fu,X.F.Chem.Commun. 2011,47,11677.

    (2) Nigel-Etinger,I.;Mahammed,A.;Gross,Z.Catal.Sci.Technol. 2011,1(4),578.

    (3)Zhai,Q.Q.;Xu,L.;Ge,Y.S.;Tian,T.;Wu,W.D.;Yan,S.Y.; Zhou,Y.Y.;Deng,M.G.;Liu,Y.;Zhou,X.Chem.Eur.J.2011, 17(32),8890.

    (4)Aviv,I.;Gross,Z.Chem.Commun.2007,1987 and references therein.

    (5)Liu,H.Y.;Yam,F.;Xie,Y.T.;Li,X.Y.;Chang,C.K.J.Am. Chem.Soc.2009,131,12890.

    (6) Flamigni,L.;Gryko,D.T.Chem.Soc.Rev.2009,38,1635.

    (7) Botoshansky,M.;Palmer,J.H.;Durrell,A.C.;Gray,H.B.; Gross,Z.J.Am.Chem.Soc.2011,133(33),12899.

    (8)Tasior,M.;Gryko,D.T.;Cembor,M.;Jaworski,J.S.;Venturac B.;Flamigni,L.New J.Chem.2007,31,247.

    (9) Tasior,M.;Gryko,D.T.;Shen,J.;Kadish,K.M.;Becherer,T.; Venturac,B.;Flamigni,L.J.Phys.Chem.C 2008,112,19699.

    (10) He,C.L.;Ren,F.L.;Zhang,X.B.;Han,Z.X.Talanta 2006, 70,364.

    (11) Ghosh,A.;Jynge,K.Chem.Eur.J.1997,3,823.

    (12) Simkhovich,L.;Goldberg,I.;Gross,Z.J.Inorg.Biochem. 2000,80(3-4),235.

    (13)Bendix,J.;Dmochowski,I.J.;Gray,H.B.;Mahammed,A.; Simkhovich,L.;Gross,Z.Angew.Chem.Int.Edit.2000,39 (22),4048.

    (14)Liu,X.;Mahammed,A.;Tripathy,U.;Gross,Z.;Steer,R.P. Chem.Phys.Lett.2008,459(1-6),113.

    (15) Saltsman,I.;Mahammed,A.;Goldberg,I.;Tkachenko,E.; Botoshansky,M.;Gross,Z.J.Am.Chem.Soc.2002,124(25), 7411.

    (16) Sorasaenee,K.;Taqavi,P.;Henling,L.M.;Gray,H.B.; Tkachenko,E.;Mahammed,A.;Gross,Z.J.Porphyr. Phthalocyanines 2007,11(3-4),189.

    (17) Mahammed,A.;Gray,H.B.;Weaver,J.J.;Sorasaenee,K.; Gross,Z.Bioconjugate Chem.2004,15(4),738.

    (18)Agadjanian,H.;Ma,J.;Rentsendorj,A.;Valluripalli,V.;Hwang, J.Y.;Mahammed,A.;Farkas,D.L.;Gray,H.B.;Gross,Z.; Medina-Kauwe,L.K.Proc.Nat.Acad.Sci.U.S.A.2009,106 (15),6105.

    (19) Motohashi,N.AntitumorActivities of Phenothiaiznes.In Phenothiazines and 1,4-Benzothiazines,Chemical and Biological Aspects,Bioactive Molecules;Gupta,R.R.Ed.; Elsevier:Amsterdam,1988;Vol.4,pp 705-770.

    (20) Viola,G.;Dall?Acqua,F.Current Drug Targets 2006,7,1135.

    (21)Shi,L.;Liu,H.Y.;Peng,K.M.;Wang,X.L.;You,L.L.;Zhang, L.;Wang,H.;Ji,L.N.;Jiang,H.F.Tetrahedron Lett.2010,51, 3439.

    (22) Adler,A.D.;Longo,F.R.;Finarelli,J.D.;Goldmacher,J.; Assour,J.;Korsakoff,L.J.Org.Chem.1967,32(2),476.

    (23)Ghosh,A.;Wondimagegn,T.;Parusel,A.B.J.J.Am.Chem. Soc.2000,122,5100.

