• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靜電紡絲法制備的鈷酸鎳微米帶的磁性以及電化學(xué)性能

    2012-12-11 09:09:54朱福良趙景新程永亮李海寶閻興斌
    物理化學(xué)學(xué)報(bào) 2012年12期
    關(guān)鍵詞:物理化學(xué)紡絲結(jié)果顯示

    朱福良 趙景新 程永亮 李海寶 閻興斌,*

    (1蘭州理工大學(xué)材料科學(xué)與工程學(xué)院,蘭州730050; 2中國科學(xué)院蘭州化學(xué)物理研究所,清潔能源化學(xué)與材料實(shí)驗(yàn)室,蘭州730000)

    靜電紡絲法制備的鈷酸鎳微米帶的磁性以及電化學(xué)性能

    朱福良1,*趙景新1,2程永亮2李海寶1閻興斌2,*

    (1蘭州理工大學(xué)材料科學(xué)與工程學(xué)院,蘭州730050;2中國科學(xué)院蘭州化學(xué)物理研究所,清潔能源化學(xué)與材料實(shí)驗(yàn)室,蘭州730000)

    通過直接退火靜電紡絲前驅(qū)樣品以及調(diào)節(jié)升溫速率最終得到了鈷酸鎳(NiCo2O4)微米帶.通過X射線衍射、掃描電鏡、振動(dòng)樣品磁強(qiáng)計(jì)以及電化學(xué)工作站等分析手段對鈷酸鎳微米帶的晶體結(jié)構(gòu)、形貌、磁學(xué)性能以及電化學(xué)性能進(jìn)行了研究.結(jié)果顯示,以1°C·min-1的升溫速率得到的NiCo2O4微米帶屬于立方尖晶石結(jié)構(gòu),高溫處理后仍能保持一維結(jié)構(gòu).室溫磁化結(jié)果顯示制備的NiCo2O4微米帶具有超順磁性,在10 kOe時(shí)磁化強(qiáng)度為6.35 emu·g-1.此外,電化學(xué)測試結(jié)果顯示,NiCo2O4微米帶的電容特性是典型的贗電容,并且比電容隨著放電電流密度的增加而減小.

    NiCo2O4;微米帶;磁學(xué)性能;電化學(xué)性能;倍率性能

    1 Introduction

    Recently,the synthesis of magnetic nanomaterials has become an important research field because of their various structures affording various novel properties,which should be useful in a variety of applications including catalysts,1,2information storage media,3electronic device,4medicine,5and gas sen-sors.6So far,many diverse methods have been reported for the preparation of magnetic nanomaterials including template method,7sol-gel,8co-precipitation,9-11and combustion synthesis,12which are interesting and attract much research attention. However,these preparation methods often suffer from tedious procedures and special conditions.Furthermore,agglomeration and wide particle size distribution are the drawbacks associated with most of these methods.From the viewpoint of fundamental research,the development of simple and efficient methods for fabricating magnetic nanostructures at low cost is a great challenge for further practical applications.

    As one of the most important magnetic materials,the magnetic behavior of cobaltate nickel(NiCo2O4)has drawn much interest owing to its broad applications in many fields including electrochemical immunosensors,electrocatalysis,and magnetic hyperthermia.13-15To date,NiCo2O4nanostructural materials with various morphologies have been reported,such as nanoparticles,12,15nanopowders,16,17nanofibers,18nanoflakes,19nanoplates,20nanorods,19and nanowires.21However,NiCo2O4microbelts have never been reported in literature.

    Recently,electrospinning has been widely used as a convenient and facile method to prepare various solid fibers with the diameter ranging from tens of nanometers to several micrometers.Also,by using tubes by fiber template(TUFT) process,22-24coaxial electrospinning,25-27and single nozzle coelectrospinning technique,28,29microbelts can be prepared.However,these methods usually need multi-steps process,strictly control the rate between core and shell solutions,and choose different polymers to generate phase separation.Therefore,it is necessary to develop a simple and one-step electrospinning method to prepare microbelts.

    In this work,electrospinning synthesis route was successfully utilized to produce superparamagnetic crystalline NiCo2O4microbelts with high uniformity.Compared with above mentioned methods,only simple electrospinning and calcination are required.After that,the magnetic properties of as-made NiCo2O4microbelts calcined at 500°C were investigated using vibrating sample magnetometer in detail.Also,the electrochemical propertiesof theNiCo2O4sampleswereinvestigated.

    2 Experimental

    2.1 Materials

    Polyvinylpyrrolidone(PVP,K-30,Mw=3×104)was purchased from Tianjin Tiantai Fine Chemical Co.,Ltd.Ni(NO3)2·6H2O (≥98.0%(w),purchased from Xi?an Chemical Reagent Co., Ltd.),Co(NO3)2·6H2O(≥99.0%(w),purchased from Tianjin Fengyue Chemical Co.,Ltd)and ethanol(C2H5OH,analytical reagentgrade(AR),≥99.7%(w),purchased from Tianjin Rionlon BoHua Medical Chemistry Co.,Ltd.,China)were used as received.KOH(AR,≥85%(w))was otained commercially from BASF Chemical Co.,Ltd.of Tianjin.The conducting graphite(fixed carbon content≥99.9%(atom fraction))and the acetylene black(≥99.99%(w))were obtained commercially from SCM Industrial Chemical Co.,Ltd.Polytetrafluoroethylene(PTFE)emulsion(30%(w))purchased from Bu A Ze Industry&Trade Co.,Ltd.,Shanghai.Other reagents were commercially available and were of analytical reagent grade.

