• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲烷晶體的晶格能和彈性性質(zhì):不同方法及泛函的評估

    2012-12-12 02:42:08鄭朝陽趙紀軍
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:遼寧大連大連理工大學(xué)工程學(xué)院

    鄭朝陽 趙紀軍

    (大連理工大學(xué)物理與光電工程學(xué)院,高科技研究院,遼寧大連116024)

    1 Introduction

    Dispersion interaction is originated from the interaction between the instantaneous dipoles of nearby atoms or molecules. It continues to be a challenge for theoretical chemistry and solid state physics.1Although the strength of dispersion force is much weaker than those of covalent,metallic,or ionic bonding,the van der Waals(vdW)interaction becomes dominant in the condensed phases of rare gases,molecular crystals,layered solids(like graphite),etc.Till now,the computational physicists and computational chemists have made significant efforts to an accurate description of the dispersion interaction.2-5Due to the lack of long-range correlation,the standard density functional theory(DFT)methods based on local density approximation(LDA)or generalized gradient approximation(GGA) were shown to be insufficient to describe vdW interaction.For instance,Johnson and DiLabio3examined six DFT functionals for predicting binding energies and structure for 28 vdW dimmers and found that no standard DFT method can provide a consistently accurate treatment of dispersion-bound complexes.Zhao and Truhlar5assessed forty DFT functionals for noncovalent interaction energies of biological importance.They showed that B3LYP and PBE0 functionals fail to describe the interactions in the dispersion-dominated complexes.

    Recently,there have been some attempts of adding dispersive interaction into the standard density functional theory,for example,the DFT with dispersion energy correction(DFT-D) methods.In a pioneering work,Gianturco et al.6investigated the interaction between Ar and CO using standard DFT calculation combined with a damped dispersion energy.Wu and Yang7implemented the vdW energy correction into DFT calculations and studied the effect of the damping functions and the DFT functionals.Grimme and co-workers8-10systematically studied the empirical correction to account for vdW interactions within DFT functionals and they developed a series of DFT-D methods(DFT-D2 and DFT-D3),which have been widely used in the present research.They applied these methods to study hydrogen-bonded complexes,non-aromatic complexes,benzene complexes,complexes of larger aromatic molecules and DNA base pairs.For example,the mean absolute deviation of heat of formation for G97/2 set is only 3.8 kcal·mol-1(15.9 kJ· mol-1).9Ortmann et al.11developed a semiempirical method based on a few simple assumptions that corrects DFT-GGA by including dispersion forces.The semiempirical vdW-corrected GGA functional was applied to crystalline systems such as graphite,hexagonal boron nitride(h-BN)and rare-gas solid, molecular and dimerized systems to probe the universality and transferability of this correction.Recently,Tkatchenko and Scheffler12presented an accurate method to obtain molecular C6coefficients of potential form C6R-6(R represents the distance between two interacted atoms)from ground-state electron density and reference values for the free atom.They found that the C6coefficients depended strongly on the bonding environment of an atom.In general,DFT-D method shows asymptotically correct and can be easily combined with standard or other exchange-correction functionals.13

    The dimer and solid of methane serve as ideal prototype systems to study the vdW interaction because the CH4molecule possesses close-shell electron configuration with totally eight valence electrons and carries no permanent dipole moment.In other words,the interaction between methane molecules is purely vdW force due to induced dipole-induced interaction. Previously,Tsuzuki et al.14-18carried out a series of studies on the nonbonding interactions of methane dimer using various theoretical methods,including the Hartree-Fock(HF)theory, the second-order and fourth-order M?ller-Plesset perturbation theories(MP2 and MP4),the coupled-cluster theory with singles,doubles,and perturbative triples excitations(CCSD(T)), and the density functional theory.They found that MP4 (SDTQ)was close to CCSD(T)for electron correlation energies and dispersion interaction was not covered by DFT methods using BLYP,BPW91,and B3LYP functionals.16Li and Chao19calculated the intermolecular potentials of the methane dimer at the most stable D3dconformation with M?ller-Plesset perturbation theory and density functional theory.

    In addition to methane dimer,methane solid has been studied both experimentally and theoretically.Using X-ray diffraction(XRD)technology,Hazen et al.20measured the lattice parameters of crystalline methane under high pressures(up to 5.21 GPa)and determined the isothermal bulk modulus((4.9± 0.9)GPa)from the first-order Murnaghan equation of state.Bini and Pratesi21constructed a phase diagram for solid methane using high-pressure infrared spectra up to 30 GPa between 50 and 300 K.Thermodynamic properties of CH4and heavy methane(CD4)have been studied experimentally by Colwell and co-workers.22They accounted for the apparent zero-point entropies and the mechanism of thermal transitions of both solid CH4and CD4.Press23also studied the structure and phase transitions of solid CD4using XRD technology.Shimizu et al.24studied the pressure effect on rotation-translation via high-pressure elastic properties of liquid and solid methane using Brillouin spectroscopy.Nakahata et al.25performed the XRD measurements for solid methane up to 13 GPa and revealed that the high-pressure structure of solid methane is rhombohedral with a bulk modulus of 7.9 GPa

