張媛媛 周永勝
(地震動力學國家重點實驗室,中國地震局地質研究所,北京 100029)
斷層脆塑性轉化帶的強度與變形機制及其流體和應變速率的影響
張媛媛 周永勝
(地震動力學國家重點實驗室,中國地震局地質研究所,北京 100029)
野外、實驗和地震數(shù)據(jù)表明:淺部地殼的變形以脆性破裂為主,深部地殼的變形以晶體塑性流動為主。在這種認識的基礎上,提出了地殼變形的2種機制模型,即發(fā)生脆性變形的上部地殼強度基于Byerlee摩擦定律以及發(fā)生塑性變形的下部地殼強度基于冪次蠕變定律。而位于其間的脆塑性轉化帶的深度與淺源地震深度的下限具有很好的一致性。然而,二元結構的流變模型局限性在于其力學模型過于簡單,往往過高估計了脆塑性轉化帶的強度。問題的根源在于對脆塑性轉化帶的變形機制的研究已有很多,但沒有定量的力學方程來描述脆塑性轉化帶強度;而且以往對斷層脆塑性轉化帶的研究主要集中在溫度引起的脆塑性轉化方面,對因應變速率和流體對脆塑性轉化的影響方面的研究也比較薄弱。對斷層帶內礦物變形機制研究表明,某些斷層帶脆塑性轉化發(fā)生在相同深度(溫度和壓力)內,發(fā)生脆塑性轉化的原因是應變速率的變化,而這種變化被認為與地震周期的同震、震后-間震期蠕變有關,這種變化得到了主震-余震深度分布變化的證實。對斷層流體特征分析表明,斷層帶內可能存在高壓流體,這種高壓流體會隨斷裂帶的破裂及愈合而周期性變化,在地震孕育及循環(huán)中起著關鍵性作用。高壓流體的形成(裂隙愈合)有多種機理,其中,壓溶是斷層帶裂隙愈合的主導機制之一。研究在水作用下的壓溶,可以對傳統(tǒng)的摩擦-流變二元地殼強度結構及其斷層強度進行補充與修正。通過以上分析,認為有必要通過野外變形樣品和高溫高壓實驗,深入研究應變速率及流體壓力對斷層脆塑性轉化的影響,同時,通過實驗建立壓溶蠕變的方程,近似地估計脆塑性轉化帶的強度。
脆塑性轉化 強度 變形機制 流體 應變速率 壓溶
斷層脆塑性轉化帶及其對地震深度分布的影響已經得到廣泛認同(Chen et al.,1983;Smith et al.,1984;Wong et al.,1990;Bokelmann et al.,2000;周永勝等,2002,2003,2009),但對于脆塑性轉化帶的強度、變形機制深度及其影響因素,仍然存在很多懸而未決的問題。例如,脆塑性轉化帶強度都是通過斷層摩擦強度與以位錯蠕變?yōu)榛A的流變強度確定,而脆塑性轉化深度主要受地殼溫度控制,然而,對斷層巖研究發(fā)現(xiàn),斷層帶脆塑性轉化帶的變形機制至少包括微破裂、位錯蠕變、擴散蠕變(包括壓溶、顆粒邊界遷移、晶體內部擴散)等多種變形機制,脆塑性轉化的深度除了與溫度相關外,還有流體、應變速率等的影響(Martina et al.,1999;Trepmann et al.,2007;周永勝等,2009)。針對這些問題,本文展開了相關討論,重點對斷層脆塑性轉化帶的強度與變形機制進行了概述,給出了斷層帶流體對脆塑性轉化帶的影響,通過強震與余震深度分布規(guī)律的變化,討論了同震、震后-間震期的應變速率變化對斷層脆塑性轉化帶深度的控制作用。
自從1914年巖石圈的概念被引入(Barrel,1914)開始,人們對巖石圈的研究不斷深入,甚至基于不同的物理化學性質對其進行不同的定義,如力學巖石圈(Schubert et al.,2001)、熱巖石圈(White,1988;Rudnick et al.,1988)、地震學巖石圈(Anderson,1995)、彈性巖石圈(White,1999;Watts,2001)、化學巖石圈(Cooper et al.,2004;Lee etal.,2005)、巖石學巖石圈(Griffin et al.,1999;O'Reilly et al.,2001;Poudjom etal.,2001)、電性巖石圈(Wei etal.,2003)等。然而,最初巖石圈的定義是Barrel(1914)從力學強度的角度給出的,認為巖石圈是具有高強度(高黏滯度,低流變性)的地球外殼;另一方面,研究巖石圈強度的變化可以了解地塊的強度、地震活動性以及大陸形變和演化的重要機制(鄭勇等,2009)。因此,人們迫切需要某種方法來定量估計巖石圈的強度。直到20世紀70年代末,提出了強度包絡線的概念(Goetze et al.,1979;Brace et al.,1980),才使人們能夠基于實驗室獲得的本構方程來實現(xiàn)這一愿望(Kohlstedt et al.,1995)。此后,逐漸認識到大陸巖石圈整體的流變結構不同于海洋巖石圈,而且其各介質層之間因受控于不同的流變機制而流變性質也強弱不一(魏榮強等,2007)。
在基于實驗資料對巖石圈力學強度的估算中,地殼較淺處斷層強度遵從Byerlee(1978)摩擦律
式(1)中τ為斷層面上的抗剪強度,μ為摩擦系數(shù),σn為正應力,p為孔隙壓力。
對于深部地殼和地幔,由于溫度較高,變形以冪律蠕變(Kirby et al.,1987)為主,差應力為
圖1 巖石圈強度σ隨深度H變化示意圖Fig.1 Schematic illustration of the variation of mechanical strengthσas a function of depth H in lithosphere(after Shi et al.,2003).
從圖1中可以看出,地溫梯度明顯影響巖石圈強度,除此之外,地殼分層、物質組成及其流變參數(shù)和變形機制也與其密切相關(周永勝等,2003)??傊?,在不同的構造環(huán)境下,地殼流變性質差別很大(Ranalli,1987;Meissner,1996)。其中,基于高溫高壓巖石力學實驗來研究地殼流變性質最直接、最有效的方法即取得地殼各層巖石流變參數(shù)和變形機制(周永勝等,2003)。
地震是新構造運動的一種形式,震源深度分布是研究孕震環(huán)境、深部構造以及地震成因的重要基礎(張國民等,2002)。中國是大陸地震最廣泛的國家,隨著1970年以來地震臺網的建立和完善,積累了豐富的地震資料,并且大量地震都有震源深度記錄。根據(jù)這些資料,汪素云(1996)研究得出了1970年以來 ML≥3.0的 1類精度(震中誤差≤5km)地震深度分布統(tǒng)計圖(圖2)。約91%的地震發(fā)生在1~30km內,處于峰值深度段5~25km內的地震約占75.1%。張國民等(2002)也將1970年1月至2000年5月期間所積累的地震定位資料進行篩選分析,給出了中國大陸地震震源深度分布基本上都集中在中上地殼之中。
圖2 1類精度地震深度統(tǒng)計圖(汪素云,1996)Fig.2 Seismic depth statisticalmap with the first class precision(after WANG Su-yun,1996).
Mori等(1997)分別使用1983—1994年和1978—1994年的美國南北加利福尼亞洲的地震目錄,研究得出震級在M2.0~5.5范圍的地震事件的頻率-震級曲線呈線性分布,同時這種頻率-震級的線性分布強烈依賴于深度變化(圖3)。震級較小(M2~3)時,地震事件主要集中在3~9km的深度內,深度越大,事件越少;隨著震級逐漸增大,地震事件也逐漸趨向于分布在更深的深度范圍內。然而,縱觀所有震級范圍的地震事件,其基本上都分布在上地殼中。
對比以上中國和美國加利福尼亞的地震深度數(shù)據(jù)表明,后者的地震深度整體較淺,而前者的某些地區(qū)其地震在中上地殼的各個深度皆有分布。
圖3 加利福尼亞不同震級地震事件的深度分布Fig.3 Depth distribution of California earthquake for severalmagnitude ranges.