    2.2 Preparation of NiCo2O4microbelts

    In the preparation of the NiCo2O4microbelts,1.45 g of Ni(NO3)2·6H2O and 2.91 g of Co(NO3)2·6H2O were added into a mixture of 2.5 mL of ethanol and 7.5 mL of water,then 7.59 g of PVP was added into the above solution to increase viscidity.After the mixture was magnetically stirred for several hours at room temperature(RT),a viscous light-pink clear solution of Ni(NO3)2/Co(NO3)2/PVP was obtained.The schematic of electrospinning apparatus is shown in Fig.1.In the subsequent electrospinning process,the precursor solution was then delivered into a plastic syringe equipped with a 7#stainless steel needle.The metallic needle was connected to a high-voltage power supply,and a piece of grounded aluminum foil was placed 15 cm between the tip of the needle and collector.As a high voltage of 15 kV was applied,the precursor solution jet accelerated toward the aluminum foil,leading to the formation of Ni(NO3)2/Co(NO3)2/PVP composite fibers accompanied by rapid evaporation of solvent.For the following thermolysis process,as-spun fibers were placed in a muffe furnace and calcined at 500°C for 2 h with a heating rate of 1°C·min-1to remove PVP and obtain NiCo2O4samples.

    2.3 Characterization

    Fig.1 Schematic diagram of electrospinning apparatus

    To analyze the crystal structures of the samples,X-ray diffraction(XRD)measurements were conducted on an X-ray diffractometer using Cu Kαradiation(XRD,Panalytical X?Pert Pro.,Holland)from 10°to 80°.The morphology and microstructures of the as-spun fibers and calcined samples were analyzed by the field-emission scanning electron microscope (FESEM,JSM-6701F,Japan).In addition,magnetic measurements were performed at RT using a vibrating sample magnetometer(VSM 7304,Lake Shore,USA)and the electrochemical measurements of each as-prepared electrode were carried out using an electrochemical working station(CHI660D,Shanghai, China)in a half-cell setup configuration at RT.The working electrodes were prepared according to the method reported in literature.30NiCo2O4powder(80%(mass fraction,the same below))was mixed with 7.5%of acetylene black(>99.9%)and 7.5%of conducting graphite in an agate mortar until a homogeneous black powder was obtained.To this mixture,5%of poly (tetrafluoroethylene)was added with a few drops of ethanol. After briefly allowing the solvent to evaporate,the resulting paste was pressed at 10 MPa to nickel gauze with a nickel wire for an electric connection.The electrode assembly was dried for 16 h at 80°C in air.Each NiCo2O4electrode contained about 5 mg of electroactive material and had a geometric surface area of about 1 cm2.Aplatinum gauze electrode and a saturated calomel electrode(SCE)served as the counter electrode and the reference electrode,respectively.The corresponding specific capacitance was calculated from the slope of each discharge curve,according to the equation SC=(I×Δt)/(ΔV×m),where SC is the specific capacitance,I is the constant discharge current,Δt is the discharge time,ΔV is the voltage difference in discharge,and m isthemass of NiCo2O4samplescoatedon eachwork electrode.

    3 Results and discussion

    3.1 XRD analysis

    The XRD pattern of the as-prepared NiCo2O4microbelts synthesized by electrospinning method is shown in Fig.2.It shows that all the diffraction reflections can be indexed to a cubic spinel NiCo2O4(JCPDS.073-1702)and no impurity phase was detected.Therefore,single phase NiCo2O4can be obtained by directly calcining electrospun composite samples.In addition, the average crystallite sizes calculated by the Scherer formula:

    D=0.9λ/(βcosθ)

    where D is the crystallite size(nm),β is the full width of the diffraction line at half the maximum intensity measured in radians,λ is the X-ray wavelength,and θ is the Bragg angle.From the formula,the NiCo2O4crystallite size is found to be around 15.74 nm.

    3.2 SEM characterization

    Fig.2 XRD patterns of NiCo2O4microbelts calcined at 500°C

    Fig.3 FESEM images of(a)precursor samples and(b)calcined NiCo2O4microbelts at 500°CInset in(b)shows the cross-section image of calcined NiCo2O4microbelts.

    Fig.3 shows the SEM images of as-spun precursor fibers and NiCo2O4microbelts prepared at 500°C.As shown in Fig.3(a), precursor samples exhibit ultra-fine belt morphology and the surfaces of the belts appear to be smooth and uniform due to amorphous nature.31,32The average length of most belts is up to tens of micrometers with the average diameter of approximately 3.31 μm.For the NiCo2O4belts,when the calcined temperature reaches 500°C(Fig.3(b)),compared with the precursor samples,although the NiCo2O4belts still maintain the original zonal morphology,the average diameter decreases to about 1.70 μm and the surfaces of the belts become rougher.The obvious shrinkage in diameter is mainly due to the removal of PVP and the decomposition of nitrate salts.The formation of rough surface is contributed to the growth of NiCo2O4nanocrystals at higher temperature.Moreover,the thickness of microbelts is also an important parameter.The cross-section image of NiCo2O4microbelts is shown in the inset of Fig.3(b),it is clearly seen that the thickness of NiCo2O4microbelts reaches 150 nm.All of the results indicate that the prepared NiCo2O4is a zonal structure.