    (24)Peng,K.M.;Shao,W.L.;Wang,H.H.;Ying,X.;Wang,H.;Ji, L.N.;Liu,H.Y.Acta Phys.-Chim.Sin.2011,27,199.[彭開美,邵文莉,汪華華,應 曉,王 惠,計亮年,劉海洋.物理化學學報,2011,27,199.]

    (25) Gross,Z.;Galili,N.;Simkhovich,L.;Saltsman,I.;Botoshansky, M.;Bl?ser,D.;Boese,R.;Goldberg,I.Org.Lett.1999,1,599.

    (26)Kowalska,D.;Liu,X.;Tripathy,U.;Mahammed,A.;Gross,Z.; Hirayama,S.;Steer,R.P.Inorg.Chem.2009,48(6),2670.

    October 13,2011;Revised:November 21,2011;Published on Web:November 29,2011.

    Synthesis,Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(III)Complexes

    SHI Lei1,2,*JIANG Huan-Feng2YIN Wei1WANG Hua-Hua2WANG Hui3ZHANG Lei2JI Liang-Nian3LIU Hai-Yang2,*
    (1Department of Chemistry,Guangdong University of Education,Guangzhou 510303,P.R.China;2School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,P.R.China;3State Key Laboratory of Optoelectronics Materials and Technologies,Sun Yat-Sen University,Guangzhou 510275,P.R.China)

    Phenothiazine(PTZ)-corrole dyads 1-3 and their gallium(III)complexes 4-6 have been synthesized and characterized.The steady-state absorption and emission spectra and the time-resolved fluorescence decay profiles have been measured in toluene.The radiative and nonradiative rate constants have been obtained from the fluorescence quantum yields and monoexponential fluorescence lifetimes. The absorption spectra revealed that the gallium(III)corrole dyads exhibit stronger Soret bands and Q bands than free base corrole dyads.The fluorescence quantum yields of 1-3 are 0.156,0.134,and 0.139, and the radiative rate constants are 4.02×107,3.47×107,and 2.89×107s-1,respectively.The fluorescence quantum yields of 4-6 are 0.502,0.443,and 0.494,and the radiative rate constants are 20.9×107,16.78× 107,and 21.11×107s-1,which are obviously higher than those of the corresponding free base corroles.The lifetimes of 4-6 are 2.40,2.64,and 2.34 ns,respectively,which are somewhat shorter than those of the corresponding free base corroles.Agarose gel electrophoresis shows that these gallium(III)corrole dyads could cleave supercoiled DNA(form I)to give nicked-circular DNA(form II)under irradiation.

    Corrole;Phenothiazine;Gallium(III);Fluorescence;DNA

    10.3866/PKU.WHXB201111291www.whxb.pku.edu.cn

    *Corresponding authors.SHI Lei,Email:shil@gdei.edu.cn;Tel:+86-20-34113254.LIU Hai-Yang,Email:chhyliu@scut.edu.cn; Tel:+86-20-22236805.

    The project was supported by the National Natural Science Foundation of China(20971046,21171057,61178037,11004256),Natural Science Foundation of Guangdong Province,China(10351064101000000),Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-Sen University),China,andAppropriative Researching Fund for Professors and Doctors,Guangdong University of Education,China(10ARF14).

    國家自然科學基金(20971046,21171057,61178037,11004256),廣東省自然科學基金(10351064101000000),光電材料與技術國家重點實驗室(中山大學)開放基金及廣東第二師范學院教授博士科研專項經(jīng)費研究項目(10ARF14)資助