    On the theoretical side,the cohesive energy and crystal structure of solid methane have been studied using different computational methods by Kimel et al.26and Kunz,27respectively. Kimel et al.calculated the possible structures of solid methane using the intermolecular potential consisting of repulsive and attractive interactions between nonbonded atoms.They obtained the best structure of symmetry D3dand other properties of solid methane with distortion.Kunz27simulated the cohesive properties,electronic structure,and optical properties of solid methane using local orbital approach and many body perturbation theory(MBPT)based on Hartree-Fock method and was able to predict the accurate lattice parameter and the binding energy.The phase transition28,29and electronic band structure30,31of solid methane have also been studied by several groups.

    Despite of the above efforts,there were only few studies of the vdW interaction in molecular crystals using DFT-D functionals.32-34The performance of the popular DFT functionals and DFT-D functionals for the solid methane as a prototype vdW system is crucial to the further applications of these theoretical methods in the other molecular crystals.In this paper, we investigate the intermolecular interaction in terms of lattice energy,lattice constant,and bulk modulus of solid methane using different functionals.The comparison of our theoretical results with experiments provides very useful information for the validity of these DFT methods.

    2 Computational methods

    The crystalline structure of solid methane(Fig.1)is an fcc lattice with four CH4molecules per unit cell,with the central carbon atom of CH4sitting on each lattice point.DFT calculations were performed using planewave pseudopotential techniqueasimplemented in theCASTEP program.35The norm-conserving pseudopotentials36were adopted to describe the ion-electron interactions.The energy cutoff of planewave was set to 750 eV and the Brillouin zone was sampled by a 3× 3×3 k point mesh.Our test calculations show that further raising the cutoff energy or the number of k points leads to only minor changes on the computational results.

    Fig.1 Atomic structure of solid methane(perspective view)of fcc lattice

    Here we used a variety of density functionals for describing the exchange correction interaction.They can be categorized into four types:(i)CA-PZ37,38within local density approximation(LDA);(ii)standard(pure)PBE,39RPBE,40PW91,41and WC42functionals within generalized gradient approximation (GGA);(iii)hybrid sX-LDA,43B3LYP,44,45and PBE046functionals;(iv)DFT-D schemes including the DFT-Grimme by Grimme,8DFT-OBS by Ortmann,Bechstedt and Schmidt,11and DFT-TS by Tkatchenko and Scheffler.12

    For a molecular crystal,the strength of intermolecular interaction can be characterized by the lattice energy47defined as:

    where Elattis the lattice energy per molecule,Ecrysis the total energy per unit cell of the crystal,n is the number of molecules per unit cell,and Emolis the total energy of the gas phase molecule.

    The bulk modulus(B)was calculated using the following third-order Birch-Murnaghan equation of state(EOS)48for thecurve:

    where the volume(V)is determined by V=a3for cubic systems, V0represents the volume at the energy minimum E0,B?is the derivative of the bulk modulus at the zero pressure,which was set as 4.0.

    3 Results and discussion

    Table 1 summarizes the theoretical lattice energy(Elatt),lattice parameter(a),and bulk modulus(B)of solid methane obtained from different DFT methods,along with experimental data.27Fig.2 shows several representative curves of lattice ener-gy versus lattice parameter for selected DFT methods.Fig.3 compares the lattice energies and bulk modulus calculated by different functionals with experimental value.

    Table 1 Lattice parameter(a),lattice energy(Elatt),and bulk modulus(B)of solid methane calculated from different DFT functionals and experiments

    Clearly,most of standard GGA functionals except PW91 functional significantly underestimate intermolecular interaction.For example,the lattice energy obtained from PBE functional is 0.026 eV,which is only about 22%of the experiment value of 0.117 eV.27The smallest binding strength(Elatt=0.014 eV)is predicted by the WC functional.Among those pure GGAfunctionals considered,PW91 yields the largest lattice energy of 0.053 eV,which is about half of the experimental strength.Previously,Tsuzuki and Lüthi49also found that PW91 can partially give the description of the dispersion interactions. In contrast,LDA overestimates the intermolecular lattice energy of solid methane by 45%.These results are in agreement with previous studies by Slough and Perger,34who found that the B3LYP-D potential showed promise for prediction of structure and elastic properties in molecular crystals.

    As for the hybrid functionals,some of them(such as PBE0, B3LYP,and HF-LDA)show no maximum lattice energy on the binding curve,indicating that the solid methane described by these methods is not even locally stable.On the contrary, sX-LDA yields large lattice energy of 0.231 eV,severely overestimated the CH4-CH4interaction by about twice of magnitude with regard to experiment.