    3.3 Magnetic property

    Fig.4 Room temperature magnetic hysteresis loops of NiCo2O4 microbelts calcined at 500°CInset shows the magnification at lower applied field.

    It is well-known that the magnetic behavior of nanomaterials is strongly affected by their morphology and size.31Fig.4 displays the RT hysteresis loops for the NiCo2O4microbelts calcined at 500°C.It is observed that the NiCo2O4microbelts reveal a typical superparamagnetic behavior.The microbelts calcined at 500°C have a magnetisation value of 6.35 emu·g-1at 10 kOe.Because the microbelts are composed of nanoparticles,the structural property of NiCo2O4nanoparticles and their interaction have significant influence on the magnetic property of the NiCo2O4microbelts.For magnetic nanoparticles,the structures of inner and surface are different,the former is usual spin arrangement,however,the latter atomic moment arrangement is disorder,which could change the surface coordination and break surface exchange bond,leading to the decrease of saturation magnetization(Ms)of nanoparticles.33

    Fig.5 Electrochemical properties of NiCo2O4microbelts calcined at 500°C(a)CV curves at different scan rates;(b)GCD curves at different current densities;(c)Nyquist plots

    3.4 Electrochemical property

    The electrochemical properties of the NiCo2O4microbelts were studied by cyclic voltammetry(CV),galvanostatic charge/ discharge(GCD),and electrochemical impedance spectroscopy (EIS).The CV curves of NiCo2O4microbelt electrodes taken between 0 and 0.5 V in 1 mol·L-1KOH electrolyte at different scan rates are shown in Fig.5(a).Non-rectangular form of CV curves is due to the pseudocapacitive contribution of NiCo2O4. Meanwhile,the current density increases with the increase of the voltage sweep rate.Fig.5(b)presents the typical GCD curves of the NiCo2O4electrodes in the potential range of 0 and 0.4 V in 1 mol·L-1KOH electrolyte at various current densities as indicated.The specific capacitance(SC)for NiCo2O4electrodes at various current densities can be calculated based on the galvanostatic discharge curves in Fig.5(b).Remarkably,the NiCo2O4microbelt electrode manifests acceptable values of SC of 245,240, 235,231,225,220,and 212 F·g-1at current densities of 1,2,4, 5,6,8,and 10A·g-1,respectively.EIS measurements were performed on the NiCo2O4electrodes and Nyquist plots are shown in Fig.5(c),which contain an arc in the high-frequency region and a sloped line in the low-frequency region.At the high-frequency,the arc is mainly caused by the formation of a solid electrolyte interface film and the charge transfer reaction at the electrode/electrolyte interface,respectively.At the low-frequency,a straight sloping line represents the diffusive resistance(Warburg impendence)of the electrolyte in electrode pores and the proton diffusion in the host material.34The spectrum shows a higher angle than 45°,suggesting the low diffusive resistance of the electrolyteinNiCo2O4materialelectrode.35,36

    Fig.6 Specific capacitance of NiCo2O4electrodes as a function of discharging current density

    Fig.6 reveals that the values of the specific capacitance for the NiCo2O4electrodes are strongly dependent on the current density.In detail,the specific capacitance slightly decreases with the increase of the current density.Up to a relatively large current density of 10 A·g-1,86.53%of the initial value remains for the NiCo2O4material.This indicates that the rate capability of the NiCo2O4in KOH electrolyte is nice,indicating that KOH is suitable for the NiCo2O4electrodes.

    The cycle life of the NiCo2O4electrode at the current density of 1 A·g-1in 1 mol·L-1KOH electrolyte was depicted in Fig.7. As shown in Fig.7,the specific capacitance of the NiCo2O4electrodes decreased gradually with the increase of the cycle number.It was seen that about 73.7%of original capacitance was retained after 500 cycles,exhibiting acceptable cycle ability for the NiCo2O4microbelts.The reduction of the specific capacitance was caused by the pseudocapacitance from the oxide.

    Fig.7 Cycle life of the NiCo2O4electrode at the current density of 1A·g-1

    4 Conclusions

    In summary,NiCo2O4have been successfully fabricated by direct calcination of electrospun precursor samples.Compared with other methods for preparing microbelts by electrospinning,only simple calcination of precursor samples is required. After high temperature treatment,the fibers still remain one-dimensional texture of 1.70 μm in diameter.Besides,the microbelts show a superparamagnetic behavior at room temperature with the magnetisation value of 6.35 emu·g-1at 10 kOe.Moreover,the electrochemical capacitances of NiCo2O4microbelts show the typical pseudocapacitive capacitance and the specific capacitance gradually decreases with the increase of discharge current density.The material has an acceptable rate capability in 1 mol·L-1KOH electrolyte,showing about 86.53%of its maximal capacitance at a current density of 10 A·g-1in GCD experiments.The highest specific capacitance of 245 F·g-1is observed in 1 mol·L-1KOH electrolyte at 1A·g-1.

