顧 軍 謝 林 康 然 王庚啟
(南京中醫(yī)藥大學(xué)附屬江蘇省中西醫(yī)結(jié)合醫(yī)院骨科,南京,210028)
椎間盤退變機(jī)制研究概況
顧 軍 謝 林 康 然 王庚啟
(南京中醫(yī)藥大學(xué)附屬江蘇省中西醫(yī)結(jié)合醫(yī)院骨科,南京,210028)
椎間盤退變機(jī)制仍不清楚,對(duì)近年的相關(guān)文獻(xiàn)分析總結(jié)顯示,氧化應(yīng)激、炎癥因子、營(yíng)養(yǎng)通路、生物力學(xué)、基質(zhì)金屬蛋白酶及其抑制劑等因素共同作用于椎間盤退變過程。
椎間盤退變;機(jī)制;研究概況
椎間盤退變(Intervertebral disc degeneration,IVDD)繼發(fā)的椎間盤源性腰、頸痛,腰、頸椎間盤突出癥及相關(guān)運(yùn)動(dòng)功能障礙普遍存在。70%的人一生中會(huì)因?yàn)樽甸g盤退變引起的疾病就診[1]。60年代起國(guó)內(nèi)外學(xué)者開始對(duì)椎間盤退變的病因進(jìn)行研究,其確切機(jī)理仍不十分清楚。眾多學(xué)者認(rèn)為椎間盤退變是多種因素共同作用的結(jié)果,在退變過程中椎間盤的生物力學(xué)、生物化學(xué)和超微結(jié)構(gòu)均發(fā)生了相應(yīng)的變化,最終導(dǎo)致椎間盤細(xì)胞分解代謝增加,合成代謝減少,IVDD產(chǎn)生。本文就椎間盤退變的氧化應(yīng)激、炎癥因子、細(xì)胞凋亡、營(yíng)養(yǎng)通路、生物力學(xué)等因素研究作一概述。
氧化應(yīng)激是指機(jī)體在遭受有害刺激時(shí),體內(nèi)或細(xì)胞內(nèi)自由基的產(chǎn)生與抗氧化防御之間嚴(yán)重失衡,導(dǎo)致活性氧簇(ROS)在體內(nèi)或細(xì)胞內(nèi)蓄積,引發(fā)細(xì)胞毒性,從而導(dǎo)致組織損傷的過程。生理狀態(tài)下,自由基是細(xì)胞信號(hào)傳導(dǎo)的必要物質(zhì),但其高反應(yīng)性、不穩(wěn)定性以及介導(dǎo)細(xì)胞衰老的作用,也會(huì)對(duì)組織造成損害[2]。氧化應(yīng)激對(duì)機(jī)體的毒性作用表現(xiàn)為生物膜脂質(zhì)過氧化、細(xì)胞內(nèi)蛋白及酶變性以及DNA損傷,造成細(xì)胞功能異常,最終導(dǎo)致細(xì)胞死亡或凋亡[3]。一氧化氮NO作為ROS的一種特殊類型,是人體內(nèi)生理及病理狀態(tài)下重要的信號(hào)傳導(dǎo)分子。退變的椎間盤組織中存在自由基成分NO及其合酶。椎間盤組織可釋放NO,而退變椎間盤細(xì)胞本身產(chǎn)生NO的同時(shí)加速了自身凋亡,使椎間盤退化[4]。另外,椎間盤基質(zhì)氧化應(yīng)激反應(yīng)的產(chǎn)物羧甲基賴氨酸(CML)與糖基化終末產(chǎn)物受體(RAGE)結(jié)合后可激活細(xì)胞內(nèi)的核因子NF-KB信號(hào)通道,誘導(dǎo)細(xì)胞外基質(zhì)降解,提示CML在椎間盤退變過程中起促進(jìn)作用[5]。
現(xiàn)已知腫瘤壞死因子-α(TNF-α)、白介素-1(IL-1)、白介素-6(IL-6)、NO及其合酶等炎癥因子對(duì)椎間盤退變的發(fā)生發(fā)展起著重要作用。這些炎性因子在退變的椎間盤中含量增高,并且加速椎間盤退變。TNF-α可以產(chǎn)生痛覺過敏的神經(jīng)軸突并向椎間盤內(nèi)生長(zhǎng),除此之外,還通過TNF-α/NF-kB等介導(dǎo)纖維環(huán)血管長(zhǎng)入,從而產(chǎn)生相應(yīng)的臨床癥狀[6]。IL-1可以通過促進(jìn)蛋白多糖的降解而參與椎間盤的退變過程。IL-6可刺激炎性細(xì)胞聚集,增加椎間盤細(xì)胞炎癥因子釋放[7]。NO則有介導(dǎo)抑制軟骨細(xì)胞蛋白多糖合成的作用[8]。炎性因子的產(chǎn)生,誘導(dǎo)神經(jīng)長(zhǎng)入,引起臨床疼痛癥狀,降低椎間盤細(xì)胞外基質(zhì)生成(如蛋白多糖,膠原蛋白等),致使椎間盤本身結(jié)構(gòu)和功能的丟失,加速椎間盤退變。
椎間盤活性細(xì)胞減少以及隨之而來(lái)的細(xì)胞外基質(zhì)合成減少和組成變化,是導(dǎo)致椎間盤退變的因素之一,而椎間盤細(xì)胞的過度凋亡是活性細(xì)胞數(shù)量下降的直接原因。Gruber首先對(duì)人體椎間盤組織進(jìn)行細(xì)胞凋亡檢測(cè),在退變的椎間盤標(biāo)本中,椎間盤細(xì)胞凋亡率高達(dá)53%~73%。Wang F[9]研究發(fā)現(xiàn):隨著凋亡程度的增加,椎間盤軟骨終板細(xì)胞活性下降,細(xì)胞合成II型膠原基質(zhì)蛋白的量隨之下降。Wang F[10]隨后研究發(fā)現(xiàn),退變椎間盤組織基質(zhì)中的Fas凋亡相關(guān)蛋白表達(dá)明顯增加,而未退變椎間盤組織中表達(dá)較少,因此他們認(rèn)為椎間盤細(xì)胞可通過死亡受體途徑發(fā)生凋亡,最終導(dǎo)致IVDD發(fā)生。
