周 巍,郝金明,馬國(guó)元,馮淑萍
(1.信息工程大學(xué)地理空間信息學(xué)院,河南 鄭州450052;2.63883部隊(duì),河南 洛陽(yáng)471003;3.西安測(cè)繪信息技術(shù)總站,陜西西安710054)
精度鑒定用于對(duì)航天測(cè)控設(shè)備的動(dòng)態(tài)性能和精度進(jìn)行檢驗(yàn)和評(píng)估,分析其誤差變化規(guī)律,檢驗(yàn)其技戰(zhàn)指標(biāo)是否滿足設(shè)計(jì)要求[1],是測(cè)控設(shè)備獲取準(zhǔn)確目標(biāo)測(cè)量數(shù)據(jù)的前提,具有重要意義。
目前,GPS相對(duì)定位技術(shù)已廣泛應(yīng)用于精度鑒定試驗(yàn)中,并取得了理想的效果。但為了保證解算的可靠性和精度,往往要求地面布設(shè)一定密度的GPS基準(zhǔn)站進(jìn)行同步觀測(cè),這種模式影響了作業(yè)效率,并提高了作業(yè)成本。對(duì)于一些難以到達(dá)的地區(qū),根本無(wú)法保證足夠密度的基準(zhǔn)站,甚至找不到近距離的基準(zhǔn)站,誤差相關(guān)性大大降低,因此需要新的作業(yè)方式克服相對(duì)定位的缺點(diǎn)。
近年來(lái),國(guó)內(nèi)外一些著名的科研機(jī)構(gòu)一直致力于精密單點(diǎn)定位(PPP)技術(shù)的研究[2-3]。該方法只需單臺(tái)GPS接收機(jī)作業(yè),無(wú)須與基準(zhǔn)站聯(lián)合觀測(cè),即可獲得高精度絕對(duì)坐標(biāo),為測(cè)控設(shè)備精度鑒定比對(duì)標(biāo)準(zhǔn)數(shù)據(jù)的獲取提供了新的解決方案。本文對(duì)PPP關(guān)鍵技術(shù)進(jìn)行了詳細(xì)分析,并在此基礎(chǔ)上設(shè)計(jì)實(shí)現(xiàn)了基于PPP技術(shù)的測(cè)控設(shè)備精度鑒定系統(tǒng),且利用動(dòng)態(tài)實(shí)測(cè)數(shù)據(jù)對(duì)PPP技術(shù)應(yīng)用于測(cè)控設(shè)備精度鑒定的可行性進(jìn)行了論證。
在精密單點(diǎn)定位中,影響其定位結(jié)果的主要誤差源可以分為3類。如表1所示。
為獲取高精度定位結(jié)果,必須盡可能地消除各種誤差的影響。精密單點(diǎn)定位中誤差處理主要有兩種途徑:①能夠使用模型準(zhǔn)確描述的誤差源,采用盡可能精確的模型進(jìn)行改正,如衛(wèi)星姿態(tài)引起的誤差,相對(duì)論效應(yīng),地球形變等;②對(duì)于目前還無(wú)法精確模型化的誤差將其作為未知參數(shù)參與估計(jì),如對(duì)流層延遲濕分量。此外,精密單點(diǎn)定位中的各種誤差改正模型都應(yīng)該與IGS數(shù)據(jù)產(chǎn)品所采用的模型保持一致,否則會(huì)帶來(lái)精度損失[4]。
表1 主要誤差源
數(shù)據(jù)預(yù)處理的任務(wù)之一是探測(cè)出GPS觀測(cè)數(shù)據(jù)中的粗差和周跳,剔除粗差、標(biāo)記周跳位置,參數(shù)估計(jì)時(shí)在相應(yīng)的位置增加一個(gè)模糊度參數(shù)。本文采用綜合TurboEdit法對(duì)粗差和周跳進(jìn)行探測(cè)。
1990年美國(guó)學(xué)者Geoffrey Blewitt提出用雙頻載波相位和P碼的線性組合進(jìn)行周跳和粗差探測(cè)的方法,稱為 TurboEdit方法[5]。TurboEdit方法進(jìn)行周跳探測(cè)的過程可分為以下兩個(gè)步驟。
1)MW(Melbourne-Wubbena)組合進(jìn)行粗差和周跳探測(cè)。
MW組合觀測(cè)量bδ可表示如下
式中,φ1,φ2為兩個(gè)頻率的載波相位觀測(cè)量。MW組合消除了幾何距離部分,同時(shí)不受電離層、對(duì)流層、衛(wèi)星鐘差、接收機(jī)鐘差和其他系統(tǒng)誤差影響,只剩下模糊度項(xiàng)。在沒有周跳的情況下,bδ表現(xiàn)為一變化約為1~2周的近似常量。采用遞推的方法求bδ的平均值<bδ>i和均方根誤差σi
式中,bδ,i為第i歷元的MW組合觀測(cè)量。利用下面的公式可以進(jìn)行粗差和周跳的判斷。
若式(4)成立且式(5)不成立,則認(rèn)為i-1和i歷元之間有周跳;若兩式都成立,則認(rèn)為第i歷元存在粗差。很顯然,當(dāng)兩個(gè)載波觀測(cè)量發(fā)生相同大小的周跳時(shí),上述方法無(wú)法探測(cè)出周跳。