眾多研究表明,大陸地震震源深度大多分布在上地殼中(Engdahl et al.,1998;Mori,1991;Melbourne et al.,1997)。關于形成這種現(xiàn)象的物理解釋,多數(shù)人將其歸結為殼內巖石力學性質的變化。
在應力作用下,巖石會發(fā)生位移或變形(付保國等,2003)。探討巖石的變形機制,主要是借助巖石力學實驗結果并結合對比典型天然變形巖石的觀察研究,以及與冶金學、材料力學中所獲經驗的對比(胡玲等,1998)。在顯微鏡尺度上,巖石的變形機制主要分為脆性和塑性兩種變形(Vernon,2004),以及介于二者之間的脆塑性轉化。
脆性變形,從宏觀角度看,即為脆性破裂或斷層摩擦滑動。脆性破裂在地震學辭典(徐世芳等,2000)中這樣定義:巖石破裂前沒有或很少發(fā)生永久變形,1960年格里格斯規(guī)定永久變形不超過1%,而赫德規(guī)定不超過3%;從微觀角度看,脆性變形主要是顯微破裂的產生和擴展及有關的碎裂作用;從應力應變角度看,脆性變形表現(xiàn)為巖石或礦物在應力的作用下,超過強度極限時就會發(fā)生破裂,使能量突然釋放(胡玲等,1998)??傊诖嘈宰冃沃?,破裂會在顆粒間或穿過顆粒而發(fā)生,并且最終的碎塊會發(fā)生相對位移(Vernon,2004)。
塑性變形機制比脆性變形機制要復雜得多。巖石塑性變形絕大多數(shù)是由單個晶粒的晶內滑動或晶粒間的相對運動(晶粒邊界滑動)所造成的,根據(jù)變形特征與變形溫度、壓力條件,一般有位錯蠕變和擴散蠕變兩種主要機制。其中,位錯蠕變包括位錯滑移、位錯攀移、動態(tài)重結晶等,而擴散蠕變包括壓溶、顆粒邊界遷移(Coble蠕變)、晶體內部擴散(Nabarro-herring蠕變)等。每一個具體的變形機制都有其對應的變形條件、過程及最終形成的顯微構造特征,圖4所示為典型的變形機制圖。位錯滑移、位錯攀移(或動態(tài)重結晶)及擴散蠕變(壓溶、Coble蠕變及N-H蠕變)分別位于不同的溫度-應力區(qū)域。但在相同應變速率下,位錯滑移發(fā)生在較高應力、較低溫度下,一般應力指數(shù)n>5,會產生很強但不連續(xù)的波狀消光,沒有重結晶和亞顆粒,在透射電鏡中顯示有高密度不規(guī)則的纏結位錯;而位錯攀移及動態(tài)重結晶相對而言發(fā)生在較低應力、較高溫度下,一般應力指數(shù)2≤n≤5,會產生連續(xù)的波狀消光,亞顆粒和動態(tài)重結晶顆粒,透射電鏡中顯示有不規(guī)則的網狀位錯。對于擴散蠕變而言,只出現(xiàn)在細粒集合體中,在電鏡中沒有內部應變組構和晶體優(yōu)選方位,一般應力指數(shù)n<2,其中,Coble蠕變發(fā)生在較低溫度下,N-H蠕變發(fā)生在較高溫度下。值得特別說明的是,壓溶蠕變是指巖石在差應力作用下,可溶性物質在高應力處溶解、低應力處沉淀的過程,是一種由于液相存在而蠕變機制大大提高的低溫擴散蠕變機制。如圖5所示,壓溶作用分為3個階段(Weyl,1959;Renard et al.,1997):1)在有效應力驅動下,可溶性物質溶解,并且在顆粒相接觸的邊界相交叉;2)在化學能和流體通量的促使下,可溶性礦物從高應力處擴散;3)可溶性物質在低應力處沉淀。這是一個依賴于時間的非常緩慢的物質擴散遷移過程,且3個階段中最慢的速率將控制整個壓溶蠕變過程的速率(Rutter,1983;Gratier etal.,2009)。如果這個過程相對于地震循環(huán)周期來說足夠快,它們將能夠改變斷層的蠕變特性(Renard et al.,2000)??傊?,在塑性變形中,顆粒會改變其形狀或相對彼此移動而不發(fā)生破裂(Vernon,2004)。
圖4 典型的巖石變形機制圖Fig.4 The typical deformationmap of rocks.
圖5 壓溶的概念模型Fig.5 A conceptual pressure-solutionmodel.
斷層帶內變形巖石的野外觀察表明,從純脆性到純塑性變形的轉化過程會發(fā)生在相對很大的溫壓范圍內(Sibson,1977)。后來依據(jù)長石和石英的流變性(Scholz,1990)、應用巖鹽的模擬實驗研究(Shimamoto,1989)、斷層構造巖的主要變形機制(何永年,1989)及依據(jù)變形變質作用環(huán)境(劉喜山等,1992)開展的研究都取得了類似的認識。在這個過程中,破裂模式的變化伴隨著破裂機制的變化。Kohlstedt等(1995)按照Rutter(1986)的術語,認為破裂模式的轉化為脆延性轉化(BDT),主導機制的轉化為脆塑性轉化(BPT)(圖6)。不過,有人認為脆延性轉化更多的指脆塑性轉換,即脆性(破裂、碎裂或摩擦)向晶體塑性變形的轉化 (Rutter,1986;Chester,1988;Shimamoto,1989)。但更多的人強調這是兩個不同的概念,脆延性轉化(BDT)特指巖石從宏觀局部變形到宏觀均勻變形的轉化,這種轉化與力學行為相關;脆塑性轉化(BPT)指巖石從微觀脆性變形到微觀塑性變形的轉化,這種轉化不僅與力學行為相關,而且與微觀機制相關(Carter et al.,1987;Evans etal.,1990;Hirth etal.,1994)。表1所示為脆塑性轉化與脆延性轉化在各種力學特性和微觀構造等方面的具體差異。從表中可以看出脆性向半脆性轉化的特征為局部化破裂和應力降消失,出現(xiàn)碎裂和塑性變形,強度主要受圍壓影響,但對溫度和應變速率不敏感;半脆性向晶體塑性轉化的標志特征為碎裂、擴容和聲發(fā)射消失,出現(xiàn)大量晶體塑性變形,并且強度對圍壓不敏感而對溫度和應變速率敏感。
從上述以摩擦和流變實驗為基礎得到的巖石圈強度剖面可以看出,隨著深度的增加,巖石從脆性破裂、摩擦向塑性流動轉化。脆塑性轉化一方面控制了巖石圈的應力極限(強度峰值)(Brace et al.,1980;Kirby,1980;Meissner et al.,1982;Smith et al.,1984;Meissner,1996);另一方面對淺源強震的發(fā)震深度、機制和過程具有重要意義(Sibson,1982;Chen etal.,1983;Smith etal.,1984;Wong etal.,1990;Bokelmann etal.,2000;周永勝等,2002,2003)。
表1 脆塑性轉化與脆延性轉化的具體定義(Evans et al.,1990)Table 1 The specific definition of brittle-ductile transition(BDT)and brittle-plastic transition(BPT)(after Evans et al.,1990)
Sibson(1982)通過對美國不同熱流值區(qū)域內的陸殼地震深度分布研究,發(fā)現(xiàn)微地震的截止深度強烈依賴于地熱等溫線,并且地震層-無震層的轉化能夠合理地通過長英質巖石地殼的摩擦-似塑性層的轉化來模擬。隨后,越來越多的研究發(fā)現(xiàn),摩擦和塑性流變的轉化深度控制了余震發(fā)生的深度下限,也就是說,脆塑性轉化的深度與淺源地震深度的下限具有很好的一致性(Chen et al.,1983;Smith et al.,1984;Wong et al.,1990;Bokelmann et al.,2000;周永勝等,2002,2003;宋娟等,2008)。之所以會有這樣的基本特征,多數(shù)人將其歸結為殼內巖石力學性質的變化。即上部地殼是基于Byerlee摩擦律的脆性層,易于積累彈性應變能,大陸強震主要發(fā)生在此區(qū)域內;下部地殼是基于冪次蠕變律的塑性層,難以積累應變能,一般形成無震層;而在其之間的深度附近,存在一個由脆性地殼逐漸轉化為塑性地殼的脆塑性轉化帶,余震可以發(fā)生在此區(qū)域內。這是因為,地震成核主要受摩擦穩(wěn)定性控制,只有當速度弱化,斷層滑動才能成核,從而形成潛在的震源區(qū)(Tse et al.,1986;何昌榮等,1988;He,2000,2003;He et al.,1998 ,2003)。與強震不同,存在微弱的速度弱化或微弱的速度強化均有可能產生觸發(fā)型不穩(wěn)定滑動(Gu et al.,1991;Boatwright et al.,1996;He et al.,1998,2003;He,2000,2003),從而產生余震。
因此,巖石圈脆塑性轉化帶的研究對于認識大陸地震深度分布特征及其成因有著重要意義。
基于Byerlee摩擦準則和穩(wěn)態(tài)蠕變準則得到的地殼強度的深度剖面模型最主要特征是:存在一個明顯的脆塑性轉化帶,它僅僅是兩種準則外推的一個虛構結果(Ohnaka,1995)。研究表明,這種直接外推的做法往往過高估計了半脆性域的應力極限(或強度峰值)(Kirby,1980;Carter et al.,1987)。
目前,盡管脆塑性轉化帶處巖石的破裂準則未知,無法得到基于詳細微觀力學行為的本構方程,但關于其強度的研究已有很多。Kirby(1980)通過假定脆塑性轉化發(fā)生在有效圍壓等于摩擦強度的0.4倍,進而估計了半脆性流動發(fā)生的初始壓力。Chester(1988)提出了半脆性變形的總強度能夠表達為蠕變強度σc和破裂強度σf的函數(shù)