    (1) Zhou,X.W.;Chen,Q.S.;Zhou,Z.Y.;Sun,S.G.J.Nanosci. Nanotechnol.2009,9,2392.doi:10.1166/jnn.2009.SE34

    (2)Gao,Y.Y.;Cao,D.X.;Wang,G.L.;Yin,C.L.ActaPhys.-Chim. Sin.2010,26,29.[高胤義,曹殿學(xué),王貴領(lǐng),尹翠蕾.物理化學(xué)學(xué)報(bào),2010,26,29.]doi:10.3866/PKU.WHXB20100102

    (3) Fried,T.;Shemer,G.;Markovich,G.Adv.Mater.2001,13, 1158.

    (4) Jolley,C.;Pool,V.;Idzerda,Y.;Douglas,T.Chem.Mater.2011, 23,2392.

    (5)Xu,Z.C.;Hou,Y.L.;Sun,S.H.J.Am.Chem.Soc.2007,129, 8698.

    (6) Zhong,J.Y.;Cao,C.B.Sens.Actuators B 2010,145,651.doi: 10.1016/j.snb.2010.01.016

    (7) Chaubal,N.S.;Joshi,V.Y.J.Porous.Mater.2011,18,177.doi: 10.1007/s10934-010-9368-2

    (8) Liu,X.H.;Wang,J.Q.;Zhang,J.Y.;Yang,S.G.Mater.Sci. Eng.A 2006,430,248.doi:10.1016/j.msea.2006.05.059

    (9) Lina,G.;Meng,G.Y.Mater.Res.Bull.2008,43,1555.doi: 10.1016/j.materresbull.2007.06.027

    (10) Mandzhukova,T.;Khrussanova,M.;Grigorova,E.;Stefanov,P.; Khristov,M.;Peshev,P.J.Alloy.Compd.2008,457,472.doi: 10.1016/j.jallcom.2007.03.006

    (11) Keng,C.S.;Tsin,L.K.;Zulkarnain,Z.Electrochim.Acta 2012, 67,67.doi:10.1016/j.electacta.2012.02.014

    (12) Verma,S.;Joshi,H.M.;Jagadale,T.;Chawla,A.;Chandra,R.; Ogale,S.J.Phys.Chem.C 2008,112,15106.doi:10.1021/ jp804923t

    (13) Li,Q.F.;Zeng,L.X.;Wang,J.C.;Tang,D.P.;Liu,B.Q.; Chen,G.N.;Wei,M.D.ACS Appl.Mater.Interfaces 2011,3, 1366.doi:10.1021/am200228k

    (14) Tavares,A.C.;Cartaxo,M.A.M.;Pereira,M.I.D.S.;Costa,F. M.J.Electroanal.Chem.1999,464,187.doi:10.1016/S0022-0728(99)00018-2

    (15) Sangeeta,N.K.;Anil,D.J.;Seema,V.Nanomed-Nanotechnol. 2012,8,452.doi:10.1016/j.nano.2011.07.010

    (16) Cabo,M.;Pellicer,E.;Rossinyol,E.;Estrader,M.;Ortega,A. L.;Nogues,J.;Castell,O.;Surinach,S.;Baro,M.D.J.Mater. Chem.2010,20,7021.doi:10.1039/c0jm00406e

    (17) Bao,J.Z.;Wang,S.L.Acta Phys.-Chim.Sin.2011,27,2849. [鮑晉珍,王森林.物理化學(xué)學(xué)報(bào),2011,27,2849.]doi:10.3866/ PKU.WHXB20112849

    (18)Guan,H.Y.;Shao,C.;Liu,Y.C.;Yu,N.;Yang,X.H.Solid State Electrochem.2004,131,107.

    (19) Salunkhe,R.R.;Jang,K.H.;Yu,H.;Yu,S.;Ganesh,T.;Han,S. H.;Ahn,H.J.Alloy.Compd.2011,509,6677.doi:10.1016/ j.jallcom.2011.03.136

    (20)Hu,L.F.;Wu,L.M.;Liao,M.Y.;Hu,X.H.;Fang,X.S.Adv. Funct.Mater.2012,22,998.doi:10.1002/adfm.v22.5

    (21)Yu,L.Q.;Chen,S.L.;Chang,S.;Li,Y.H.;Gao,Y.Y.;Wang, G.L.;Cao,D.X.Acta Phys.-Chim.Sin.2011,27,615.[于麗秋,陳書禮,常 莎,李云虎,高胤義,王貴領(lǐng),曹殿學(xué).物理化學(xué)學(xué)報(bào),2011,27,615.]doi:10.3866/PKU.WHXB20110317

    (22) Caruso,R.A.;Schauka,J.H.;Greiner,A.Adv.Mater.2001,13, 1577.doi:10.1002/1521-4095(200110)13:20<1577::AIDADMA1577>3.0.CO;2-S

    (23) Ochanda,F.;Jones,W.E.Langmuir 2005,21,10791.doi: 10.1021/la050911s

    (24)Kim,G.M.;Lee,S.M.;Michjler,G.H.;Roggendorf,H.; Güsele,U.;Knez,M.Chem.Mater.2008,20,3085.doi: 10.1021/cm703398b

    (25) Loscertales,I.G.;Banero,A.;Márquez,M.;Spretz,R.; Velardeortiz,R.;Larsen,G.J.Am.Chem.Soc.2004,126,5376. doi:10.1021/ja049443j

    (26) Zhan,S.H.;Chen,D.R.;Jiao,X.L.;Tao,C.H.J.Phys.Chem. B 2006,110,11199.doi:10.1021/jp057372k