2)電離層組合(Ionospheric Combination)探測(cè)周跳。
電離層組合可定義如下
式中,ΔI為兩個(gè)頻率的電離層延遲之差;ΦI,PI為電離層組合相位和碼。碼的觀測(cè)噪聲較大,因此不能直接用ΦI,PI進(jìn)行周跳探測(cè)。對(duì)于MW組合探測(cè)沒有周跳的數(shù)據(jù)段,先對(duì)PI(i)進(jìn)行多項(xiàng)式擬合生成Qi,多項(xiàng)式階數(shù)M=min( N/100+1,6)。其中,N為該數(shù)據(jù)段的歷元個(gè)數(shù)。通過以下關(guān)系式來(lái)判斷粗差和周跳。
若(8)式和(9)式同時(shí)成立,則認(rèn)為第i歷元有周跳;若僅(8)式成立就認(rèn)為第i歷元存在粗差。其中k為閾值系數(shù),Blewitt建議根據(jù)觀測(cè)地區(qū)的電離層狀況來(lái)確定,通??梢匀=6。
本文使用遞歸最小二乘進(jìn)行參數(shù)估計(jì)。其核心思想是分類處理不同的參數(shù)。遞歸最小二乘有別于傳統(tǒng)的最小二乘方法,它通過靈活的參數(shù)分類和消去技術(shù),保證了運(yùn)算的高效,同時(shí)又不需要考慮系統(tǒng)的狀態(tài)方程[7-8]。
將精密單點(diǎn)定位中所有的待估參數(shù)分為兩類,設(shè)為X和Y向量。其中,X向量包含測(cè)站坐標(biāo)、接收機(jī)鐘差參數(shù);Y向量包括模糊度參數(shù)及天頂對(duì)流層延遲;P為權(quán)矩陣。觀測(cè)方程可重新描述如下
采用消參數(shù)法將X從觀測(cè)方程(10)中消去,得到式(10)的法方程
定義Z=N21N-111,將式(11)進(jìn)行變換得到
式中
令
式(13)可表示為
令
得到新的法方程
上述新的法方程等價(jià)于構(gòu)成一個(gè)新的觀測(cè)方程
式(18)中只剩下Y向量,即只包含了模糊度參數(shù)和對(duì)流層延遲改正參數(shù),消除了包含測(cè)站坐標(biāo)和衛(wèi)星鐘差的X向量。同時(shí)L觀測(cè)量及其權(quán)陣保持不變。因此,可以首先估計(jì)出Y向量后,再由下式估計(jì)X向量
因此,通過對(duì)上述參數(shù)分類遞歸處理,可以大大提高數(shù)據(jù)處理的速度。
4.PPP數(shù)據(jù)處理流程
PPP算法流程如圖1所示。
圖1 PPP算法流程圖
精度鑒定系統(tǒng)為被鑒定設(shè)備提供比對(duì)標(biāo)準(zhǔn)數(shù)據(jù),并為機(jī)組人員及地面測(cè)量設(shè)備提供導(dǎo)航信息,主要分為機(jī)載測(cè)量分系統(tǒng)、機(jī)載導(dǎo)航分系統(tǒng)、數(shù)據(jù)處理分系統(tǒng)、地面航路顯示分系統(tǒng)。其組成如圖2所示。
圖2 精度鑒定系統(tǒng)組成
圖3為精度鑒定系統(tǒng)應(yīng)用模式。其中,飛機(jī)平臺(tái)搭載GPS測(cè)量設(shè)備和合作目標(biāo),機(jī)載測(cè)量分系統(tǒng)完成觀測(cè)數(shù)據(jù)采集并為機(jī)載導(dǎo)航分系統(tǒng)和地面航路顯示分系統(tǒng)提供導(dǎo)航信息。數(shù)據(jù)處理分系統(tǒng)由PPP數(shù)據(jù)處理軟件、精度鑒定綜合數(shù)據(jù)處理軟件、計(jì)算機(jī)等構(gòu)成。PPP數(shù)據(jù)處理軟件利用機(jī)載測(cè)量分系統(tǒng)采集的觀測(cè)數(shù)據(jù)解算出合作目標(biāo)在飛行航路上的位置信息,并作為比對(duì)標(biāo)準(zhǔn)數(shù)據(jù)提交給綜合數(shù)據(jù)處理軟件,完成對(duì)測(cè)控設(shè)備動(dòng)態(tài)精度的分析。
圖3 精度鑒定系統(tǒng)應(yīng)用模式
采用機(jī)載和船載實(shí)測(cè)數(shù)據(jù)進(jìn)行試驗(yàn)分析,將NovAtel公司GrafNav 7.8軟件載波相位動(dòng)態(tài)相對(duì)定位的結(jié)果作為“真值”,并將精密單點(diǎn)定位結(jié)果與“真值”比較,通過統(tǒng)計(jì)ENU 3個(gè)方向的均方根誤差RMS和最大誤差MAX來(lái)評(píng)價(jià)PPP定位結(jié)果的外符合精度。