    O644

    猜你喜歡
    華華量子產(chǎn)率噻嗪
    激發(fā)波長和溶液濃度對羅丹明6G絕對量子產(chǎn)率的影響
    積分球測量熒光量子產(chǎn)率的最優(yōu)測試條件研究
    中國測試(2021年10期)2021-11-12 02:11:10
    氫氯噻嗪聯(lián)合替米沙坦用于高血壓治療的有效性分析
    木星
    太空探索(2021年3期)2021-03-19 09:13:56
    厄貝沙坦氫氯噻嗪片在高血壓臨床治療中的應用及不良反應狀況
    狐貍華華組隊記
    國產(chǎn)絕對熒光量子產(chǎn)率測量系統(tǒng)的研制
    光學儀器(2020年3期)2020-07-10 04:04:42
    狐貍華華“分兔”記
    地球的大氣層
    太空探索(2020年2期)2020-03-09 02:15:38
    高熒光量子產(chǎn)率BODIPY衍生物的熒光性能研究
    搡女人真爽免费视频火全软件| 嫩草影院新地址| 午夜av观看不卡| 亚洲真实伦在线观看| 中文字幕人妻丝袜制服| 欧美日韩综合久久久久久| 老熟女久久久| 超碰97精品在线观看| 免费观看性生交大片5| 91精品伊人久久大香线蕉| 国产成人免费无遮挡视频| 校园人妻丝袜中文字幕| 国产黄片视频在线免费观看| 男女国产视频网站| 免费久久久久久久精品成人欧美视频 | 国产一区有黄有色的免费视频| 秋霞伦理黄片| 国产毛片在线视频| 国产成人精品福利久久| av.在线天堂| 精品国产露脸久久av麻豆| 欧美最新免费一区二区三区| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 久久免费观看电影| 精品国产乱码久久久久久小说| 99久久中文字幕三级久久日本| 夫妻午夜视频| 青春草亚洲视频在线观看| 久久精品久久精品一区二区三区| 日韩欧美精品免费久久| 欧美日韩av久久| 91精品国产九色| 观看免费一级毛片| 精品一区二区三卡| 麻豆成人av视频| av天堂中文字幕网| 男女啪啪激烈高潮av片| 黄片无遮挡物在线观看| 久久久久久久久大av| 18禁裸乳无遮挡动漫免费视频| 噜噜噜噜噜久久久久久91| 嫩草影院入口| 国产黄色视频一区二区在线观看| 国产精品蜜桃在线观看| 精品一区二区三卡| 国产在线视频一区二区| 久久国产精品大桥未久av | 久久青草综合色| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说| 欧美丝袜亚洲另类| 丁香六月天网| 亚洲国产精品999| 国产高清不卡午夜福利| 亚洲天堂av无毛| 午夜激情久久久久久久| 免费观看性生交大片5| 女性被躁到高潮视频| 美女视频免费永久观看网站| 欧美一级a爱片免费观看看| 97超碰精品成人国产| kizo精华| 久久女婷五月综合色啪小说| 中文字幕人妻丝袜制服| 日产精品乱码卡一卡2卡三| 久久久久久久久大av| 嫩草影院新地址| 曰老女人黄片| 久久久久久人妻| 亚洲丝袜综合中文字幕| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| av天堂中文字幕网| 免费高清在线观看视频在线观看| 3wmmmm亚洲av在线观看| 久久久久久久久大av| xxx大片免费视频| 久久人人爽av亚洲精品天堂| 亚洲婷婷狠狠爱综合网| 国产乱来视频区| tube8黄色片| 亚洲中文av在线| 中文欧美无线码| 国产男人的电影天堂91| 免费av中文字幕在线| 中文字幕av电影在线播放| 狂野欧美白嫩少妇大欣赏| 欧美 日韩 精品 国产| 亚洲精品国产av蜜桃| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 国产成人精品婷婷| a级毛片免费高清观看在线播放| 一区二区三区四区激情视频| 亚洲欧美清纯卡通| 久久久久久久国产电影| av天堂中文字幕网| √禁漫天堂资源中文www| 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 在线观看免费日韩欧美大片 | 热99国产精品久久久久久7| 精品一品国产午夜福利视频| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 男人狂女人下面高潮的视频| 肉色欧美久久久久久久蜜桃| 国产日韩一区二区三区精品不卡 | 中文字幕人妻熟人妻熟丝袜美| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 啦啦啦啦在线视频资源| 在线观看人妻少妇| 人人妻人人爽人人添夜夜欢视频 | 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 久热久热在线精品观看| 精品视频人人做人人爽| 少妇被粗大的猛进出69影院 | 亚洲情色 制服丝袜| 女性被躁到高潮视频| 九九爱精品视频在线观看| 99国产精品免费福利视频| 久久热精品热| 九九久久精品国产亚洲av麻豆| 国产综合精华液| 纯流量卡能插随身wifi吗| 色网站视频免费| 久久人人爽人人爽人人片va| 一级av片app| 国产精品.