式中的φ是一個由tanh(βσ3)給出的綜合參數(shù),其中β是一個物質常數(shù)。盡管這個等式提供了脆塑性變形強度的定量估計,但它假設脆塑性轉化是一個獨立過程,并且沒有考慮到溫度的影響。很多學者在沒有詳細信息的情況下,一般估計半脆性變形開始是通過假設部分塑性流動發(fā)生了,即當屈服強度或流動強度不到摩擦強度的5倍時。這個估計準則假設沿著斷層的應力集中會使局部應力足夠大而導致屈服。盡管這個估計未能很清楚地定量說明,至少它提供了轉化帶處壓力的速率和溫度依賴性。但是目前所有的這些估計在一些方面仍然是不足的,比如它們都沒有基于一個詳細的物理模型,并且它們也不能夠解釋應變速率、顆粒大小、孔隙度、二相性、水逸度以及溫度的影響(Kohlstedt,1995)。Ohnaka(1995)通過對前人所做的關于脆塑性轉化帶處Westerly花崗巖的實驗數(shù)據(jù)分析,得到在應變速率為時,脆性到脆塑性轉化帶的強度法則為
從以上函數(shù)可以看出,作者在其中引入了應變速率的影響,但此函數(shù)對于脆塑性轉化帶處的定量影響是不知道的,僅僅已知的是,應變速率對脆塑性轉化帶處強度的影響要比脆性變形機制的明顯,但卻不及它對塑性變形機制的影響大。
總體而言,脆塑性轉化帶處的強度目前還沒有一個定量認識,這可能有多方面原因,如對巖石脆塑性轉化缺乏足夠的認識,沒有建立起一系列能夠把實驗結果和野外研究統(tǒng)一起來的變形機制圖等(周永勝等,2000)。
地殼巖石的脆塑性轉化比較復雜,與溫度、壓力、應變速率、巖性、粒度、孔隙度、水等多種因素相關(Evans et al.,1990)。例如高孔隙的石英巖(Hirth et al.,1989)、砂巖(Wong,1990,1997)、玄武巖(Shimada,1986)、含蛇紋石的橄欖巖和輝長巖(Byerlee,1986)等主要表現(xiàn)為脆性破裂向碎裂流動的轉化,而低孔隙結晶巖的脆塑性轉化包括局部脆性破裂、半脆性(包括碎裂流動、半脆性破裂與流動)、半塑性流動、塑性流動等幾個階段(Chester,1988;Shimamoto,1989;Evans et al.,1990;Tullis et al.,1992;Hirth et al.,1994)。
周永勝等(2000)對前人的研究工作進行總結,將主要造巖礦物的脆塑性轉化特征大體分為2種類型:1)以脆塑性過渡域出現(xiàn)明顯的碎裂流動為特征,并且塑性變形以機械雙晶、重結晶為主,如長石(Tullis et al.,1987,1992;Hadizadeh,1992)、方解石(Fredrich et al.,1989)、巖鹽(Chester,1988)、角閃石(Hacker et al.,1990)等;2)脆塑性過渡域不出現(xiàn)明顯的碎裂流動,而出現(xiàn)半脆性破裂和半脆性流動,沒有或含少量機械雙晶,塑性變形以位錯滑移為主,如石英(Hirth et al.,1994)、輝石(Kirby etal.,1984;Boland etal.,1986)等。研究發(fā)現(xiàn):由單相礦物組成的巖石脆塑性轉化與其組成礦物特征類似,而對于多相礦物組成的巖石其脆塑性轉化比較復雜。
地殼成分分析表明,對脆塑性轉化帶處巖石變形機制起制約作用的主要礦物為石英(或石英-長石組合)。有關石英脆塑性轉化的研究,最具有代表性的工作是Hirth等(1994)的實驗結果和Stipp等(2002)的野外結果。圖7所示為Hirth等(1994)的實驗結果,可以看出,隨著溫度和壓力的升高,石英變形機制經歷脆性破裂、半脆性(包括碎裂流動、半脆性破裂與流動)、塑性變形3個階段。
周永勝等(2000)在前人研究的基礎上,對石英和長石脆塑性轉化的變形特征及實驗室與自然界環(huán)境下的溫壓條件進行了比較。對比發(fā)現(xiàn),石英和長石的變形特征不同:石英向塑性轉化的溫壓條件比長石低,表明石英易產生塑性變形;石英穩(wěn)態(tài)蠕變的機制為位錯滑移、位錯攀移和重結晶,長石主要表現(xiàn)為重結晶;石英很少出現(xiàn)擴散蠕變,長石在高溫下可以有擴散蠕變。
圖7 石英的脆塑性轉化與溫壓關系Fig.7 The brittle-plastic transition of quartz at different T-P conditions.
周永勝等(2002)也研究了花崗巖的脆塑性轉化,如圖8所示:在300~800℃范圍內,存在脆塑性轉化域,且在該域內,隨著溫度增加,由半脆性破裂向碎裂流動和半脆性流動過渡,其轉化溫度隨圍壓增加而增加。
圖8 花崗巖的脆塑性轉化與溫壓關系(周永勝等,2002)Fig.8 The brittle-plastic transition of granite at different T-P conditions(after Zhou et al.,2002).
盡管目前對地殼巖石的脆塑性轉化機制進行了多方面的研究工作,但流體相對于巖石脆塑性轉化的意義還有待進一步研究。
地殼流體是地球的主要組成物質之一。前蘇聯(lián)的科拉超深鉆(科茲洛夫斯基,1988),德國的KTB科學鉆(李有源,1996),構造地質學家們發(fā)現(xiàn)鏟狀構造,地球物理學家們發(fā)現(xiàn)地殼中存在高導、低速、減密、高熱的物性異常層(車用太等,2000)以及越來越多的流體作用及其機理的實驗和觀測結果(易立新等,2003;Zhang et al.,2004;Kodaira et al.,2004)都證實了地殼中流體存在的普遍性與重要性。
事實上,地殼中的流體主要活動在斷裂帶中(車用太等,2000),這一論點能夠被多種數(shù)據(jù)證明:地球物理學數(shù)據(jù)(如大地電磁的野外研究),地球化學數(shù)據(jù)(如穩(wěn)定同位素及追蹤元素分析),地質學數(shù)據(jù)(愈合裂隙中流體侵入礦物的研究)等(Gratier et al.,2002)。對斷裂帶中流體活動的大量研究表明,一方面,斷層帶,特別是地震活動規(guī)模較大的斷層帶內具有超壓流體,并且在斷層力學過程和化學過程中發(fā)揮了重要作用(Sibson,1981;Parry et al.,1986;Rice,1992;Cox,1995);另一方面,流體壓力會隨著斷層帶的破裂或愈合而變化(Gratier et al.,2002;Trepmann et al.,2003)。然而,目前對斷層帶中流體超壓機制存在多種假說,如流體室模式(Byerlee,1993),應力障模式(Gudmundsson,1990),連續(xù)流動模式(Rice,1992),斷層閥門模式(Sibson,1981),流體域模式(Gold et al.,1984,85)等。盡管每一種假說都有一定的事實基礎,但沒有一種模式能解釋所有的現(xiàn)象。因此,眾多模式也只是反映了一些主要思想,還存在許許多多不確定因素(劉亮明,2001)。
在震源附近,溫度、壓力很高,巖石密度較大,即使巖石內部存在斷裂,巖體之間發(fā)生突然錯動也是十分困難的。研究發(fā)現(xiàn),斷層深部流體將會通過物理的或者化學的作用對巖石的力學性質與流變性質產生顯著影響(Spiers et al.,1999;馬立杰等,2001),影響著巖石的變形機制、斷層作用演化、地震的孕育發(fā)生等(Groshong,1988;Newman et al.,1994)。
從物理角度,根據(jù)有效應力定律,如果存在非常高的流體壓力,流體孔隙壓對斷層強度有明顯的弱化作用。圖9所示為在不同流體壓力條件下給出的斷層摩擦強度與地殼流變結構。水的存在使斷層的摩擦強度和脆塑性轉化域地殼強度都顯著降低,且脆塑性轉化帶下移(Martina et al.,1999;周永勝等,2009)。
圖9 流體對巖石強度的影響(Martina et al.,1999)Fig.9 Fluid impact on the strength of rock(after Martina et al.,1999)
從化學角度看,在一定溫度、壓力條件下,水對巖石溶解或物質在巖石表面沉積具有一定作用(車用太等,2000),即水巖作用。正是由于這種水巖作用,斷裂帶既可作為流體的通道,又可作為阻礙流體運動的障礙(Sibson,1981;Hippler,1993)。由于水巖相互作用,不斷有固體物質沉積在斷裂帶兩側巖壁上,久而久之斷裂帶逐漸被沉積物充填,直至某些部位被填死,與此同時流體活動不斷被減弱,直至被封閉在斷裂帶內。此后,當區(qū)域構造應力逐漸加強時,斷裂帶內封存有流體的段內,同時產生剪應力增強與抗剪強度減弱的過程,結果比無封存段更容易達到破裂狀態(tài),而每一次破裂則相當于一次地震發(fā)生。當?shù)卣鸢l(fā)生后,斷裂帶被貫通,其中的流體再次活躍起來,并重復上述過程,直至再一次地震發(fā)生(車用太等,2000)。同時,水巖作用還會產生大量低摩擦系數(shù)的礦物,如橄欖石變成蛇紋石與滑石;輝石變成角閃石、綠泥石、陽起石等;長石變成石英+云母+角閃石+綠簾石等,斷層會被弱化,其摩擦強度大幅度降低(Wintsch et al.,2002;周永勝等,2009)。其中,水解弱化作用是影響礦物或巖石力學與流變學狀態(tài)的重要化學過程(劉俊來等,2001),如很多學者開展了微量水對石英(Jaoul et al.,1984;Hobbs,1985;Koch et al.,1989;Post et al.,1998)、長石(Tullis et al.,1996;Rybacki et al.,2000)、花崗巖(Tullis et al.,1980)、方解石質巖石(劉俊來等,2001)、長石-輝石組合(Dimanov et al.,2005)等的水解弱化作用的研究。水解弱化作用,不僅體現(xiàn)在隨著水含量增加,樣品蠕變速率增加,而流變強度、激活能減小,而且在變形機制圖中發(fā)生擴散蠕變所需的溫度、應力和礦物粒度范圍擴大,發(fā)生位錯蠕變所需的溫度、應力和礦物粒度范圍縮小。這表明晶體內部微量水不僅促進了礦物的位錯攀移和恢復作用,而且加速了晶體邊界遷移與擴散(Rybacki et al.,2004;周永勝等,2008)。