    (27) Li,D.;Xia,Y.N.Nano Lett.2004,4,933.doi:10.1021/ nl049590f

    (28)Bazilevsky,A.V.;Yarm,A.L.;Meganridis,C.M.Langmuir 2007,23,2311.doi:10.1021/la063194q

    (29) Sanders,E.H.;Kloefkorn,R.;Bowlin,G.L.;Simpson,D.G.; Wnek,G.F.Macromolecules 2003,36,3803.doi:10.1021/ ma021771l

    (30)Lang,J.W.;Kong,L.B.;Liu,M.;Luo,Y.C.;Kang,L. J.Electrochem.Soc.2010,157,1341.doi:10.1149/1.3497298

    (31) Cheng,Y.L.;Zou,B.L.;Yang,J.L.;Wang,C.J.;Liu,Y.J.; Fan,X.Z.;Zhu,L.;Wang,Y.;Ma,H.M.;Cao,X.Q. CrystEngComm 2011,13,2268.doi:10.1039/c0ce00802h

    (32)Zhang,Z.Y.;Li,X.H.;Wang,C.H.;Wei,L.M.;Liu,Y.C.; Shao,C.L.J.Phys.Chem.C 2009,113,1939.doi:10.1021/ jp806088m

    (33) Pankhurst,O.A.;Polllard,R.J.Phys.Rev.Lett.1991,67,248. doi:10.1103/PhysRevLett.67.248

    (34) Sun,G.H.;Li,K.X.;Sun,C.G.Microporous Mesoporous Mat.2010,128,56.doi:10.1016/j.micromeso.2009.07.027

    (35) Xu,M.W.;Zhao,D.D.;Bao,S.J.;Li,H.L.J.Solid State Electrochem.2007,11,1101.doi:10.1007/s10008-006-0246-4

    (36) Zhang,S.S.;Xu,K.;Jow,T.R.Electrochim.Acta 2004,49, 1057.doi:10.1016/j.electacta.2003.10.016

    July 2,2012;Revised:September 6,2012;Published on Web:September 6,2012.

    Magnetic and Electrochemical Properties of NiCo2O4Microbelts Fabricated by Electrospinning

    ZHU Fu-Liang1,*ZHAO Jing-Xin1,2CHENG Yong-Liang2LI Hai-Bao1YAN Xing-Bin2,*
    (1School of Material Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,P.R.China;2Laboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,
    Chinese Academy of Sciences,Lanzhou 730000,P.R.China)

    Cobaltate nickel(NiCo2O4)microbelts were fabricated by direct calcination of electrospun precursor samples with an appropriate heating rate.The crystal structure,morphology,magnetic properties,and electrochemical properties of the NiCo2O4microbelts were investigated by X-ray diffraction, scanning electron microscopy,vibrating sample magnetometry,and electrochemical analysis.The results showed that a heating rate of 1°C·min-1resulted in the formation of cubic spinel NiCo2O4microbelts.After calcination at high temperatures,the microbelts retained their one-dimensional structure.Magnetization results indicated that the NiCo2O4microbelts were superparamagnetic and their magnetization value at 10 kOe was 6.35 emu·g-1.Moreover,the electrochemical results suggest that the capacitance of the NiCo2O4microbelts is typical pseudocapacitive capacitance,and the value of the specific capacitance gradually decreases with increasing discharge current density.

    NiCo2O4;Microbelt; Magnetic property;Electrochemical property;Rate capability

    10.3866/PKU.WHXB201209063

    *Corresponding authors.ZHU Fu-Liang,Email:chzfl@lut.cn;Tel:+86-931-9491509;Fax:+86-931-2976578.YAN Xing-Bin, Email:xbyan@licp.cas.cn;Tel/Fax:+86-931-4968055.

    The project was supported by the Natural Science Foundation of Gansu Province,China(3ZS042-B25-029)and National Natural Science Foundation of China(51005225).