椎間盤細(xì)胞營(yíng)養(yǎng)成分的減少是椎間盤退變的一個(gè)基本因素。椎間盤是人體最大的無(wú)血管組織,其營(yíng)養(yǎng)供給主要通過終板擴(kuò)散。從胎兒期到兒童末期,椎間盤外周纖維環(huán)中的血管逐漸減少,最終消失。隨著年齡的增長(zhǎng),終板逐漸鈣化,軟骨終板逐漸變薄,軟骨終板的血管數(shù)目逐漸減少,所以有人認(rèn)為終板硬化可能是IVDD產(chǎn)生的始動(dòng)因素之一[11]。Gruber[12]研究沙鼠年齡與椎間盤硬化的關(guān)系實(shí)驗(yàn)顯示,隨著年齡增加,沙鼠軟骨終板硬化程度增加,所以得出結(jié)論終板硬化是椎間盤退變的可能因素。最近有報(bào)道提示,隨著年齡增長(zhǎng),椎間盤幾乎都會(huì)發(fā)生退變,而出現(xiàn)癥狀的椎間盤退變患者中也只有23%~58%有終板硬化現(xiàn)象,而軟骨終板營(yíng)養(yǎng)擴(kuò)散與蛋白多糖含量無(wú)關(guān),主要與終板孔隙率及擴(kuò)散系數(shù)相關(guān)[13]。Rodriguez[14]指出隨著年齡增長(zhǎng),椎體終板孔隙率增加,終板硬化并不是椎間盤退變的始發(fā)因素;椎間盤營(yíng)養(yǎng)供給下降可能與椎體毛細(xì)血管密度下降相關(guān)。
人體的椎間盤組織為脊柱提供一定活動(dòng)范圍,在生理情況下椎間盤組織承受身體的垂直靜壓力,同時(shí)承受在運(yùn)動(dòng)過程水平剪切力。異常的力學(xué)因素、外傷被認(rèn)為是椎間盤退變的始動(dòng)因素之一。Kim[15]研究發(fā)現(xiàn),1到2周持續(xù)的剪切力作用于大鼠的L5-L6椎間盤,能夠誘導(dǎo)其退變,主要表現(xiàn)在髓核組織承重能力丟失以及纖維環(huán)的破壞。Cornelis P[16]以成年公山羊腰椎間盤組織體外培養(yǎng)3周,分別在無(wú)負(fù)荷、低負(fù)荷、生理負(fù)荷力學(xué)條件下分組觀察,結(jié)果顯示,無(wú)負(fù)荷及低負(fù)荷條件下培養(yǎng)的椎間盤組織細(xì)胞在細(xì)胞活性、細(xì)胞密度、細(xì)胞基因表達(dá)上出現(xiàn)退化。Walter BA[17]的牛尾體位模型研究顯示,不對(duì)稱的壓力能夠誘導(dǎo)凹面纖維環(huán)細(xì)胞死亡、蛋白多糖丟失、增加細(xì)胞凋亡蛋白酶3(caspase-3)表達(dá),同時(shí)增加凸面纖維環(huán)中與細(xì)胞外基質(zhì)分解相關(guān)基因的表達(dá)。
基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMPs)與金屬蛋白酶組織抑制劑(tissueinhibitorofmetall0proteinase,TIMPs),在生理情況下,兩者處于動(dòng)態(tài)平衡關(guān)系。椎間盤細(xì)胞和其他人體其他組織中細(xì)胞一樣,其細(xì)胞外基質(zhì)的合成及分解代謝處于動(dòng)態(tài)的平衡關(guān)系。MMPs不斷降解老化及缺陷的細(xì)胞外基質(zhì)并由細(xì)胞合成的新基質(zhì)替代。TIMPs起到了防止細(xì)胞外基質(zhì)過度分解的作用。Wallach、Rutges等[18-19]的研究顯示,在退變椎間盤組織中MMP-1、MMP-9、MMP-13表達(dá)增加,相應(yīng)的TIMP-1,TIMP-2含量也增加,而TIMP的高表達(dá)能夠抑制MMP的表達(dá)。Handa T[20]研究表明,機(jī)械負(fù)荷因素會(huì)影響MMPs與TIMPs動(dòng)態(tài)平衡。在生理壓力下TIMP-1含量增高,而MMP-3含量降低,細(xì)胞外基質(zhì)中蛋白多糖合成代謝增加,分解代謝降低。當(dāng)機(jī)械負(fù)荷高于或者低于生理負(fù)荷時(shí),MMP-3的含量增高,TIMP-1含量下降,細(xì)胞外基質(zhì)的分解代謝高于合成代謝。
綜上所述,椎間盤退變機(jī)制錯(cuò)綜復(fù)雜,影響椎間盤退變的因素之間又相互聯(lián)系,如氧化應(yīng)激可加速椎間盤髓核細(xì)胞的凋亡[4],炎癥因子及生物力學(xué)因素不但可以影響椎間盤細(xì)胞活性、膠原蛋白及蛋白多糖的合成及分解代謝,同時(shí)介導(dǎo)椎間盤組織中血管及神經(jīng)的長(zhǎng)入過程[21-22]。MMPs與TIMPs含量在退變的椎間盤組織中平行增加,而MMP3與椎間盤退變引起的疼痛癥狀緊密相關(guān),TIMPs在人體多種組織器官中存在,TIMP-1及TIMP-2與椎間盤組織的退變聯(lián)系較緊密[23]。此外IVDD還與椎間盤內(nèi)域乳酸大量堆積導(dǎo)致的pH值降低、社會(huì)因素(如吸煙)、體重、劇烈運(yùn)動(dòng)等密切相關(guān)[24-25]。因此,預(yù)防椎間盤退變,需要我們?cè)谌粘I钪懈淖儾涣嫉淖飨⒘?xí)慣,避免加速椎間盤退變。椎間盤退變的機(jī)制研究在組織、細(xì)胞、分子水平的逐漸深入,將不斷深化我們對(duì)其認(rèn)識(shí),提高治療水平。
[1]Andersson GB.Epidemiological features of chronic low-back pain[J]. Lancet,1999,354:581-585.