收集了一個(gè)航空測(cè)量試驗(yàn)的GPS實(shí)測(cè)數(shù)據(jù),數(shù)據(jù)采樣間隔為1 s,歷時(shí)2 h。圖4和圖5的分別顯示了飛機(jī)的平面飛行軌跡和高程變化曲線。飛機(jī)的機(jī)動(dòng)情況體現(xiàn)了航空測(cè)量的實(shí)際,具有典型性。
圖4 飛機(jī)平面運(yùn)行軌跡
圖5 飛機(jī)運(yùn)行高程變化
圖6顯示了機(jī)載動(dòng)態(tài)精密單點(diǎn)定位解算結(jié)果與“真值”比較在ENU 3個(gè)方向的差值,結(jié)果統(tǒng)計(jì)如表2所示。
圖6 動(dòng)態(tài)PPP解算結(jié)果與雙差解坐標(biāo)在NEU方向上的差值
表2 定位誤差統(tǒng)計(jì) m
NEU方向的 RMS 值依次為:0.024 m、0.030 m、0.096m;平面方向精度為4 cm,高程方向精度為12 cm。
海上測(cè)量GPS數(shù)據(jù)來(lái)自于我國(guó)東部某近海海域的海上測(cè)量實(shí)驗(yàn)。數(shù)據(jù)采樣間隔為1 s,歷時(shí)2 h,在岸邊架設(shè)有基準(zhǔn)站,實(shí)驗(yàn)船的航行路線見圖7~圖8所示。
圖7 平面運(yùn)行軌跡
圖8 高程變化
PPP動(dòng)態(tài)解算結(jié)果與“真值”比較在ENU 3個(gè)方向的差值如圖9和表3所示。NEU方向的RMS值依次為:0.033 m、0.072m、0.120 m;平面方向經(jīng)度為8 cm,高程方向精度為12 cm。
表3 定位誤差統(tǒng)計(jì) m
圖9 船載動(dòng)態(tài)PPP解算精度
通過以上機(jī)載和船載實(shí)測(cè)數(shù)據(jù)試驗(yàn)分析結(jié)果表明:精密單點(diǎn)定位解算結(jié)果與差分定位結(jié)果符合程度良好,其定位精度遠(yuǎn)高于被鑒定設(shè)備,可應(yīng)用于測(cè)控設(shè)備精度鑒定試驗(yàn),為其提供標(biāo)準(zhǔn)比對(duì)數(shù)據(jù)。
本文探討了GPS非差精密單點(diǎn)定位關(guān)鍵技術(shù),設(shè)計(jì)開發(fā)了基于GPS精密單點(diǎn)定位技術(shù)的測(cè)控設(shè)備精度鑒定系統(tǒng),對(duì)大量實(shí)例數(shù)據(jù)進(jìn)行了試驗(yàn)與分析,結(jié)果表明:GPS精密單點(diǎn)定位精度能滿足工程需求,其簡(jiǎn)單、高效、低成本的作業(yè)方式為測(cè)控設(shè)備精度鑒定提供了新的解決方案。
[1]解海中,張守信,董旭榮,等.航天測(cè)控設(shè)備GPS精度鑒定方法研究[J].指揮技術(shù)學(xué)院學(xué)報(bào),1999,10(3):30-36.
[2]ZHANG X.Precise Point Positioning Evaluation and Airborne Lidar Calibration[R].Danish National Space Center,2005.
[3]袁修孝,付建紅,樓益棟.基于精密單點(diǎn)定位技術(shù)的GPS輔助空中三角測(cè)量[J].測(cè)繪學(xué)報(bào),2007,36(3):252-255.
[4]KOUBA J.A Guide to Using International GPS Service(IGS)Products[EB/OL].ftp:∥igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf.
[5]BLEWITTG.An Automatic Editing Algorithm for GPSData[J].Geophysical Research Letter,1990,17(3):199-202.
[6]劉基余.GPS衛(wèi)星導(dǎo)航原理與定位方法[M].2版.北京:測(cè)繪出版社,2008.
[7]魏子卿,葛茂榮.GPS相對(duì)定位的數(shù)學(xué)模型[M].北京:測(cè)繪出版社,1997:182.
[8]GOAD C C,CHADWELL C D.Investigation for Improving GPS Orbits Using a Discrete Sequential Estimator and Stochastic Models Of Selected Physical Processes[R].Greenbelt,Maryland:Goddard Space Flight Center,1993:42.