    甘肅省自然科學(xué)基金(3ZS042-B25-029)和國家自然科學(xué)基金(51005225)資助項(xiàng)目

    O646

    猜你喜歡
    物理化學(xué)紡絲結(jié)果顯示
    同軸靜電紡絲法制備核-殼復(fù)合納米纖維
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    靜電紡絲法制備正滲透膜材料
    云南化工(2021年7期)2021-12-21 07:27:36
    最嚴(yán)象牙禁售令
    Chemical Concepts from Density Functional Theory
    新聞眼
    金融博覽(2016年7期)2016-08-16 18:44:41
    第四次大熊貓調(diào)查結(jié)果顯示我國野生大熊貓保護(hù)取得新成效
    綠色中國(2016年1期)2016-06-05 09:02:59
    靜電紡絲制備PVA/PAA/GO三元復(fù)合纖維材料
    數(shù)字直流調(diào)速器6RA70在紡絲牽伸系統(tǒng)中的應(yīng)用
    日韩成人在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 国产精品女同一区二区软件 | 99国产综合亚洲精品| 久9热在线精品视频| 老司机福利观看| 看片在线看免费视频| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 少妇裸体淫交视频免费看高清| 3wmmmm亚洲av在线观看| 脱女人内裤的视频| www.www免费av| 久99久视频精品免费| 亚洲av不卡在线观看| 国产精品一区二区免费欧美| 99久久99久久久精品蜜桃| 国产成人啪精品午夜网站| 亚洲欧美精品综合久久99| 中文在线观看免费www的网站| 99久久精品一区二区三区| 国产免费男女视频| 一级黄色大片毛片| 12—13女人毛片做爰片一| 亚洲乱码一区二区免费版| 黄色女人牲交| 久久久久久久午夜电影| 69人妻影院| 午夜免费激情av| 一级作爱视频免费观看| 51国产日韩欧美| 国产综合懂色| 精品国产超薄肉色丝袜足j| 午夜免费观看网址| 免费看十八禁软件| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 岛国在线观看网站| 日韩欧美一区二区三区在线观看| 亚洲五月婷婷丁香| 国产伦精品一区二区三区四那| 亚洲成人久久性| 波多野结衣高清作品| 给我免费播放毛片高清在线观看| 美女被艹到高潮喷水动态| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| tocl精华| 久久久久久久久中文| 日韩欧美 国产精品| 亚洲av美国av| bbb黄色大片| 亚洲久久久久久中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲无线在线观看| 欧美bdsm另类| 欧美日本亚洲视频在线播放| 国产av在哪里看| 久久精品人妻少妇| 国内精品美女久久久久久| 97碰自拍视频| 午夜a级毛片| 国产精品香港三级国产av潘金莲| 美女免费视频网站| 国产真实伦视频高清在线观看 | 欧美激情在线99| 在线观看午夜福利视频| 欧美成狂野欧美在线观看| 欧美色视频一区免费| 亚洲成a人片在线一区二区| 亚洲欧美精品综合久久99| 久久久久久久亚洲中文字幕 | 国产精品99久久久久久久久| 女人被狂操c到高潮| 校园春色视频在线观看| 99久久精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 99riav亚洲国产免费| 天堂影院成人在线观看| 在线观看av片永久免费下载| 国产伦人伦偷精品视频| 精品人妻一区二区三区麻豆 | 国产精品久久久久久人妻精品电影| 99热这里只有精品一区| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 国产成人av教育| 欧美日本视频| 婷婷六月久久综合丁香| 欧美性感艳星| 很黄的视频免费| 香蕉久久夜色| 午夜免费观看网址| 非洲黑人性xxxx精品又粗又长| 18+在线观看网站| 亚洲精品一区av在线观看| 18禁在线播放成人免费| 成人鲁丝片一二三区免费| 天天一区二区日本电影三级| 高清日韩中文字幕在线| 国产真实乱freesex| 中文字幕高清在线视频| 热99在线观看视频| 国产淫片久久久久久久久 | www日本在线高清视频| 欧美bdsm另类| 精品一区二区三区视频在线 | 欧美成人性av电影在线观看| 真实男女啪啪啪动态图| 精品人妻1区二区| 偷拍熟女少妇极品色| 亚洲第一欧美日韩一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 国产亚洲欧美98| 岛国在线观看网站| 99在线人妻在线中文字幕| x7x7x7水蜜桃| 黄色成人免费大全| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 亚洲第一欧美日韩一区二区三区| 我的老师免费观看完整版| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 床上黄色一级片| 国内精品久久久久久久电影| 麻豆成人av在线观看| 男女床上黄色一级片免费看| 久久草成人影院| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 成人18禁在线播放| 亚洲 国产 在线| 亚洲av一区综合| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 免费看日本二区| 国产黄片美女视频| 综合色av麻豆| 亚洲不卡免费看| 国产一区二区三区视频了| 淫秽高清视频在线观看| 国产精品永久免费网站| 1000部很黄的大片| 国产高清有码在线观看视频| 高潮久久久久久久久久久不卡| 欧美+亚洲+日韩+国产| 欧美日韩乱码在线| 亚洲av成人精品一区久久| 欧美+亚洲+日韩+国产| 最近最新中文字幕大全免费视频| 99精品在免费线老司机午夜| 亚洲精品成人久久久久久| a在线观看视频网站| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩av片在线观看 | 亚洲av五月六月丁香网| 色综合站精品国产| 国产精品亚洲av一区麻豆| 久久国产精品影院| 免费大片18禁| 日韩大尺度精品在线看网址| 亚洲美女黄片视频| 国产亚洲精品久久久com| 人人妻人人看人人澡| 一区福利在线观看| 亚洲欧美激情综合另类| 国产99白浆流出| 噜噜噜噜噜久久久久久91| 