久久久| 精品一区二区免费观看| 高清欧美精品videossex| 精品视频人人做人人爽| 最黄视频免费看| 久久午夜福利片| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩在线播放| 国产视频首页在线观看| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 国产高清有码在线观看视频| 久久久久久久亚洲中文字幕| 国产 一区精品| 亚洲高清免费不卡视频| 国产淫语在线视频| 久久久久精品久久久久真实原创| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区 | 观看av在线不卡| 人人澡人人妻人| 久久人人爽人人片av| 在线播放无遮挡| 亚洲欧美精品专区久久| 亚洲内射少妇av| 男人和女人高潮做爰伦理| 丝袜喷水一区| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 成人美女网站在线观看视频| 亚洲精品,欧美精品| 成人特级av手机在线观看| 91精品伊人久久大香线蕉| 午夜精品国产一区二区电影| 麻豆成人av视频| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 热re99久久国产66热| 在线观看人妻少妇| 日本黄色日本黄色录像| 亚洲精品久久久久久婷婷小说| 亚州av有码| 老司机亚洲免费影院| 日韩成人伦理影院| 亚洲美女视频黄频| 卡戴珊不雅视频在线播放| 在线免费观看不下载黄p国产| videos熟女内射| 三级经典国产精品| 最新中文字幕久久久久| av国产精品久久久久影院| 国产视频内射| 久久国产精品男人的天堂亚洲 | 成人特级av手机在线观看| 我要看黄色一级片免费的| 纯流量卡能插随身wifi吗| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 成人国产av品久久久| 久久国产精品男人的天堂亚洲 | 另类精品久久| 尾随美女入室| 自拍偷自拍亚洲精品老妇| 精品午夜福利在线看| 亚洲国产最新在线播放| 老熟女久久久| 国产男女超爽视频在线观看| 久久久久精品久久久久真实原创| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 色5月婷婷丁香| 日本与韩国留学比较| 99九九线精品视频在线观看视频| 天堂俺去俺来也www色官网| 欧美高清成人免费视频www| 美女大奶头黄色视频| 91精品伊人久久大香线蕉| 国产精品久久久久久精品古装| 色5月婷婷丁香| 哪个播放器可以免费观看大片| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 精品一区二区三卡| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 国内精品宾馆在线| 夜夜爽夜夜爽视频| 国产成人精品无人区| 高清av免费在线| 国产精品一区www在线观看| 91精品一卡2卡3卡4卡| av网站免费在线观看视频| 亚洲自偷自拍三级| 亚洲人与动物交配视频| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 91久久精品国产一区二区三区| 中文乱码字字幕精品一区二区三区| 日韩视频在线欧美| 人体艺术视频欧美日本| 日韩伦理黄色片| 高清不卡的av网站| 午夜福利视频精品| 中文字幕亚洲精品专区| 一级毛片aaaaaa免费看小| .国产精品久久| 国产一区二区在线观看av| av不卡在线播放| 日韩电影二区| 日日啪夜夜撸| 久久人人爽av亚洲精品天堂| 亚洲精品乱码久久久v下载方式| 欧美日韩一区二区视频在线观看视频在线| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 午夜福利,免费看| 精品国产乱码久久久久久小说| 精品卡一卡二卡四卡免费| av线在线观看网站| 中文字幕人妻丝袜制服| 在线观看三级黄色| 亚洲欧美清纯卡通| 国产成人精品一,二区| 插逼视频在线观看| av免费在线看不卡| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 三级经典国产精品| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 亚洲av不卡在线观看| 亚洲在久久综合| 国产熟女午夜一区二区三区 | 亚洲精品aⅴ在线观看| 日韩三级伦理在线观看| 热re99久久国产66热| 色视频www国产| 国产色爽女视频免费观看| 日本免费在线观看一区| 国产一区二区在线观看av| 日日摸夜夜添夜夜爱| 极品教师在线视频| 蜜桃在线观看..