    Since all above functionals can not describe the binding interaction in the molecular solid well,they are not able to give reasonable lattice parameters of solid methane.Accordingly, most pure and hybrid GGA functionals overestimate the lattice parameter,while LDA and sX-LDA underestimate.For example,PBE functional predicts a lattice parameter of 0.6526 nm, while LDA gives 0.5535 nm,compared with the experiment value of 0.5989 nm.27

    The most exciting result is that some DFT-D methods(such as PBE-TS,PBE-Grimme,PBE0-TS,and B3LYP-TS)give better description of intermolecular interaction than those stan-dard DFT methods.Among them,the lattice energies predicted by the PBE0-TS(0.1 eV)and PBE-Grimme(0.134 eV)are closest to the experiment value(0.117 eV).27However,as shown in Table 1 and Fig.3,some DFT-D functionals like PW91-OBS and LDA-OBS overcorrects the binding properties severely and yields too large lattice energies(0.736 or 1.162 eV).Meanwhile,all DFT-D methods underestimate lattice parameter of solid methane(see Table 1).In particular,the DFT-D methods which overestimate the lattice energy also underestimate the lattice parameter severely.For instance,the lattice parameter from PW91-OBS functional is 0.5051 nm, which is 15.7%smaller than experimental value of 0.5989 nm.27Among the methods considered,the lattice constants from sX-LDA,PBE-TS,PBE0-TS are relatively closer to experiment,with deviation of about 4%.

    Fig.2 Lattice energy versus cell parameter of solid methane for selected DFT methodsThe lines are connecting these data points simply,and the open circle dot is the experimental values.27

    Fig.3 Lattice energies(a)and bulk modulus(b)of solid methane calculated using different DFT functionalsThe experiment value of 0.117 eV27for lattice energy and 4.9 GPa20for bulk modulus were marked by dashed lines.

    Since the intermolecular interaction is rather weak,there is no noticeable difference in the geometry parameters in the gas-phase molecule and solid methane described with the same functional.For example,the C―H bond length is 0.1091 nm for both individual methane molecule and solid methane from calculation using PBE functional,which is in good agreement with the experimentally spectroscopic data of(0.1086± 0.0001)nm for CH4molecule.40

    To ensure a good description of intermolecular vdW force,it is crucial to examine the performance of the DFT methods for a molecular solid under high-pressure compression,which corresponds to shorter intermolecular distance.For each DFT method,we computed the Elatt-a curve and fitted the Birch-Murnaghan equation of state to obtain the bulk modulus B.The calculated bulk moduli are listed in Table 1.One can see that all pure GGA functionals underestimate the bulk modulus of solid methane because they underestimate the bonding property of weak interactions system.For example,the bulk modulus of solid methane using PBE functional is only 1.02 GPa,compared to the experiment value of(4.9±0.9)GPa.20Naturally, those functionals that overestimate the binding properties of solid methane,such as LDA,PW91-OBS,and LDA-OBS,also overestimate the bulk modulus.Again,the PBE0-TS and PBEGrimme methods yield reasonable values of 5.06 and 5.85 GPa,respectively,which agree satisfactorily with experiment value.20In addition,the bulk modulus(5.60 GPa)given by PBE-TS calculation is also acceptable.

    4 Conclusions

    In the present study,we examined the description of vdW interactions in a prototype molecular solid of methane by a variety of DFT methods,including LDA,standard GGA,hybrid GGA,and DFT-D.The lattice constant,lattice energy,and bulk modulus of solid methane were calculated using different DFT methods and compared with experimental data.Without dispersion correction,LDA as well as pure or hybrid GGA fail to reproduce the intermolecular vdW interaction of solid methane. Our calculations show that the PBE0-TS and PBE-Grimme functionals are able to describe the vdW interaction of solid methane well,and the performance of PBE-TS is also acceptable.Considering the high computational cost of the hybrid DFT functional like PBE0,dispersion-corrected PBE functionals,such as PBE-Grimme and PBE-TS are recommended as the reasonable choice for studying the vdW solid.

    (1) Dobson,J.F.;McLennan,K.;Rubio,A.;Wang,J.;Gould,T.; Le,H.M.;Dinte,B.P.Aust.J.Chem.2001,54(8),513.doi: 10.1071/CH01052

    (2) Johnson,B.;Gill,P.;Pople,J.J.Chem.Phys.1993,98(7), 5612.doi:10.1063/1.464906

    (3) Johnson,E.R.;DiLabio,G.A.Chem.Phys.Lett.2006,419 (4-6),333.doi:10.1016/j.cplett.2005.11.099

    (4) Zhang,Y.;Pan,W.;Yang,W.J.Chem.Phys.1997,107(19), 7921.doi:10.1063/1.475105

    (5) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2006,3(1), 289.