精品99又大又爽又粗少妇毛片 | 波野结衣二区三区在线 | 国产 一区 欧美 日韩| 国内少妇人妻偷人精品xxx网站| 香蕉丝袜av| 尤物成人国产欧美一区二区三区| 久久人人精品亚洲av| 亚洲五月天丁香| 国产精品电影一区二区三区| 丰满的人妻完整版| 欧美3d第一页| 国产高清视频在线播放一区| 亚洲黑人精品在线| 亚洲国产欧美网| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 国产亚洲精品一区二区www| 99久久精品热视频| 免费看日本二区| 老熟妇乱子伦视频在线观看| 婷婷六月久久综合丁香| 嫩草影院入口| 久久伊人香网站| 国产成+人综合+亚洲专区| 午夜福利在线在线| 亚洲av成人av| 嫁个100分男人电影在线观看| 国产精品永久免费网站| 免费av不卡在线播放| 一a级毛片在线观看| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 天堂av国产一区二区熟女人妻| 精品电影一区二区在线| 欧美精品啪啪一区二区三区| 亚洲乱码一区二区免费版| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 久久精品综合一区二区三区| 高清在线国产一区| 亚洲成人中文字幕在线播放| 可以在线观看的亚洲视频| 欧美日韩精品网址| 亚洲av一区综合| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 午夜激情福利司机影院| 老汉色∧v一级毛片| 18禁美女被吸乳视频| 中文字幕久久专区| 国产私拍福利视频在线观看| 老司机午夜福利在线观看视频| av在线蜜桃| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 亚洲人与动物交配视频| 老汉色∧v一级毛片| 91久久精品国产一区二区成人 | 深夜精品福利| 国产精品永久免费网站| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 香蕉丝袜av| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 亚洲av电影不卡..在线观看| 波多野结衣高清无吗| 十八禁人妻一区二区| 国产熟女xx| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美 | 九色国产91popny在线| 男女午夜视频在线观看| 久久亚洲真实| 精品一区二区三区av网在线观看| 精品无人区乱码1区二区| 中文资源天堂在线| 国产精品av视频在线免费观看| 久99久视频精品免费| 国产毛片a区久久久久| 少妇的逼好多水| 久久草成人影院| 国产黄片美女视频| 色吧在线观看| av女优亚洲男人天堂| 欧美+日韩+精品| 国产精品,欧美在线| 可以在线观看的亚洲视频| 免费观看精品视频网站| 美女免费视频网站| 免费看十八禁软件| 99热精品在线国产| 中文字幕av成人在线电影| 亚洲av一区综合| 少妇的丰满在线观看| 在线观看舔阴道视频| 国产成人系列免费观看| 免费看美女性在线毛片视频| www国产在线视频色| 韩国av一区二区三区四区| www日本黄色视频网| 最近最新免费中文字幕在线| 日韩欧美在线二视频| 熟女电影av网| 麻豆国产97在线/欧美| 51国产日韩欧美| 欧美日韩国产亚洲二区| eeuss影院久久| 丝袜美腿在线中文| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 首页视频小说图片口味搜索| 色在线成人网| 热99re8久久精品国产| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品| 丁香六月欧美| 国产成人福利小说| 成人欧美大片| 成年女人永久免费观看视频| 免费人成在线观看视频色| 在线免费观看的www视频| 国产成人啪精品午夜网站| 丁香欧美五月| 国产成人欧美在线观看| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 国产极品精品免费视频能看的| 欧美成人一区二区免费高清观看| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 亚洲一区二区三区不卡视频| 国产精品精品国产色婷婷| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 免费人成在线观看视频色| 欧美黄色片欧美黄色片| 亚洲在线观看片| 国产私拍福利视频在线观看| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 校园春色视频在线观看| 亚洲片人在线观看| 日本在线视频免费播放| 国产精品久久久久久精品电影| 成人亚洲精品av一区二区| 日韩成人在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 欧美色欧美亚洲另类二区| 此物有八面人人有两片| 桃色一区二区三区在线观看| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| 欧美色欧美亚洲另类二区| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 中文字幕av成人在线电影| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 久久久久久久亚洲中文字幕 | 嫩草影院精品99| 午夜日韩欧美国产| 深爱激情五月婷婷| 亚洲欧美日韩东京热| 一个人免费在线观看电影| 成人永久免费在线观看视频| 岛国在线免费视频观看| 白带黄色成豆腐渣| 午夜老司机福利剧场| 欧美日韩综合久久久久久 | 久久久久久久久久黄片| 天堂网av新在线| 美女黄网站色视频| 99热精品在线国产| 淫秽高清视频在线观看| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 变态另类成人亚洲欧美熟女| 毛片女人毛片| 两个人的视频大全免费| 非洲黑人性xxxx精品又粗又长| 人人妻,人人澡人人爽秒播| xxxwww97欧美| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 精品99又大又爽又粗少妇毛片 | 91av网一区二区| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 国产av一区在线观看免费| 国产精品一及| 亚洲在线观看片| 国产成人福利小说| 小蜜桃在线观看免费完整版高清| 叶爱在线成人免费视频播放| 亚洲最大成人中文| 日本 