• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      四階非局部邊值問題方程組正解的存在性

      2012-12-26 06:44:48索秀云郭少聰張繼葉郭彥平
      關(guān)鍵詞:四階邊值問題不動(dòng)點(diǎn)

      索秀云,郭少聰,張繼葉,郭彥平

      (河北科技大學(xué)理學(xué)院,河北石家莊 050018)

      四階非局部邊值問題方程組正解的存在性

      索秀云,郭少聰,張繼葉,郭彥平

      (河北科技大學(xué)理學(xué)院,河北石家莊 050018)

      利用錐上的Krasnoselskii不動(dòng)點(diǎn)定理研究了一類具有積分邊界條件的四階非局部微分方程組邊值問題正解的存在性。通過在Banach空間定義一個(gè)全連續(xù)的算子,得到了它至少存在1個(gè)正解的充分條件。

      正解;非局部邊值問題;Krasnoselskii不動(dòng)點(diǎn)定理

      基于四階線性微分方程邊值問題在物理方面的背景,文獻(xiàn)[1]—文獻(xiàn)[7]分別用Leray-Schauder度理論、不動(dòng)點(diǎn)定理、上下解的方法證明了四階方程解的存在性。

      在文獻(xiàn)[1]中,作者主要研究了下列非局部邊值問題:

      正解的存在性。受上述文章的啟發(fā),筆者主要考慮下列非局部邊值問題方程組:正解的存在性。本文假設(shè)如下條件成立:

      1 主要引理

      引理2 (X,‖(u,v)‖2)是Banach空間。

      證明 由文獻(xiàn)[1]中引理2.1知:(X1,‖u‖2),(X2,‖v‖2)都是Banach空間,故(X,‖(u,v)‖2)也是Banach空間。

      引理3[5]假設(shè)A1),A2)成立,那么有

      2 主要結(jié)論

      設(shè)Kij,G2j,ρ2j,c2j,θj如第2部分所定義,下面介紹一些記法如下:

      之一成立時(shí),其中i=1,2,則問題(1)至少存在1組正解。

      由Krasnoselskii不動(dòng)點(diǎn)定理ii)知,問題(1)至少存在1組正解。

      [1] BAI Z B.Positive solutions of some nonlocal fourth-order boundary value problem[J].Applied Mathematics and Compution,2010,215:4 191-4 197.

      [2] BAI Z B.The method of lower and upper solution for a bending of an elastic beam equation[J].J Math Anal Appl,2000,248:195-202.

      [3] BAI Z B.The method of lower and upper solution for some fourth-order boundary value problems[J].Nonlinear Anal,2007,67:1 704-1 719.

      [4] FENG H Y,JI D H,GE W G.Existence and uniqueness of solutions for a fourth-order boundary value problem[J].Nonlinear Anal,2009,70:3 561-3 566.

      [5] LI Y X.Positive solutions for nonlocal boundary value problems[J].Nonlinear Anal,2003,54:1 069-1 078.

      [6] YAO Q L.Local existence of multiple positive solutions to a singular cantilever beam eqution[J].J Math Anal Appl,2010,363:138-154.

      [7] ZHAO J F,GE W G.Positive solutions for a higher-order four-point boundary value problem with ap-Laplacian[J].Comput Math Appl,2009,58:1 103-1 112.

      Existence of positive solutions for nonlocal forth order boundary value problem systems

      SUO Xiu-yun,GUO Shao-cong,ZHANG Ji-ye,GUO Yan-ping
      (College of Sciences,Hebei University of Science and Technology,Shijiazhuang Hebei 050018,China)

      By using Krasnoselskii fixed point theorem in a cone,the existence of positive solutions for nonlocal forth order boundary value problem systems with integral boundary conditions is studied.By defining a completely continuous operator in a Banach space,the sufficient condition under which the above problem has at least one positive solution is derived.

      positive solution;nonlocal boundary value problem;Krasnoselskii fixed point theorem

      O175.8

      A

      1008-1542(2012)03-0197-05

      2011-10-10;責(zé)任編輯:張 軍

      國家自然科學(xué)基金資助項(xiàng)目(10971045);河北省自然科學(xué)基金資助項(xiàng)目(A2009000664)

      索秀云(1954-),女,河北磁縣人,副教授,主要從事概率統(tǒng)計(jì)與應(yīng)用微分方程方面的研究。

      猜你喜歡
      四階邊值問題不動(dòng)點(diǎn)
      非線性n 階m 點(diǎn)邊值問題正解的存在性
      四階p-廣義Benney-Luke方程的初值問題
      帶有積分邊界條件的奇異攝動(dòng)邊值問題的漸近解
      一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
      活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
      不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對合
      帶參數(shù)的四階邊值問題正解的存在性
      非線性m點(diǎn)邊值問題的多重正解
      一類非錐映射減算子的不動(dòng)點(diǎn)定理及應(yīng)用
      一類非線性向量微分方程無窮邊值問題的奇攝動(dòng)
      仙游县| 许昌市| 甘孜| 宜章县| 平武县| 大安市| 兰州市| 嘉禾县| 九龙县| 临夏县| 锡林浩特市| 巢湖市| 徐汇区| 稷山县| 长沙县| 吴忠市| 天镇县| 阿克苏市| 南京市| 邛崃市| 航空| 广州市| 松溪县| 老河口市| 尖扎县| 维西| 依兰县| 虞城县| 闽清县| 裕民县| 筠连县| 京山县| 临夏县| 蒙自县| 高淳县| 祁连县| 河北省| 德阳市| 宁明县| 定州市| 肃南|