| 久久99蜜桃精品久久| 9色porny在线观看| 亚洲人与动物交配视频| av专区在线播放| 国产女主播在线喷水免费视频网站| 18禁裸乳无遮挡动漫免费视频| 少妇猛男粗大的猛烈进出视频| av线在线观看网站| 免费大片黄手机在线观看| av在线观看视频网站免费| 久久久久久久精品精品| 欧美成人精品欧美一级黄| 熟女电影av网| 国产亚洲欧美精品永久| 在线免费观看不下载黄p国产| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 人妻人人澡人人爽人人| 日韩电影二区| 深夜a级毛片| 国产成人a∨麻豆精品| 精品久久久噜噜| 日韩一本色道免费dvd| 18禁在线播放成人免费| 亚洲精品国产av蜜桃| 黄色日韩在线| 日本wwww免费看| 99久久综合免费| 免费黄频网站在线观看国产| 天天操日日干夜夜撸| 成人漫画全彩无遮挡| 亚洲精品乱码久久久v下载方式| 国产免费福利视频在线观看| 丰满乱子伦码专区| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 亚洲国产精品一区三区| 嘟嘟电影网在线观看| 亚洲av二区三区四区| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 五月玫瑰六月丁香| 91精品国产九色| 午夜福利在线观看免费完整高清在| av一本久久久久| 久热久热在线精品观看| 日本免费在线观看一区| 九色成人免费人妻av| 午夜福利影视在线免费观看| av天堂中文字幕网| 日韩欧美精品免费久久| 全区人妻精品视频| 免费观看的影片在线观看| 国产av精品麻豆| 美女福利国产在线| 成人亚洲精品一区在线观看| videossex国产| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 伦理电影大哥的女人| 国产高清有码在线观看视频| 少妇高潮的动态图| 18禁在线无遮挡免费观看视频| 五月开心婷婷网| 亚洲欧美日韩卡通动漫| 成人亚洲精品一区在线观看| 成人无遮挡网站| 成人亚洲精品一区在线观看| 久久99热这里只频精品6学生| 日韩成人伦理影院| 色视频在线一区二区三区| 色5月婷婷丁香| 一级a做视频免费观看| 日本欧美视频一区| 国产成人精品婷婷| a级一级毛片免费在线观看| 精品久久久久久久久av| 国产在线男女| 美女xxoo啪啪120秒动态图| 久久亚洲国产成人精品v| av一本久久久久| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 久久狼人影院| 激情五月婷婷亚洲| 蜜桃在线观看..| 中国国产av一级| 亚洲精品一二三| 青春草亚洲视频在线观看| a级片在线免费高清观看视频| 91久久精品国产一区二区三区| 少妇的逼水好多| 国产视频首页在线观看| 麻豆成人av视频| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 午夜免费鲁丝| 国产精品.久久久| 精品少妇内射三级| av.在线天堂| 在现免费观看毛片| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| av播播在线观看一区| 99热这里只有是精品在线观看| 自拍偷自拍亚洲精品老妇| 另类精品久久| 亚洲欧洲国产日韩| 91成人精品电影| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 夫妻午夜视频| 伦精品一区二区三区| 久久青草综合色| 成人免费观看视频高清| 国产在视频线精品| 欧美精品一区二区大全| 免费黄色在线免费观看| 日本与韩国留学比较| 国产精品伦人一区二区| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 自拍欧美九色日韩亚洲蝌蚪91 | 成人18禁高潮啪啪吃奶动态图 | 九九在线视频观看精品| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区大全| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 亚洲国产成人一精品久久久| 国产成人91sexporn| 欧美精品高潮呻吟av久久| 草草在线视频免费看| 性色av一级| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 五月玫瑰六月丁香| 久久久久久久国产电影| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 久久久精品94久久精品| 黄色欧美视频在线观看| 草草在线视频免费看| 热re99久久精品国产66热6| 在线观看av片永久免费下载| 午夜福利影视在线免费观看| 黄色配什么色好看| 国产亚洲最大av| 老女人水多毛片| 亚洲天堂av无毛| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 一级爰片在线观看| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频 | 亚洲av电影在线观看一区二区三区| 国产淫语在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品视频女| 我要看黄色一级片免费的| 色5月婷婷丁香| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 