流體壓力對斷層機制影響的研究已有很多(Lachenbruch,1980;Sleep et al.,1994;Chester,1995;Matthai et al.,1996;Lockner et al.,1995;Fournier,1996;Miller et al.,1996;Yamashita,1997;Henderson et al.,1997),Byerlee(1993)和Rice(1992)先后提出某些斷層的弱化是由于內部高壓流體的存在,這種高壓能夠通過深部流體流入斷層塑性層的底部,并通過愈合斷層裂隙及壓實斷層泥而產生維持,地震則發(fā)生在該流體壓力高達靜巖壓力時;另一方面,地震后由于斷層連通性及巖石滲透率顯著增長,流體壓力接近靜水壓,而上述過程重復發(fā)生。如圖10所示,斷層帶內流體壓力如此周期性的變化過程與地震的形成機理有關,這一觀點已被越來越多的研究證明(Renard et al.,2000;Gratier et al.,2002;Tenthorey et al.,2003;Trepmann etal.,2003)。因此,有必要對高壓流體(裂隙愈合)的形成機理進行詳細研究。
圖10 地震前后斷層流體含量及強度隨時間的變化(Trepmann et al.,2003)Fig.10 Conceptual scheme visualizing the inferred history of stress and pore fluid pressure during synseismic loading and postseismic creep in the uppermost Plastosphere(after Trepmann et al.,2003).
Gratier等(2002)通過對加利福尼亞活斷層的研究表明,裂隙愈合的方式主要有3種(圖11)。第1種為在礦物表面能驅動下的裂隙自愈合方式(圖11a),但此愈合方式僅僅局限于幾μm寬的小裂隙中。一般而言,斷層帶內大多數(shù)裂隙的愈合都伴隨著礦物的溶解-沉淀。第2種為在應力驅動下的溶解-沉淀機制,即壓溶蠕變機制(圖11b),此機制下形成的封閉系統(tǒng)從幾mm到幾百m不等。第3種機制是在斷層淺部,流體隨著其高壓消失而向上排出,原先溶解于高壓流體中的礦物質(巖鹽、方解石、石英等)在裂隙中析出結晶,形成脈體,愈合了斷層帶中的裂隙(Whitmeyer et al.,2005;Xu et al.,2008)(圖11c)。研究表明,壓溶是斷層帶內裂隙愈合的主要機制,同時,斷層泥的壓實過程也是壓溶作用的結果,這是壓溶作用的2種模型,即顆粒間的壓溶及2個碎裂巖塊間的壓溶。如圖12所示,壓溶作為裂隙愈合的主導機制時所在斷層的位置、模型及野外的顯微構造圖。事實上,一次地震后,流體壓降為近靜水壓,巖石滲透率全面增長,水巖作用的第1個階段則以發(fā)生在自由表面的快速裂隙自愈合機制(圖11a)及一些變質反應為主,但斷裂帶裂隙愈合的主導過程則是2種模型下的壓溶機制(圖12)。
圖11 裂隙愈合的各種機制Fig.11 Variousmechanisms of cracks sealing.
圖12 斷層泥內顆粒間的壓實和斷裂帶附近的碎裂愈合Fig.12 Grain compaction in gouge and crack sealing around faults.
越來越多的研究表明,壓溶是間震期裂隙愈合和斷層泥壓實的一種主導機制(Gratier et al.,1994;Evans etal.,1995;Renard et al.,2000;Bos etal.,2002a,b;Frye et al.,2002;Gratier etal.,2002;Yasuhara et al.,2005)。在野外,對壓溶機制的觀察和地質解釋已有很多(Rutter,1983;Rybacki etal.,2011;Nenna etal.,2011),其中,縫合線是其典型構造。同時,已有很多學者在實驗室的條件下對巖石或斷層泥的壓溶機制進行了研究(Rutter,1983;Tenthorey et al.,2003;Yasuhara,2005;Anzalone et al.,2006),礦物邊界會形成鋸齒狀的典型特征。還有許多學者在給定壓溶的2種模型的基礎上,通過數(shù)值模擬的方法來確定不同因素,如溫度、應力、顆粒大小、應變速率等對壓溶機制的影響(Renard et al.,2000;Gratier et al.,2002)以及來解釋壓溶構造的形成及其之間的關系(Nenna et al.,2011)。但目前為止,定量研究水對壓溶的影響及如何通過實驗建立適合描述壓溶為主導機制的斷層強度的本構方程的研究卻很少。
此外,實驗室和野外觀察表明,水作用下的壓溶蠕變補充了傳統(tǒng)的摩擦-流變地殼強度結構(Winston et al.,2002)。然而,盡管已有很多學者對石英及方解石的壓溶作用進行過研究(Renard et al.,2000;劉俊來等,2000;Yasuhara etal.,2005;Zhang etal.,2010),但在脆塑性轉化帶的溫壓范圍內的研究卻很少。因此,有必要探討流體對脆塑性轉化帶處巖石的強度及變形機制的影響,特別是有關壓溶機制的考慮。
圖13 通過Byerlee摩擦定律及位錯蠕變方程得到的地殼強度輪廓圖(實線)Fig.13 Schematic diagram showing the crustal strength profile defined by relations describing brittle/frictional behavior(Byerlee's law)and dislocation creep(solid lines).
(1)壓溶作用對脆塑性轉化強度的影響。如圖13,通過脆塑性轉化變形機制的研究得出,研究者更多的是關注脆性變形和以位錯蠕變?yōu)橹鞯乃苄宰冃蔚难芯浚貧ず蛿鄬訋е?,壓溶作用是脆塑性轉化帶的另一種主要變形機制。因此,當考慮壓溶作用作為斷層的主導機制時,脆塑性轉化帶的強度將如何變化?對比脆性破裂的強度準則、穩(wěn)態(tài)流變方程、脆塑性轉化帶的經驗關系式,其強度普遍大于壓溶方程給出的強度。如果在脆塑性轉化帶壓溶作用普遍存在,那么其變形機制對脆塑性轉化帶的強度具有顯著影響和控制作用。我們試圖通過實驗室的壓溶蠕變實驗,建立初級的壓溶蠕變方程,近似地估計和修正脆塑性轉化帶的強度。
選擇如圖12b所示的顆粒間壓溶作用對斷層脆塑性轉化強度影響的模型,根據(jù)Spiers等(內部交流)對此模型進行理論計算得到的下述壓溶蠕變方程
其中,Ad是一個依賴于顆粒形狀的參數(shù),其大小在4~100之間;Z=DCS,其中D是溶解物的擴散系數(shù),C是溶體的濃度,S是原子的表面體積;Ω是原子體積;d是顆粒大小;K是一常數(shù);T是溫度;σ是應力;是應變速率。為了在實驗室方便的應用,上述公式可以簡化為
(2)應變速率和流體壓力對脆塑性轉化的影響。通常,控制斷層脆塑性轉化的主要因素是溫度,如圖9所示,其他條件一經確定,溫度控制了脆塑性轉化帶的深度。但最近有研究顯示(Renard et al.,2000;Trepmann et al.,2001,2002,2003,2007;Gratier et al.,2002;Schaff et al.,2002;Tenthorey et al.,2003;Zhou et al.,2004;Frost et al.,2011),應變速率和流體壓力同樣對斷層的脆塑性轉化有顯著的控制作用。Schaff等(2002)通過對發(fā)生在圣安德列斯斷層系中一條分支斷層上的地震震源深度進行精確定位,發(fā)現(xiàn)一次大震后一段時間內余震的震源深度變深,然后隨著時間而逐漸變淺(圖14)。周永勝等(2004)對麗江1996年MS7.1地震及其余震序列的震源深度進行統(tǒng)計分析,也得到同樣規(guī)律(圖15)。震源深度這種分布規(guī)律,被認為是應變速率對斷層脆塑性轉化影響的證據(jù)。如圖16所示,一次大地震爆發(fā)之后的一段時間(early postseismic),由于斷層的滑動速率依舊很大,致使斷層帶內的巖石仍然處于很高的應變速率,而高應變速率又導致了斷層的脆塑性轉化帶下移,但隨著時間的延續(xù),斷層滑動速率逐漸減小,應變速率逐漸恢復,而脆塑性轉化帶也逐漸恢復到原來的深度。也就是說,應變速率影響了脆塑性轉化帶的深度,進而影響了余震深度的分布。各種數(shù)據(jù)表明,斷層帶內存在高壓流體,并且流體壓力的大小也在一定程度上控制著斷層的脆塑性轉化(Renard et al.,2000;Trepmann et al.,2001,2002,2003,2007;Gratier et al., 2002;Tenthorey et al.,2003),如圖9所示,斷層脆塑性轉化帶的深度會隨流體壓力的增長而下移。同時,研究表明,斷層帶內的高壓流體會隨斷裂帶的破裂及愈合而周期性的變化,與地震的孕育及循環(huán)機理有關(Renard et al., 2000;Gratier et al., 2002;Tenthorey et al.,2003;Trepmann et al.,2003)。因此,基于應變速率和流體壓力對斷層脆塑性轉化的影響對探討地震的形成具有實際意義,有必要通過野外樣品分析和高溫高壓實驗做深入的研究。
圖14 震源深度分布圖(Schaff et al.,2002)Fig.14 The sketch of focal depth distribution(after Schaff et al.,2002).