    (6) Gianturco,F.A.;Paesani,F.;Laranjeira,M.F.;Vassilenko,V.; Cunha,M.A.J.Chem.Phys.1999,110(16),7832.doi:10.1063/ 1.478690

    (7)Wu,Q.;Yang,W.J.Chem.Phys.2002,116(2),515.doi: 10.1063/1.1424928

    (8) Grimme,S.J.Comput.Chem.2004,25(12),1463.doi:10.1002/ jcc.20078

    (9) Grimme,S.J.Comput.Chem.2006,27(15),1787.doi:10.1002/ jcc.20495

    (10) Grimme,S.;Antony,J.;Ehrlich,S.;Krieg,H.J.Chem.Phys. 2010,132(15),154104.doi:10.1063/1.3382344

    (11) Ortmann,F.;Bechstedt,F.;Schmidt,W.G.Phys.Rev.B 2006, 73(20),205101.doi:10.1103/PhysRevB.73.205101

    (12) Tkatchenko,A.;Scheffler,M.Phys.Rev.Lett.2009,102(7), 073005.doi:10.1103/PhysRevLett.102.073005

    (13) Grimme,S.Wires Comput.Mol.Sci.2011,1(2),211.doi: 10.1002/wcms.30

    (14) Tsuzuki,S.;Tanabe,K.J.Phys.Chem.1991,95(6),2272.doi: 10.1021/j100159a032

    (15)Tsuzuki,S.;Uchimaru,T.;Mikami,M.;Tanabe,K.J.Phys. Chem.A 1998,102(12),2091.doi:10.1021/jp973467d

    (16) Tsuzuki,S.;Uchimaru,T.;Tanabe,K.Chem.Phys.Lett.1998, 287(1-2),202.doi:10.1016/S0009-2614(98)00159-6

    (17)Tsuzuki,S.;Uchimaru,T.;Tanabe,K.Chem.Phys.Lett.1998, 287(3-4),327.doi:10.1016/S0009-2614(98)00193-6

    (18) Tsuzuki,S.;Uchimaru,T.;Tanabe,K.;Kuwajima,S.J.Phys. Chem.1994,98(7),1830.

    (19) Li,A.H.T.;Chao,S.D.J.Chem.Phys.2006,125(9),094312. doi:10.1063/1.2345198

    (20) Hazen,R.;Mao,H.;Finger,L.;Bell,P.Appl.Phys,Lett.1980, 37(3),288.doi:10.1063/1.91909

    (21) Bini,R.;Pratesi,G.Phys.Rev.B 1997,55(22),14800.doi: 10.1103/PhysRevB.55.14800

    (22) Colwell,J.;Gill,E.;Morrison,J.J.Chem.Phys.1964,40(7), 2041.doi:10.1063/1.1725446

    (23) Press,W.J.Chem.Phys.1972,56(6),2597.doi:10.1063/ 1.1677586

    (24) Shimizu,H.;Nakashima,N.;Sasaki,S.Phys.Rev.B 1996,53 (1),111.doi:10.1103/PhysRevB.53.111

    (25)Nakahata,I.;Matsui,N.;Akahama,Y.;Kawamura,H.Chem. Phys.Lett.1999,302(3-4),359.doi:10.1016/S0009-2614(99) 00092-5

    (26) Kimel,S.;Ron,A.;Hornig,D.J.Chem.Phys.1964,40(11), 3351.doi:10.1063/1.1725006

    (27) Kunz,A.B.J.Phys.Condens.Mat.1994,6(17),L233.

    (28) Spanu,L.;Donadio,D.;Hohl,D.;Galli,G.J.Chem.Phys. 2009,130(16),164520.doi:10.1063/1.3120487

    (29)Yamamoto,T.;Kataoka,Y.Phys,Rev.Lett.1968,20(1),1.doi: 10.1103/PhysRevLett.20.1

    (30) Kunz,A.B.Phys.Rev.B 1974,9(12),5330.doi:10.1103/ PhysRevB.9.5330

    (31) Piela.L.;Pietronero,L.;Resta,R.Phys.Rev.B 1973,7(12), 5321.doi:10.1103/PhysRevB.7.5321

    (32) Bucko,T.S.;Hafner,J.R.;Lebègue,S.B.;ángyán,J.N.G. J.Phys.Chem.A 2010,114(43),11814.doi:10.1021/ jp106469x

    (33) Shimojo,F.;Wu,Z.;Nakano,A.;Kalia,R.K.;Vashishta,P. J.Chem.Phys.2010,132(9),094106.doi:10.1063/1.3336452

    (34) Slough,W.;Perger,W.F.Chem.Phys.Lett.2010,498(1-3), 97.doi:10.1016/j.cplett.2010.08.049