日本wwww免费看| 国产欧美日韩一区二区三区在线 | 色吧在线观看| 高清毛片免费看| 欧美日韩精品成人综合77777| 国产亚洲一区二区精品| 男人舔奶头视频| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| 国产淫片久久久久久久久| 你懂的网址亚洲精品在线观看| 美女内射精品一级片tv| 大香蕉久久网| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 国产综合精华液| 久久毛片免费看一区二区三区| 国产精品免费大片| 成人综合一区亚洲| 欧美精品国产亚洲| 丁香六月天网| 99久久精品热视频| 久久久久久人妻| 久久久久精品久久久久真实原创| 如何舔出高潮| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 成人毛片60女人毛片免费| 大香蕉97超碰在线| 黄色日韩在线| 91精品国产国语对白视频| 午夜福利,免费看| 男男h啪啪无遮挡| 插逼视频在线观看| 高清欧美精品videossex| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 久热这里只有精品99| 在线观看三级黄色| 久久久国产欧美日韩av| 久久久久久伊人网av| videos熟女内射| 一级毛片 在线播放| 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 亚洲国产成人一精品久久久| 精华霜和精华液先用哪个| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区国产| 婷婷色麻豆天堂久久| 国产精品嫩草影院av在线观看| 久久人妻熟女aⅴ| 亚洲综合精品二区| 大香蕉久久网| 大片免费播放器 马上看| 少妇高潮的动态图| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 最近中文字幕高清免费大全6| 国产成人freesex在线| 观看美女的网站| 岛国毛片在线播放| 国产成人a∨麻豆精品| 免费av不卡在线播放| 国模一区二区三区四区视频| 国产av码专区亚洲av| 亚洲va在线va天堂va国产| 永久网站在线| av女优亚洲男人天堂| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 免费人妻精品一区二区三区视频| 嘟嘟电影网在线观看| 最新中文字幕久久久久| 伊人久久国产一区二区| 久久久久久伊人网av| tube8黄色片| 一边亲一边摸免费视频| 精品视频人人做人人爽| 日韩av免费高清视频| 日韩视频在线欧美| 精品久久久久久久久av| a级片在线免费高清观看视频| 亚洲,一卡二卡三卡| 国产黄片美女视频| 午夜老司机福利剧场| 人妻夜夜爽99麻豆av| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 汤姆久久久久久久影院中文字幕| 久久人人爽人人片av| 2022亚洲国产成人精品| 国产精品国产三级国产专区5o| 深夜a级毛片| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 一级毛片电影观看| 久久久久久久久久成人| 91精品伊人久久大香线蕉| 高清午夜精品一区二区三区| 久久久久网色| 国产黄色免费在线视频| 超碰97精品在线观看| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av天美| 亚洲精品色激情综合| 日韩欧美一区视频在线观看 | 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 精品酒店卫生间| 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 热re99久久精品国产66热6| 久久精品久久久久久噜噜老黄| 丁香六月天网| 亚洲内射少妇av| 国产伦在线观看视频一区| 久久国产亚洲av麻豆专区| 夫妻性生交免费视频一级片| 王馨瑶露胸无遮挡在线观看| 欧美日韩一区二区视频在线观看视频在线| 99久国产av精品国产电影| 国产永久视频网站| 亚洲成人一二三区av| 国产一区二区在线观看av| 久久国产精品男人的天堂亚洲 | 欧美三级亚洲精品| 在线免费观看不下载黄p国产| 观看av在线不卡| 日本91视频免费播放| 精品久久国产蜜桃| 中国美白少妇内射xxxbb| 黄色毛片三级朝国网站 | 丰满少妇做爰视频| 久久人妻熟女aⅴ| 免费黄色在线免费观看| 婷婷色综合大香蕉| av黄色大香蕉| 男女国产视频网站| 大香蕉久久网| 五月天丁香电影| 亚洲精品,欧美精品| 自线自在国产av| 日韩中文字幕视频在线看片| 人妻一区二区av| 精品久久久精品久久久| 久久免费观看电影| 晚上一个人看的免费电影| 一本色道久久久久久精品综合| 两个人免费观看高清视频 | 精品人妻熟女毛片av久久网站| 人妻人人澡人人爽人人| 日韩人妻高清精品专区| 免费看av在线观看网站|