圖15 主震及其余震深度分布圖Fig.15 The sketch of depth distribution ofmain shock and a series of aftershocks.
圖16 一次地震后由于高應變速率而導致脆塑性轉化帶下移(Schaff et al.,2002)Fig.16 Cartoon depicting change of brittle-plastic transition due to higher strain rates right after themain shock(after Schaff et al.,2002).
斷層脆塑性轉化深度的變化會影響地震成核深度。對大陸淺源強震發(fā)震深度的控制因素有不同的認識:1)與斷層從黏滑向穩(wěn)滑過渡的深度有關(Tse et al.,1986);2)與脆塑性轉化深度有關(Sibson,1982;Li et al.,1987;Scholz,1988),它不僅受石英脆塑性轉化制約,而且與長石脆塑性轉化有關(Gleason et al.,1995);3)與由非穩(wěn)定塑性流動向穩(wěn)定塑性流動轉變的臨界溫度有關(Hobbs,1986)。但最近Aki等人(2004)通過確定區(qū)域介質品質因子Q的方法得到脆塑性轉化帶中的塑性破裂(ductile fractures)在地震的加載過程中起著關鍵性的作用,這種認識不同于傳統(tǒng)觀點,還需進一步研究。
致謝 兩位審稿專家對本文提出了很好的建議,在此表示感謝!
車用太,魚金子,王基華,等.2000.地殼流體與地震活動關系及其對地震預測探索的啟示[J].地震,20(增):91—96.
CHE Yong-tai,YU Jin-zi,WANG Ji-hua,et al.2000.The relation between fluid in crust and seismic activity and its enlightenment to earthquake prediction [J].Earthquake,20(suppl):91—96(in Chinese).
付保國,候青亞.2003.巖石變形顯微構造形成機制及礦物中常見的變形顯微構造特征[J].甘肅冶金,25(3):1—4.
FU Bao-guo,HOU Qing-ya.2003.The formationmechanism of rock and common microstructure feature in minerals[J].Gansu Metallurgy,25(3):1—4(in Chinese).
何昌榮,馬勝利,黃建國.1988.斷層滑動速率變化對滑動穩(wěn)定性的影響[J].地震地質,20(1):54—62.
HE Chang-rong,MA Sheng-li,HUANG Jiang-guo.1988.Influence of loading rate variation on the stability of faultmotion[J].Seismology and Geology,20(1):54—62(in Chinese).
何永年.1989.斷層帶巖石變形機制探討[A].見:國家地震局地質研究所編.現(xiàn)代地殼運動(4).北京:地震出版社.
HE Yong-nian.1989.The investigation into themechanisms of fault rocks[A].In:Institute of Gology,SSB(ed).Modern Crustal Movement(4).Seismological Press,Beijing(in Chinese).
胡玲編著.1998.顯微構造地質學概論[M].北京:地質出版社.
HU Ling.1988.Introduction to Microstructural Geology[M].Geological Publishing House,Beijing(in Chinese).
李有源.1996.歐洲共同體國家地殼流體研究的某些進展與發(fā)展趨勢[J].地學前緣,3(4):313—323.
LIYou-yuan.1996.Some progress and the development trend of the crustal fluid research about the European Community countries[J].Earth Science Frontiers,3(4):313—323(in Chinese).
劉俊來,劉正宏,徐仲元,等.2000.上部地殼巖石變形與方解石質巖石的低溫流動[J].世界地質,3:209—216.
LIU Jun-lai,LIU Zheng-hong,XU Zhong-yuan,et al.2000.The deformation of rocks in the upper crustal level and the mechanisms of low temperature flow of calcite rocks[J].World Geology,3:209—216(in Chinese).
劉俊來,馬立杰,崔迎春,等.2001.上地殼環(huán)境中的流體作用與灰?guī)r的脆-韌性轉變[J].地學前緣,8(3):171—176.
LIU Jun-lai,MA Li-jie,CUI Ying-chun,et al.2001.Fluid flow and brittle to ductile transition of limestone under the upper crustal conditions[J].Earth Science Frontiers,8(3):171—176(in Chinese).
劉亮明.2001.斷層帶中超壓流體及其在地震和成礦中的作用[J].地球科學進展,16(2):238—243.
LIU Liang-ming.2001.Overpressured fluids in fault zones and their roles in earthquakes and hydrothermalmetallogeny[J].Advance in Earth Sciences,16(2):238—243(in Chinese).
劉喜山,劉樹勛,劉俊來.1992.變形變質作用及成礦[M].北京:中國科學技術出版社.
LIU Xi-shan,LIU Shu-xun,LIU Jun-lai.1992.Deformation-metamorphism and Metallogenesis [M].Science and Technology of China Press,Beijing(in Chinese).
馬立杰,劉俊來,崔迎春.2001.淺部地殼巖石變形過程中地質流體的化學效應:水解弱化及其微觀機制[J].地學前緣,3-4:244.
MA Li-jie,LIU Jun-lai,CUI Ying-chun.2001.The chemistry effects of geological fluid in shallow crustal:Micromechanism and hydrolytic weakening[J].Earth Science Frontiers,3-4:244(in Chinese).
石耀霖,朱守彪.2003.中國大陸震源機制深度變化反映的地殼-地幔流變特征[J].地球物理學報,46(3):359—365.
SHIYao-lin,ZHU Shou-biao.2003.Contrast of rheology in the crustandmantle near Moho revealed by depth variation of earthquakemechanism in continental China[J].Chinese Journal of Geophysics,46(3):359—365.
宋娟,周永勝,何昌榮.2008.石英巖脆塑性轉化的實驗研究[J].高壓物理學報,22(2):167—174.
SONG Juan,ZHOU Yong-sheng,HE Chang-rong.2008.The brittle-plastic transition in experimentally deformed quartzite[J].Chinese Journal of High Pressure Physics,22(2):167—174(in Chinese).
汪素云.1996.中國大陸地震震源分布特征的初步研究[J].地震研究,19(3):310—314.
WANG Su-yun.1996.Preliminary study on distribution characteristics of earthquake sources in the Chinese mainland[J].Journal of Seismological Research,19(3):310—314(in Chinese).
魏榮強,臧紹先.2007.大陸巖石圈流變結構研究進展及存在的問題[J].地球物理學進展,22(2):359—364.
WEIRong-qiang,ZANG Shao-xian.2007.Progresses and problems in the study of the rheological structure of the continental lithosphere[J].Progress in Geophysics,22(2):359—364(in Chinese).
徐世芳,李博主編.2000.地震學辭典[M].北京:地震出版社.46.
XU Shi-fang,LIBo(ed).2000.Seismology Dictionary[M].Seismological Press,Beijing.46(in Chinese).
易立新,車用太,王廣才.2003.地殼中流體動力學模型研究[J].地震,23(2):108—114.
YILi-xin,CHE Yong-tai,WANGGuang-cai.2003.A study of fluid dynamicsmodel in the crust[J].Earthquake,23(2):108—114(in Chinese).