    (35) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert, M.I.J.;Refson,K.;Payne,M.C.Zeitschrift für Kristallographie 2005,220(5-6),567.doi:10.1524/ zkri.220.5.567.65075

    (36) Hamann,D.R.;Schlüter,M.;Chiang,C.Phys,Rev.Lett.1979, 43(20),1494.doi:10.1103/PhysRevLett.43.1494

    (37) Ceperley,D.M.;Alder,B.J.Phys.Rev.Lett.1980,45(7),566. doi:10.1103/PhysRevLett.45.566

    (38) Perdew,J.P.;Zunger,A.Phys.Rev.B 1981,23(10),5048.doi: 10.1103/PhysRevB.23.5048

    (39) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.doi:10.1103/PhysRevLett.77.3865

    (40) Hammer,B.;Hansen,L.B.;N?rskov,J.K.Phys.Rev.B 1999, 59(11),7413.doi:10.1103/PhysRevB.59.7413

    (41) Perdew,J.P.;Wang,Y.Phys.Rev.B 1992,45,13244. doi:10.1103/PhysRevB.45.13244

    (42) Wu,Z.;Cohen,R.E.Phys.Rev.B 2006,73(23),235116.doi: 10.1103/PhysRevB.73.235116

    (43) Seidl,A.;G?rling,A.;Vogl,P.;Majewski,J.A.;Levy,M.Phys. Rev.B 1996,53(7),3764.doi:10.1103/PhysRevB.53.3764

    (44) Becke,A.D.J.Chem.Phys.1993,98(7),5648.doi:10.1063/ 1.464913

    (45) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37(2),785. doi:10.1103/PhysRevB.37.785

    (46)Adamo,C.;Barone,V.J.Chem.Phys.1999,110(13),6158. doi:10.1063/1.478522

    (47)Perger,W.F.;Pandey,R.;Blanco,M.A.;Zhao,J.Chem.Phys. Lett.2004,388(1-3),175.doi:10.1016/j.cplett.2004.02.100

    (48) Birch,F.Phys.Rev.1947,71(11),809.

    (49) Tsuzuki,S.;Lüthi,H.P.J.Chem.Phys.2001,114(9),3949. doi:10.1063/1.1344891

    (50) Gray,D.L.;Robiette,A.G.Mol.Phys.1979,37(6),1901.doi: 10.1080/00268977900101401