欧美在线| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 麻豆久久精品国产亚洲av| 欧美日韩福利视频一区二区| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 少妇丰满av| svipshipincom国产片| 久久精品国产清高在天天线| 免费观看精品视频网站| 嫩草影院精品99| 欧美绝顶高潮抽搐喷水| 啪啪无遮挡十八禁网站| 欧美精品啪啪一区二区三区| 乱人视频在线观看| 亚洲不卡免费看| 中文字幕人妻熟人妻熟丝袜美 | 女生性感内裤真人,穿戴方法视频| 日韩欧美在线二视频| 国产av在哪里看| 午夜福利视频1000在线观看| 欧美+日韩+精品| 国产国拍精品亚洲av在线观看 | 久久亚洲精品不卡| 亚洲人成网站高清观看| 午夜福利免费观看在线| 国产免费男女视频| 欧美成人一区二区免费高清观看| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 亚洲久久久久久中文字幕| 91麻豆精品激情在线观看国产| 亚洲在线观看片| 欧美日韩中文字幕国产精品一区二区三区| 又黄又粗又硬又大视频| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 狂野欧美白嫩少妇大欣赏| 午夜福利18| 午夜福利成人在线免费观看| 精品乱码久久久久久99久播| 色综合婷婷激情| 观看美女的网站| 婷婷亚洲欧美| tocl精华| 国产野战对白在线观看| 国产久久久一区二区三区| 久久久久久久久久黄片| 欧美高清成人免费视频www| 亚洲av一区综合| 一个人看的www免费观看视频| 久久性视频一级片| 国产精品久久久久久亚洲av鲁大| 午夜福利成人在线免费观看| 欧美性感艳星| 少妇高潮的动态图| 给我免费播放毛片高清在线观看| 午夜免费成人在线视频| 亚洲国产精品久久男人天堂| 亚洲熟妇熟女久久| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 91字幕亚洲| 国产精品久久久久久久久免 | 午夜福利免费观看在线| 少妇高潮的动态图| 国产精品嫩草影院av在线观看 | 内射极品少妇av片p| 最近最新免费中文字幕在线| ponron亚洲| 欧美中文日本在线观看视频| 久久久久久久久大av| 窝窝影院91人妻| 制服丝袜大香蕉在线| 三级男女做爰猛烈吃奶摸视频| 亚洲国产色片| 97人妻精品一区二区三区麻豆| 日韩欧美在线二视频| 免费高清视频大片| 一个人看视频在线观看www免费 | 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 日韩欧美三级三区| 国产熟女xx| 一区二区三区免费毛片| 一进一出抽搐gif免费好疼| 久久久国产成人精品二区| 国产精品久久久人人做人人爽| 日日夜夜操网爽| 日韩欧美免费精品| 又紧又爽又黄一区二区| 非洲黑人性xxxx精品又粗又长| 国产精品香港三级国产av潘金莲| 精品国内亚洲2022精品成人| 一夜夜www| 亚洲 欧美 日韩 在线 免费| 色视频www国产| 国产蜜桃级精品一区二区三区| 国产精品野战在线观看| 免费人成视频x8x8入口观看| 久久久久久人人人人人| 人妻久久中文字幕网| 99精品欧美一区二区三区四区| 亚洲成av人片在线播放无| 亚洲五月天丁香| 精品人妻偷拍中文字幕| 法律面前人人平等表现在哪些方面| 波多野结衣高清作品| 国产精品亚洲美女久久久| 日韩高清综合在线| 免费看a级黄色片| 精品人妻一区二区三区麻豆 | 国产激情欧美一区二区| 69人妻影院| 色哟哟哟哟哟哟| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 91九色精品人成在线观看| 日韩欧美精品免费久久 | 超碰av人人做人人爽久久 | 夜夜爽天天搞| 亚洲 国产 在线| 国产精品 欧美亚洲| 成人特级av手机在线观看| 手机成人av网站| 日韩有码中文字幕| 3wmmmm亚洲av在线观看| 国产欧美日韩精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 12—13女人毛片做爰片一| 老司机福利观看| 变态另类丝袜制服| 激情在线观看视频在线高清| 国产精品美女特级片免费视频播放器| 热99在线观看视频| 人人妻人人看人人澡| 中国美女看黄片| 久久久久亚洲av毛片大全| 级片在线观看| 日韩欧美免费精品| 色哟哟哟哟哟哟| 成熟少妇高潮喷水视频| 久久久久久国产a免费观看| 亚洲av二区三区四区| 成人av在线播放网站| 一a级毛片在线观看| a级一级毛片免费在线观看| 国产伦人伦偷精品视频| 两个人的视频大全免费| 亚洲久久久久久中文字幕| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 在线看三级毛片| 99热只有精品国产| 免费看光身美女| 成人av在线播放网站| 搡女人真爽免费视频火全软件 | 成年女人永久免费观看视频| 欧美最新免费一区二区三区 | 精品人妻一区二区三区麻豆 | 在线播放无遮挡| 日韩高清综合在线| 日韩欧美精品v在线| 啦啦啦观看免费观看视频高清| 最近最新中文字幕大全免费视频| 精品人妻偷拍中文字幕| 尤物成人国产欧美一区二区三区| 女生性感内裤真人,穿戴方法视频| 婷婷精品国产亚洲av| 国产日本99.免费观看| 国产精品一及| 日韩国内少妇激情av| 亚洲人成电影免费在线| 国产精品久久久人人做人人爽| 久久久久免费精品人妻一区二区| 亚洲av免费高清在线观看| 国产不卡一卡二| 午夜免费男女啪啪视频观看 | 国产野战对白在线观看| 国内精品久久久久精免费| 久久久久久久精品吃奶| 亚洲精品在线观看二区| 精品久久久久久久久久免费视频| 欧美zozozo另类| 国产精品影院久久| 国产精品一区二区免费欧美| 欧美zozozo另类| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站在线播| 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在 | 久久天躁狠狠躁夜夜2o2o| 国产三级在线视频| 国内精品久久久久精免费| 欧美成人a在线观看| 日本与韩国留学比较| 国内精品久久久久精免费| 母亲3免费完整高清在线观看| 2021天堂中文幕一二区在线观| 看免费av毛片| 一区二区三区免费毛片| 美女大奶头视频| 午夜免费男女啪啪视频观看 | 国产真实伦视频高清在线观看 | 久久久精品大字幕| 男女视频在线观看网站免费| 午夜免费成人在线视频| 啦啦啦观看免费观看视频高清| 中亚洲国语对白在线视频| 少妇人妻一区二区三区视频| 麻豆一二三区av精品| 国产成人影院久久av| 亚洲av成人不卡在线观看播放网|