張國民,汪素云,李麗,等.2002.中國大陸地震震源深度及其構造含義[J].科學通報,47(9):663—668.
ZHANG Guo-min,WANG Su-yun,LI Li,et al.2002.Focal depth of earthquakes in Chinese mainland and its tectonic implications[J].Chinese Science Bulletin,47(9):663—668(in Chinese).
鄭勇,李永東,熊熊.2009.巖石層各向有效彈性厚度的小波相關性分析[A].中國地球物理,335.
ZHENG Yong,LI Yong-dong,XIONG Xiong.2009.Analysis on anistropic effective thickness of lithosphere by wavelet coherencemethod [A].In:Proceedings of the 25th Annual Meeting of Chinese Geophysics Society,Hefei,China.335(in Chinese).
科茲洛夫斯基E.A.1987.克拉超深井[M].張秋生譯.北京:地質出版社.189—199.
Kozlovsky E A.1987.The Superdeep Hole of the Kola Peninsula[M].Translated by ZHANG Qiu-sheng.Geology Publishing House,Beijing.189—199(in Chinese).
周永勝,何昌榮.2000.地殼巖石變形行為的轉變及其溫壓條件[J].地震地質,22(2):167—178.
ZHOU Yong-sheng,HE Chang-rong.2000.Deformation behavior transition of crustal rocks and its temperature-pressure condition[J].Seismology and Geology,22(2):167—178(in Chinese).
周永勝,蔣海昆,何昌榮.2002a.不同溫壓條件下居庸關花崗巖脆塑性轉化與失穩(wěn)型式的實驗研究[J].中國地震,18(4):389—400.
ZHOU Yong-sheng,JIANG Hai-kun,HE Chang-rong.2002a.Experiments of brittle-plastic transition,modes of instability of Juyongguan granite at different T-P condition [J].Earthquake Research in China,18(4):389— 400(in Chinese).
周永勝,何昌榮.2002b.華北地區(qū)殼內低速層與地殼流變的關系及其對強震孕育的影響[J].地震地質,24(1):124—132.
ZHOU Yong-sheng,HE Chang-rong.2002b.The relationship between low velocity layers and rheology of the crust in North China and its effect on strong earthquake[J].Seismology and Geology,24(1):124—132(in Chinese).
周永勝,何昌榮.2003.地殼主要巖石流變參數(shù)及華北地殼流變性質研究[J].地震地質,25(1):109—122.
ZHOU Yong-sheng,HE Chang-rong.2003.Rheological parameter of crustal rocks and crustal rheology of North China[J].Seismology and Geology,25(1):109—122(in Chinese).
周永勝,何昌榮,楊恒.2004.水對下地殼基性巖脆塑性轉化影響的實驗研究[J].地震地質,26(3):472—483.
ZHOU Yong-sheng,HE Chang-rong,YANG Heng.2004.The effect of water on brittle-plastic transition of lower crustal mafic rocks[J].Seismology and Geology,26(3):472—483(in Chinese).
周永勝,何昌榮,楊曉松.2008.中地殼韌性剪切帶中的水與變形機制[J].中國科學(D輯),38(7):819—832.
ZHOU Yong-sheng,HE Chang-rong,YANG Xiao-song.2008.The water and deformationmechanism in ductile shear zone in the earth's crust[J].Science in China(Ser D),38(7):819—832(in Chinese).
周永勝,何昌榮.2009.汶川地震區(qū)的流變結構與發(fā)震高角度逆斷層滑動的力學條件[J].地球物理學報,52(2):474—484.
ZHOU Yong-sheng,HE Chang-rong.2009.The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan MS8.0 earthquake[J].Chinese Journal of Geophysics,52(2):474—484(in Chinese).
Aki K.2004.A new view of earthquake and volcano precursors[J].Earth Planets Space,56:689—713.
Anderson D L.1995.Lithosphere,asthenosphere,and perisphere[J].Rev Geophys,33:125—419.
Anzalone A,Boles J,et al.2006.Confined fluids and their role in pressure solution[J].Chem Geol,230:220—231.
Barrel J.1914.The strength of the Earth's crust.Ⅰ.Geologic tests of the limits of strength [J].JGeol,22:28—48.
Boatwright J,Cocco M.1996.Frictional constraints on crustal faulting[J].JGeophys Res,101:13895—13909.
Bokelmann G H R,Beroza G C.2000.Depth-dependent earthquake focalmechanism orientation-Evidence for a weak zone in the lower crust[J].JGeophys Res,105(B9):21683—21695.
Boland JN,Tullis TE.1986.Deformation behavior ofwetand dry clinopyroxenite in the brittle to ductile transition region[A].In:Hobbs B E and Heard H C,eds,Mineral and rock deformation:Laboratory studies.Geophys Monogr Ser,Vol.36,AGU,Washington,D C.35—50.
Bos B,Spiers C J.2002a.Fluid-assisted healing processes in gouge-bearing faults:Insights from experiments on rock analogue system[J].Pure Appl Geophys,159:2537—2566.
Bos B,Spiers C J.2002b.Frictional-viscous flow of phyllosilicate-bearing fault rock:Microphysicalmodeland implications for crustal strength profiles[J].JGeophys Res,107(B2):1—13.
Brace W F,Kohlstedt D L.1980.Limits on lithospheric stress imposed by laboratory experiments[J].JGeophys Res,85,6438—6252.
Byerlee JD.1968.Brittle-ductile transition in rocks[J].JGeophys Res,73:4741—4750.
Byerlee JD.1978.Friction of rocks[J].Pure Appl Geophys,116:615—626.
Byerlee JD.1993.Model for episodic flow of high pressure water in fault zones before earthquakes[J].Geology,21:303—306.
Carter N L,Tsenn M C.1987.Flow properties of continental lithosphere[J].Tectonophysics,136:27—63.
Chen W P,Molnar P.1983.Focal depths of intracontinental and intraplate earthquake and their relation for thermal and mechanical properties of lithosphere[J].JGeophys Res,83:4183.
Chester FM.1988.The brittle-ductile transition in a deformation mechanism map for halite [J].Tectonophysics,154:125—136.
Chester FM.1995.A rheologicmodel for wet crustapplied to strike-slip faults[J].JGeophys Res,100:13033—13044.
Cooper CM,Lenardic A,Moresi L.2004.The thermal structure of stable continental lithosphere within a dynamic mantle[J].Earth Planet Sci Lett,222:807—817.
Cox SF.1995.Faulting processes athigh fluid pressures:An example of fault valve behavior from theWattle Gully Fault,Victoria Australia[J].JGeophys Res,100:1284—1286.
Dimanov A,Dresen G.2005.Rheology of synthetic anorthite-diopside aggregates:Implications for ductile shear zones[J].JGeophy Res,110(B7):B07203.
Engdahl E R,Van der Hist R,Buland R.1998.Global teleseismic earthquake location with improved travel times and procedures for depth determination[J].Bull Seismol Sol Am,88(3):722—743.
Evans B,F(xiàn)redrich T J,Wong T-f.1990.The brittle-ductile transition in rocks:Recent experimental and theoretical progress[A].In:Duba A G,et al.eds.The Brittle-ductile Transition in Rocks.Geophys Monogr Ser,vol 56,AGU,Washington,D C.1—20.
Evans JP,Chester FM.1995.Fluid-rock interaction in faults of the San Andreas system:Inferences from San Gabriel Fault rock geochemistry and microstructures[J].JGeophys Res,100:13007—13020.
Fournier R O.1996.Compressive and tensile failures at high fluid pressure where preexisting fractures have cohesive strength,with application to the San Andreas Fault[J].JGeophys Res,101:25499—25509.
Fredrich JT,Evans B,Wong T-f.1989.Micromechanics of the brittle to plastic transition in Carrara marble [J].J Geophys Res,94:4129—4145.
Frost E,Dolan J,et al.2011.Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system,Austrian Alps[J].JGeophys Res,116(B02411):1—15.
Frye K M,Marone C.2002.Effect of humidity on granular friction at room temperature[J].JGeohys Res,107(B11):2309.
Gleason G C,Tullis J.1995.A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J].Tectonophysics,247:1—23.
Goetze C,BEvans.1979.Stress and temperature in the bending lithosphere as constrained by experimental rockmechanics[J].JGeophys Res,59:463—478.
Gold T,Soter S.1984/85.Fluid ascent through the solid lithosphere and its relation to earthquake[J].Pure and Applied Geophysics,122:492—530.
Gratier J P,Chen T,Hellmann R.1994.Pressure solution as a mechanism for crack sealing around faults[A].In:Hickman SH,etal.(eds).Proceedings ofWorkshop LXⅢ on the Mechanical Involvementof Fluids in Faulting.94-228.USGS open-file report,Menlo Park,CA,PP.279—300.
Gratier JP,F(xiàn)avreau P,Renard F,Pili E.2002.Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing[J].Earth Planets Space,54:1139—1146.
Gratier JP,Guiguet R,et al.2009.A pressure solution creep law for quartz from indentation experiments[J].JGeophys Res,114:B034403.