    猜你喜歡
    遼寧大連大連理工大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    福建工程學(xué)院
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    福建工程學(xué)院
    孫子垚
    偽隨機碼掩蔽的擴頻信息隱藏
    “白草莓”亮相遼寧大連
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    亚洲激情在线av| 国产成人av教育| 日韩三级视频一区二区三区| 国产深夜福利视频在线观看| 99国产精品99久久久久| bbb黄色大片| 久久亚洲真实| 国产精品香港三级国产av潘金莲| 麻豆一二三区av精品| 国产麻豆69| 久久久精品欧美日韩精品| 韩国精品一区二区三区| 久久精品国产综合久久久| 国产97色在线日韩免费| 在线看a的网站| 久热这里只有精品99| 亚洲专区字幕在线| 看片在线看免费视频| 窝窝影院91人妻| 一本综合久久免费| 欧美精品啪啪一区二区三区| 99久久99久久久精品蜜桃| 黄色片一级片一级黄色片| 99热只有精品国产| 国产一区在线观看成人免费| 免费少妇av软件| 另类亚洲欧美激情| 乱人伦中国视频| 亚洲专区国产一区二区| 欧美 亚洲 国产 日韩一| 久久精品91无色码中文字幕| 国产一区二区在线av高清观看| 久久久国产欧美日韩av| 国产三级在线视频| 大型黄色视频在线免费观看| 精品卡一卡二卡四卡免费| 一边摸一边抽搐一进一小说| www.999成人在线观看| 亚洲第一青青草原| 亚洲国产毛片av蜜桃av| 精品国产国语对白av| www国产在线视频色| av网站免费在线观看视频| 宅男免费午夜| 麻豆久久精品国产亚洲av | a级毛片黄视频| 中文字幕最新亚洲高清| 后天国语完整版免费观看| 视频区欧美日本亚洲| 国产在线观看jvid| 少妇 在线观看| 免费av中文字幕在线| 国产国语露脸激情在线看| 真人一进一出gif抽搐免费| 久久亚洲真实| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 亚洲av片天天在线观看| 好看av亚洲va欧美ⅴa在| 精品福利观看| 人人妻,人人澡人人爽秒播| 久久精品aⅴ一区二区三区四区| 亚洲成人国产一区在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日韩 欧美 亚洲 中文字幕| 久久人人爽av亚洲精品天堂| 欧美人与性动交α欧美精品济南到| 久久99一区二区三区| 亚洲九九香蕉| 中文欧美无线码| 在线观看免费午夜福利视频| 极品人妻少妇av视频| 免费不卡黄色视频| 波多野结衣一区麻豆| 日本a在线网址| 国产亚洲精品久久久久5区| 黑丝袜美女国产一区| 国产精品久久久人人做人人爽| 另类亚洲欧美激情| 男女做爰动态图高潮gif福利片 | 日本一区二区免费在线视频| 国产欧美日韩一区二区精品| 欧美精品一区二区免费开放| 90打野战视频偷拍视频| 999久久久精品免费观看国产| 精品少妇一区二区三区视频日本电影| 侵犯人妻中文字幕一二三四区| 国产亚洲av高清不卡| 真人做人爱边吃奶动态| 可以免费在线观看a视频的电影网站| 国产精品偷伦视频观看了| 午夜亚洲福利在线播放| 久久久水蜜桃国产精品网| av视频免费观看在线观看| 亚洲精品一区av在线观看| 天堂俺去俺来也www色官网| 中文字幕av电影在线播放| 黄片播放在线免费| 久久久国产一区二区| 如日韩欧美国产精品一区二区三区| 午夜福利在线免费观看网站| 男女做爰动态图高潮gif福利片 | 久久久国产成人精品二区 | 精品久久久精品久久久| 国产日韩一区二区三区精品不卡| 老司机午夜十八禁免费视频| 日韩高清综合在线| 国产乱人伦免费视频| 69精品国产乱码久久久| 国产三级黄色录像| 神马国产精品三级电影在线观看 | a级毛片在线看网站| 黄色视频,在线免费观看| 亚洲中文av在线| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 亚洲国产毛片av蜜桃av| av欧美777| 亚洲男人天堂网一区| 一区福利在线观看| 91成人精品电影| 黄色 视频免费看| 国产精品影院久久| 免费看a级黄色片| 欧美在线黄色| 亚洲精品一二三| 日韩精品免费视频一区二区三区| 美女午夜性视频免费| 亚洲av美国av| 久久精品人人爽人人爽视色| 中亚洲国语对白在线视频| 国产成人av教育| 精品日产1卡2卡| 99久久国产精品久久久| 久久人妻福利社区极品人妻图片| 日韩欧美一区二区三区在线观看| 国产精品二区激情视频| 亚洲性夜色夜夜综合| 最近最新中文字幕大全免费视频| 久久久水蜜桃国产精品网| 美女午夜性视频免费| www.自偷自拍.com| 999久久久精品免费观看国产| 久热爱精品视频在线9| 超碰成人久久| 黑人操中国人逼视频| 国产99久久九九免费精品| 免费在线观看日本一区| 亚洲avbb在线观看| 日韩欧美在线二视频| 天堂影院成人在线观看| 亚洲精品国产精品久久久不卡| 亚洲激情在线av| 日韩欧美一区二区三区在线观看| 国产一卡二卡三卡精品| 人人妻人人爽人人添夜夜欢视频| 深夜精品福利| 国产精品av久久久久免费| 高清毛片免费观看视频网站 | 老司机午夜福利在线观看视频| 精品久久久久久电影网| bbb黄色大片| 免费在线观看亚洲国产| 性欧美人与动物交配| 人妻久久中文字幕网| av天堂久久9| 一级毛片精品| 欧美国产精品va在线观看不卡| 三上悠亚av全集在线观看| 一区福利在线观看| 亚洲熟妇熟女久久| 国产一区二区激情短视频| videosex国产| 母亲3免费完整高清在线观看| 视频区图区小说| 首页视频小说图片口味搜索| 桃色一区二区三区在线观看| 久久热在线av| 国产亚洲精品一区二区www| 9热在线视频观看99| 亚洲精品国产区一区二| 韩国精品一区二区三区| 国产xxxxx性猛交| 欧美av亚洲av综合av国产av| 国产一区在线观看成人免费| 成人免费观看视频高清| 69av精品久久久久久| 99精品久久久久人妻精品| 真人一进一出gif抽搐免费| 欧美日韩一级在线毛片| 18禁黄网站禁片午夜丰满| 免费不卡黄色视频| 人妻久久中文字幕网| 成人18禁在线播放| 精品一区二区三区av网在线观看| 亚洲欧美日韩高清在线视频| 一级毛片女人18水好多| 黄色a级毛片大全视频| 激情在线观看视频在线高清| 欧美日韩瑟瑟在线播放| 日日爽夜夜爽网站| 人人妻人人添人人爽欧美一区卜| 免费在线观看日本一区| 看片在线看免费视频| 一本综合久久免费| 国产熟女xx| 热99国产精品久久久久久7| 久久香蕉精品热| 亚洲国产看品久久| 国产av一区二区精品久久| 久久欧美精品欧美久久欧美| 新久久久久国产一级毛片| 欧美不卡视频在线免费观看 | 视频区图区小说| 国产高清videossex| 国产片内射在线| 国产成人av激情在线播放| 女性被躁到高潮视频| 嫩草影视91久久| 亚洲成人国产一区在线观看| 99精国产麻豆久久婷婷| 日韩av在线大香蕉| av超薄肉色丝袜交足视频| 久久久久九九精品影院| 国产成人av教育| svipshipincom国产片| xxxhd国产人妻xxx| 黄色怎么调成土黄色| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 无限看片的www在线观看| 国产精品国产高清国产av| 黄色成人免费大全| 欧美日韩黄片免| 97碰自拍视频| 亚洲成人精品中文字幕电影 | 亚洲,欧美精品.| 国产一区二区激情短视频| 99精国产麻豆久久婷婷| 满18在线观看网站| 国产成人影院久久av| 欧美乱妇无乱码| 99热国产这里只有精品6| 老司机午夜十八禁免费视频| 色综合欧美亚洲国产小说| 国产高清国产精品国产三级| 怎么达到女性高潮| 91在线观看av| 不卡一级毛片| 一a级毛片在线观看| 日韩视频一区二区在线观看| 国产精华一区二区三区| 国产欧美日韩一区二区精品| 亚洲欧洲精品一区二区精品久久久| 高清av免费在线| 一区二区三区国产精品乱码| 在线观看www视频免费| 精品一区二区三卡| 欧美黄色片欧美黄色片| 欧美激情极品国产一区二区三区| 性色av乱码一区二区三区2| 91国产中文字幕| 久久久久国产一级毛片高清牌| 黄色毛片三级朝国网站| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器 | 97超级碰碰碰精品色视频在线观看| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 欧美不卡视频在线免费观看 | 国产精品国产高清国产av| ponron亚洲| 天堂动漫精品| 亚洲精品中文字幕一二三四区| 波多野结衣一区麻豆| 国产精品秋霞免费鲁丝片| 久久青草综合色| 欧美性长视频在线观看| 18禁观看日本| 国产一区二区三区综合在线观看| 欧美成人性av电影在线观看| 久久久久国内视频| 日本vs欧美在线观看视频| 91大片在线观看| 日韩免费高清中文字幕av| 国产无遮挡羞羞视频在线观看| 免费看a级黄色片| 91精品三级在线观看| 最近最新中文字幕大全免费视频| 女人被狂操c到高潮| 亚洲专区字幕在线| 国产成人系列免费观看| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 电影成人av| 很黄的视频免费| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 国产精品亚洲一级av第二区| 亚洲精品美女久久久久99蜜臀| 波多野结衣一区麻豆| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 午夜福利在线免费观看网站| 黄色片一级片一级黄色片| 高清av免费在线| 国产1区2区3区精品| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 欧美在线一区亚洲| www.精华液| 久久久久久免费高清国产稀缺| 亚洲熟妇中文字幕五十中出 | 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 69av精品久久久久久| 精品久久久久久电影网| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 午夜福利免费观看在线| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 亚洲av电影在线进入| 一级作爱视频免费观看| 日本三级黄在线观看| 91在线观看av| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 操出白浆在线播放| 淫妇啪啪啪对白视频| 久久久久国产精品人妻aⅴ院| 三上悠亚av全集在线观看| 免费av毛片视频| 狠狠狠狠99中文字幕| 午夜老司机福利片| 精品一区二区三区av网在线观看| a级毛片黄视频| 国产av在哪里看| 99国产精品免费福利视频| 交换朋友夫妻互换小说| 97超级碰碰碰精品色视频在线观看| 精品国产乱子伦一区二区三区| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 19禁男女啪啪无遮挡网站| 超色免费av| 久久伊人香网站| 欧美精品啪啪一区二区三区| 亚洲精品在线观看二区| 欧美日本中文国产一区发布| 丝袜人妻中文字幕| 亚洲男人的天堂狠狠| 又黄又粗又硬又大视频| 日韩欧美国产一区二区入口| 国产精品一区二区三区四区久久 | av福利片在线| 男男h啪啪无遮挡| 18禁观看日本| 99国产综合亚洲精品| 在线av久久热| 久热爱精品视频在线9| 亚洲精品美女久久av网站| 亚洲熟妇中文字幕五十中出 | 狂野欧美激情性xxxx| 丝袜美足系列| 精品电影一区二区在线| 中文字幕人妻丝袜制服| 国内久久婷婷六月综合欲色啪| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 欧美另类亚洲清纯唯美| 欧美日韩亚洲高清精品| 91成年电影在线观看| 国产欧美日韩综合在线一区二区| 成人影院久久| 欧美成人午夜精品| 欧美激情 高清一区二区三区| 麻豆av在线久日| 最新美女视频免费是黄的| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 99精品久久久久人妻精品| av电影中文网址| 免费在线观看完整版高清| 国产区一区二久久| 欧美不卡视频在线免费观看 | 美女高潮喷水抽搐中文字幕| 超色免费av| 脱女人内裤的视频| 神马国产精品三级电影在线观看 | 嫩草影院精品99| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 91av网站免费观看| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 欧美激情极品国产一区二区三区| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 热re99久久精品国产66热6| 国产午夜精品久久久久久| 少妇的丰满在线观看| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看 | 