Griffin W L,Doyle B J,Ryan C G,et al.1999.Layered mantle lithosphere in the Lac de Gras area,Slave Craton:Composition,structure and origin[J].JPetrol,40(5):705—727.
Groshong R H Jr.1988.Low temperature deformation mechanisms and their interpretation [J].Bull Geol Soc Am,100:1329—1360.
Gu Y,Wong T-f.1991.Effects of loading velocity,stiffness,and inertia on the dynamics of a single degree of freedom spring-slider system [J].JGeophys Res,96:21677—21691.
Gudmundsson A.1990.Emplacement of dikes,sills and crustal magma chamber at divergent plate boundaries [J].Tectonophysics,176:257—275.
Hacker B R,Christie J M.1990.Brittle-ductile and plastic-cataclastic transition in experimentally deformed and metamorphosed amphibolite [A].In:Duba A G,et al.(eds).The Brittle-ductile Transition in Rocks.Geophys Monogr Ser,vol.56,AGU,Washington,D C.127—747.
Hadizadeh J,Tullis J.1992.Cataclastic flow and semi-brittle deformation of anorthsite[J].JStruct Geol,14:57—63.
He C R.2000.Numerical simulation of earthquake nucleation process and seismic precursors on faults[J].Earthquake Research in China,14(3):199—212.
He C R.2003.Interaction between two sliders in a system with rate-and state-dependent friction [J].Science in China,46(supp):67—74.
He CR,Ma SL,Huang J.1998.Transition between stable sliding and stick-slip due to variation in slip rate under variable normal stress condition[J].Geophys Res Lett,25:3235—3238.
He C R,Wong T-f,Beeler N M.2003.Scaling of stress drop with recurrence interval and loading velocity for laboratory derived fault strength relation [J].JGeophys Res,108(B1):2037.
Henderson J R,Maillot B.1997.The influence of fluid flow in fault zones on patterns of seismicity:A numerical investigation [J].JGeophys Res,102:2915—2924.
Hippler S J.1993.Deformationmicrostructures and diagenesis in sandstone adjacent to an extensional fault:Implication for the flow and entrapment of hydrocarbons[J].American Association of Petroleum Geologists Bulletin,77:625—637.
Hirth G,Tullis J.1989.The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in quartzite[A].JGeophys Res,94:17825—17838.
Hirth G,Tullis J.1994.The brittle-plastic transition in experimentally deformed quartz aggregates[J].JGeophys Res,99:11731—11747.
Hobbs B E.1985.The hydrolytic weakening effect in quartz[A].In:Schock R N(ed).Point Defects in Minerals.Geophys Monogr Ser 31,AGU,Washington D C,151—170.
Hobbs B E,Ord A,Teyssier C.1986.Earthquakes in the ductile regime[J].Pure Appl Geophys,124:309—336.
Jaoul O,Tullis J,Kronenberg A.1984.The effect of varying water contents on the creep behavior of Heavitree quartzite[J].JGeophy Res,89:4297—4312.
Kirby SH.1980.Tectonic stresses in the lithosphere:Constraints provided by experimental deformation of rocks[J].J Geophys Res,89:6353—6363.
Kirby SH,Kronenberg A K.1984.Deformation of clinopyroxenite:Evidence for a transition in flow mechanisms and semibrittle behavior[J].JGeophys Res,89:3177—3192.
Kirby SH,Kronenberg A K.1987.Rheology of the lithosphere:Selected topics[J].Review Geophysics,25(6):1219—1244.
Koch P S,Christie JM.1989.Effect of water on rheology of experimentally deformed quartzite [J].JGeophys Res,94:13975—13996.
Kodaira S,Lidaka Y,et al.2004.High pore fluid pressuremay cause silent slip in the Nankai Trough [J].Science,304(5675):1295—1298.
Kohlstedt D L,Evans B,Mackwell S J.1995.Strength of the lithosphere:Constraints imposed by laboratory experiments[J].JGeophysical Research,100(B9):17587—17602.
Lachenbruch A H.1980.Frictional heating,fluid pressure and the resistance to fault motion [J].JGeohys Res,85:6097—6112.
Lee C T A,Lenardic A,Cooper C M,et al.2005.The role of chemical boundary layer in regulating the thickness of continental and oceanic thermal boundary layers[J].Earth Planet Sci Lett,230:379—395.
Li K K,Rice JR.1987.Crustal deformation in great California earthquake cycles[J].JGeophys Res,92:11533—11551.
Lockner D A,Byerlee J D.1995.An earthquake instability model based on faults containing high fluid-pressure compartments[J].Pure and Applied Geophysics,145:717—745.
Matthai S K,F(xiàn)isher G.1996.Quantitative modeling of fault-fluid-discharge and fault-dilation-induced fluid-pressure variations in the seismogenic zone[J].Geology,24:183—186.
Martina K,Bernhard S.1999.High differential stress and sublithostatic pore fluid pressure in the ductile regime:Microstructure evidence for short-term post-seismic creep in the Sesia Zone,Western Alps[J].Tectonophysics,303:263—277.
Meissner R,Strehlau J.1982.Limits of stresses in continental crust and their relationship to the depth frequence distribution of shallow earthquake[J].Tectonics,1:73—79.
Meissner R.1996.Faults and folds,fact and fiction[J].Tectonophysics,264(1-4):279—293.
Melbourne T,CarmichaelⅠ,DeMets C,et al.1997.The geodetic signature of the M8.0 October 9,1995,Jalisco subduction earthquake[J].Geophys Res Lett,24(6):715—718.
Miller SA,Nur A,Olgaard D L.1996.Earthquakes as a coupled stress-high pore pressure dynamical system[J].Geophys Res Lett,23:197—200.
Mori J.1991.Estimates of velocity structure and source depth usingmultiple Pwaves from aftershocks of the1987 Elmore and Superstition Hills,California earthquake[J].Bull Seismol Sol Am,81(2):508—523.
Mori J,Abercrombie R E.1997.Depth dependence of earthquake frequency-magnitude distribution in California:Implication for rupture initiation [J].Jour Geophy Res,102(7):15081—15090.
Nenna F,Aydin A.2011.The formation and growth of pressure solution seams in clastic rocks:A field and analytical study[J].JStuct Geol,33:633—643.
Newman J,Mitra G.1994.Fluid-influenced deformation and recrystallization of dolomite at low temperature along a natural fault zone:Mountain City window,Tennessee[J].Geol Soc Am Bull,106:1267—1280.
Ohnaka M.1995.A shear failure strength law of rock in the brittle-plastic transition regime[J].Geophy Res Lett,22(1):25—28.
O'Reilly SY,Griffin W L,Djomani Y H,et al.2001.Are lithospheres forever[J].GSA Today,11(4):11—37.
Parry W T,Bruhn R L.1986.Pore fluid and seismogenic characteristics of fault rock at depth on theWasatch Fault,Utah[J].JGeophys Res,91:730—744.
Post A,Tullis J.1998.The rate of water penetration in experimentally deformed quartzite:Implications for hydrolytic weakening[J].Tectonophysics,295:117—137.
Poudjom D Y H,O'Reilly SY,Griffin W L,et al.2001.The density structure of subcontinental lithosphere through time[J].Earth Planet Sci Lett,184:605—621.
Ranalli G,Murphy D C.1987.Rheological stratification of the lithosphere[J].Tectonophysics,132(4):281—295.
Renard F,Gratier J-P,Jamtveit B.2000.Kinetics of crack-sealing,intergranular pressure solution,and compaction around active faults[J].JStuct Geol,22(10):1395—1407.
Renard F,Ortoleva P,Gratier J P.1997.Pressure solution in sandstones:Influence of clays and dependence on temperature and stress[J].Tectonophysics,280:257—266.
Rice JR.1992.Faultstress states,pore pressure distributions and theweakness of the San Andereas Fault[A].In:Evans B et al.(eds).Earthquake Mechanics and Transport Properties of Rock.Academic Press,London.475—503.
Rutter E H.1983.Pressure solution in nature,theory and experiment[J].JGeol Soc,140:725—740.
Rutter EH.1986.On the nomenclature ofmode of failure transition in rocks[J].Tectonophysics,122(3-4):381—387.
Rudnick R L,McDonough W F,O'Connell R J.1988.Thermal structure,thickness and composition of continental lithosphere[J].Chemical Geology,145:395—411.
Rybacki E,Dresen G.2000.Dislocation and diffusion creep of synthetic anorthite aggregates[J].JGeophy Res,105(B11):26017—26036.
Rybacki E,Janssen C,et al.2011.Low-temperature deformation in calcite veins of SAFOD core samples(San Aandreas Fault)-Microstructural analysis and implication for fault rheology[J].Tectonophysics,509:107—119.
Rybacki E,Dresen G.2004.Deformationmechanism maps for feldspar rocks[J].Tectonophysics,382(3-4):173—487.
Scholz CH.1988.The brittle-plastic transition and depth of seismic faulting[J].Geol Rund,77:319—328.