久久久久久大精品| 99久久精品国产亚洲精品| 咕卡用的链子| 国产真人三级小视频在线观看| av网站免费在线观看视频| 伦理电影免费视频| 激情视频va一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美乱妇无乱码| 国产成人精品久久二区二区免费| 美女大奶头视频| 如日韩欧美国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 老汉色∧v一级毛片| 亚洲精品粉嫩美女一区| 精品国产一区二区久久| 91在线观看av| 欧美av亚洲av综合av国产av| 日本a在线网址| 国产精品久久电影中文字幕| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| 麻豆一二三区av精品| 女人高潮潮喷娇喘18禁视频| 午夜亚洲福利在线播放| 高清av免费在线| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 很黄的视频免费| 久久午夜综合久久蜜桃| 一级黄色大片毛片| 国产精品二区激情视频| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 亚洲精品久久午夜乱码| 国产男靠女视频免费网站| cao死你这个sao货| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 99国产精品一区二区蜜桃av| 日日爽夜夜爽网站| 午夜免费观看网址| 99热国产这里只有精品6| 高清欧美精品videossex| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 婷婷六月久久综合丁香| e午夜精品久久久久久久| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影| 成人18禁高潮啪啪吃奶动态图| 丝袜在线中文字幕| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女 | 久热爱精品视频在线9| 色综合站精品国产| 国产高清国产精品国产三级| 免费看a级黄色片| 国产黄色免费在线视频| 久久精品亚洲熟妇少妇任你| av电影中文网址| 村上凉子中文字幕在线| 午夜免费激情av| 国产激情欧美一区二区| 国产主播在线观看一区二区| 操美女的视频在线观看| 国产高清视频在线播放一区| 一个人观看的视频www高清免费观看 | 精品一区二区三区四区五区乱码| 国产精品免费视频内射| 露出奶头的视频| 级片在线观看| 男女下面进入的视频免费午夜 | 丰满迷人的少妇在线观看| 天天影视国产精品| 无人区码免费观看不卡| 丝袜在线中文字幕| 欧美乱妇无乱码| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 欧美中文综合在线视频| 久久人人精品亚洲av| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 午夜久久久在线观看| 国产av在哪里看| 国产欧美日韩一区二区精品| 不卡av一区二区三区| 久久精品影院6| 男女高潮啪啪啪动态图| 日韩成人在线观看一区二区三区| 日本一区二区免费在线视频| 一区二区三区激情视频| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 久久伊人香网站| 神马国产精品三级电影在线观看 | 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 51午夜福利影视在线观看| 人妻丰满熟妇av一区二区三区| www.自偷自拍.com| 嫁个100分男人电影在线观看| 中文字幕精品免费在线观看视频| 啦啦啦 在线观看视频| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| 超碰97精品在线观看| 久久亚洲真实| netflix在线观看网站| 长腿黑丝高跟| 国产精品 欧美亚洲| 亚洲 国产 在线| 久久久国产成人免费| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 老司机午夜福利在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 最近最新免费中文字幕在线| 一本综合久久免费| av有码第一页| 国产在线精品亚洲第一网站| 国产不卡一卡二| 两人在一起打扑克的视频| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 亚洲精品久久午夜乱码| 欧美午夜高清在线| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 亚洲熟女毛片儿| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美软件| 色综合站精品国产| 怎么达到女性高潮| 岛国视频午夜一区免费看| 高清在线国产一区| 精品一品国产午夜福利视频| 中出人妻视频一区二区| 久久国产精品男人的天堂亚洲| 久久草成人影院| 国产xxxxx性猛交| 老司机福利观看| 一级a爱片免费观看的视频| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| av福利片在线| 欧美成人午夜精品| 国产精品久久视频播放| 老司机在亚洲福利影院| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 成在线人永久免费视频| 国产熟女xx| 国产有黄有色有爽视频| 一本大道久久a久久精品| 少妇裸体淫交视频免费看高清 | 亚洲色图 男人天堂 中文字幕| 亚洲精品在线美女| 中文欧美无线码| 亚洲国产欧美日韩在线播放| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久人妻精品电影| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| av电影中文网址| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 亚洲五月天丁香| 天堂俺去俺来也www色官网| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女 | 亚洲精品国产精品久久久不卡| 日韩大尺度精品在线看网址 | 99re在线观看精品视频| 成熟少妇高潮喷水视频| 久久狼人影院| 国产精品久久电影中文字幕| 男女下面进入的视频免费午夜 |