Scholz C H.1990.The Mechanics of Earthquakes and Faulting[M].Cambridge:Cambridge University Press.
Schubert G,Turcotte D L,Olson P.2001.Mantle Convection in the Earth and Planets[M].Cambridge University Press.25—26.
Shimada M.1986.Mechanism of deformation in a dry porous basaltathigh pressure[J].Tectonophysics,121:153—173.
Shimamoto T.1989.The origin of S-Cmylonites and a new fault zonemodel[J].JStruct Geol,11:51—64.
Sibson R H.1977.Fault rocks and faultmechanisms[J].JGeol Soc London,133(3):191—213.
Sibson R H.1981.Fluid flow accompanying faulting:Field evidence and models[A].In:Simpson DW et al.(eds).Earthquake Prediction-An International Review.Maurice Ewing:American Geophysical Union,593—603.
Sibson R H.1982.Fault zonemodels,heat flow,and the depth distribution of earthquakes in the continental crust of the United States[J].Bull Seismol Soc Am,72:151—163.
Sleep N H,Blanpied M L.1994.Ductile creep and compaction:A mechanism for transiently increasing fluid pressure in mostly sealed fault zones[J].Pure and Applied Geophysics,143:9—40.
Smith R B,Bruhn R L.1984.Intraplate extensional tectonics of the eastern Basin Range:Inferences on structural style from seismic reflection data,regional tectonics,and thermalmechanicalmodels of brittle-ductile deformation [J].J Geophys Res,89(B7):5733—5762.
Spiers C J,Pijpers W J,Peach C,et al.1999.Dynamic recrystallization and rheology of synthetic rocksalt with systematically varied water content[A].In:Proceedings of the International Conference on Deformation Mechanisms,Rheology and Microstructures.Neustadt an der Weinstrasse,Germany,47.
Stipp M,Stunitz H.2002.The eastern Tonale Fault zone:A“natural laboratory”for crystal plastic deformation of quartz over a temperature range from 250 ~700℃ [J].JStruct Geol,24:1861—1884.
Tenthorey E,Cox S F,Todd H F.2003.Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones[J].Earth Planet Sci Lett,206:161—172.
Trepmann C A,St?ckhert B.2001.Mechanical twinning of jadeite-An indication of synseismic loading beneath the brittleplastic transition[J].Int JEarth Sciences(Geol Rundsch),90:4—13.
Trepmann CA,St?ckhert B.2002.Cataclastic deformation of garnet:A record of synseismic loading and postseismic creep[J].JStuct Geol,24:1845—1856.
Trepmann C A,St?ckhert B.2003.Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate[J].JStuct Geol,25(12):2035—2051.
Trepmann C A,St?ckhert B,et al.2007.Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation-An experimental study[J].Tectonophysics,442:83—104.
Tullis J,Yund R A.1980.Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock [J].J Stuct Geol,2(4):439—451.
Tullis J,Yund R A.1987.Transition from cataclastic flow to dislocation creep of feldspar:Mechanisms and microstructures[J].Geology,15:606—609.
Tullis J,Yund R.1992.The brittle-ductile transition in feldspar aggregates:An experimental study[A].In:Evans B(ed).FaultMechanics and Transport Properties of Rocks.Academic Press,San Diego,Calif,89—117.
Tullis J,Yund R A,F(xiàn)arver J.1996.Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones[J].Geology,24:63—66.
Tse ST,Rice JR.1986.Crustal earthquake instability in relation to the depth variation of frictional slip properties[J].J Geophys Res,91:9452—9472.
Vernon R H.2004.A Practical Guide to Rock Microstructucture[M].Cambridge Universtiy Press,Cambridge.
Watts A B.2001.Isostasy and Flexure of the Lithosphere[M].Cambridge University Press,Cambridge.458.
WeiWenbo,Jin Sheng,Ye Gaofeng,et al.2003.Methods to study electrical conductivity of continental lithosphere [J].Earth Science Frontiers,10(1):15—23(in chinese).
Weyl P K.1959.Pressure solution and the force of crystallization-A phenomenological theory [J].JGeophys Res,64:2001—2025.
White R S.1988.The Earth's crust and lithosphere[J].JPetrol,1—10.
White R S.1999.The lithosphere under stress[J].Phil Trans R Soc(Lond)A,357:901—915.
Wintsch R P,Yi K.2002.Dissolution and replacement creep:A significant deformation mechanism in mid-crustal rocks[J].JStuct Geol,24:1179—1193.
Whitmeyer S J,Wintsch R P.2005.Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone,central Argentina[J].JMeta Geology,23(6):411—424.
Wong T-f.1990.Mechanical compaction and the brittle-ductile transition in porous sandstones[A].In:Knipe R J et al.(eds).Deformation Mechanism,Rheology and Tectonics.Geol Society Special Publication.London.54:111—122.
Wong T-f,David C,Zhu W.1997.The transition from faulting to cataclastic flow in porous sandstones:Mechanical deformation [J].JGeophys Res,102(B2):3009—3025.
Xu ZQ,Ji SC,Li H B,et al.2008.Uplift of the Longmen Shan range and the Wenchuan earthquake [J].Chinese J Geophys,51(4):1066—1073.
Yamashita T.1997.Mechanical effectof fluidmigration on the complexity of seismicity[J].JGeophys Res,102:17797—17806.
Yasuhara H,Marone C,Elsworth D.2005.Fault zone restrengthening and frictional healing:The role of pressure solution[J].JGeophy Res,110(B6):B06310.
Zhang J,Green H W,Bozhilov K,Jin Z.2004.Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust[J].Nature,428:633—636.
Zhang X M,Spiers C J,Peach C J.2010.Compaction creep ofwet guanular calcite by pressure solution at28℃ to 150℃[J].JGeophys Res,115(B9):B09217.
Zhou Yongsheng,He Changrong.2004.Temporal evolution of focal depths of aftershock sequence following Lijiang MS7.1 earthquake and the implication for rheological property of the middle crust[A].In:Proceedings of the 3rd International Conference on Continental Earthquakes.Beijing,128.
THE STRENGTH AND DEFORMATION MECHANISMS OF BRITTLE-PLASTIC TRANSITION ZONE,AND THE EFFECTSOF STRAIN RATE AND FLUIDS
ZHANG Yuan-yuan ZHOU Yong-sheng
(State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China)
Constraints provided by field observation,laboratory experiments and seismic data have lead to a general consensus that the shallow crust deforms by brittle faulting,while the lower crust deforms by crystal plastic flow.These constraints provide the basis for the dualmechanism model for the rheology of the crust and lithosphere in which the strength of the upper brittle crust is limited by Byerlee's law,while the strength of the lower ductile crust is limited by power law creep.The maximum depth of microseismic activity is controlled by the broad zone of brittle-plastic transition that lies between the two extreme brittle and plastic layers.While the dualmechanism model is so simple that overestimates the strength of rocks near the brittle-plastic transition zone.Although many studies about the deformation mechanism of brittle-plastic transition zone have been made,a‘flow law'representation,which can describe the strength for the brittle-plastic transition,has not been formulated,and there has been little research about fluid effects;In addition,research on brittle-plastic transition usually focuses on temperature effects,while the research on the aspects of strain rate and fluid are relatively weak.Studies of deformation mechanisms of minerals in faults have indicated that brittle-plastic transition of some faults occurred in the same depth(temperature and pressure)and this phenomenon,which has been considered to be relevant to synseismic loading and postseismic creep in earthquake cycles and confirmed by distribution of focal depth,is due to the strain rate.The presence of high-pressure fluid in active fault at depth is proved by analysis of characteristics of fault fluids,and these fluids,which can evolve in pressure pertaining to fracturing and sealing processes,play a key role during the seismic cycle.The formation of high-pressure fluid(cracks sealing)has severalmechanisms,but researches show pressure solution deposition is one of themainmechanismswhich controls crack sealing kinetics around active faults.Studies on pressure solution under the action of water can supplement and correct the crustal strength profile defined by traditional relations describing brittle/frictional behavior(Byerlee's law)and dislocation creep.As a consequence,we believe it is necessary to further study the impact of strain rate and fluid pressure on the brittle-plastic transition through deformation samples both from field and high-pressure high-temperature experiments.Simultaneously,wemay establish the equation for the pressure solution to approximately estimate the strength of brittle-plastic transition zone.
brittle-plastic transition,strength,deformation mechanism,fluid,strain rate,pressure solution
P315.2
A
0253-4967(2012)01-0172-23
10.3969/j.issn.0253-4967.2012.01.016
2011-09-19收稿,2011-12-29改回。
國家自然科學基金(40972146)和地震動力學國家重點實驗室自主課題(LED2009A01)共同資助。
張媛媛,女,1987年生,2009年畢業(yè)于中國礦業(yè)大學(徐州)獲學士學位,現(xiàn)在中國地震局地質研究所攻讀碩士學位,構造地質學專業(yè),主要從事高溫高壓巖石力學性質的實驗研究,電話:010-62009010,E-mail:geologyzyy@126.com。