[2]Kim K,Chung H,Ha K,et al.Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs[J].Spine,2009,9(8):658-666.
[3]ding F,Shao Z,Yang S,et al.Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells[J].Apoptosis,2012,17(6):579-590.
[4]Zhang Y,Zhao C,Jiang L,et al.Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production[J].Eur Spine,2011,20(8):1233-1243.
[5]Nerlich A,Bachmeier BE,Schleicher E,et al.Immunomorphological analysis of RAGE receptor expression and NF-kappa B activation in tissue samples from normal and degenerated intervertebral discs of various ages[J].Annals of the New York Academy of Sciences,2007,1096:239-248.
[6]Ohba T,Haro H,Ando T,et al.TNF-alpha-induced NF-kappa B signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues[J].J Orthop Res,2009,27(2):229 -235.
[7]Kalb S,Martirosyan NL,Kalani MY,et al.Genetics of the degenerated Intervertebral disc[J].World Neurosurg,2011,Nov 7.[Epub ahead of print]
[8]Denda H,Kimura S,Yamazaki A,et al.Clinical significance of cerebrospinal fluid nitric oxide concentrations in degenerative cervical and lumbar diseases[J].Eur Spine,2011,20(4):604-611.
[9]Wang F,Jiang J,Wang F,et al.Biological characteristics of human degenerative vertebral endplate cells[J].Nan Fang Yi Ke da Xue Xue Bao,2010,30(4):871-874.
[10]Wang F,Jiang J,Deng C,et al.Expression of Fas receptor and apoptosis in vertebral endplates with degenerative disc diseases categorized as Modic type I or II[J].Injury,2011,42(8):790-795.
[11]Rajasekaran S,Babu JN,Arun R,et al.ISSLS prize winner:a study of diffusion in human lumbar discs:a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs[J].Spine(Philadelphia,PA 1976),2004,29:2654-2667.
[12]Gruber hE,Gordon B,Williams C,et al.Vertebral end-plate and disc changes in the aging sand rat lumbar spine:cross-sectional analyses of a large male and female population[J].Spine,2007,32(23):2529-2536.
[13]Kuisma M,Karppinen J,Niinim?ki J,et al.Modic Changes in Endplates of Lumbar Vertebral Bodies:Prevalence and Association With Low Back and Sciatic Pain Among Middle-Aged Male Workers[J].Spine(Phila Pa 1976),2007,32(10):1116-1122.
[14]Rodriguez A,Rodriguez-Soto A,Burghardt A,et al.Morphology of the human Vertebral Endplate[J].Journal of orthopaedic research,2012,30(2):280-287.
[15]Kim J,Yang SJ,Kim H,et al.Effect of shear force on intervertebral disc(IVD)degeneration:an in vivo rat study[J].Ann Biomed Eng,2012,40(9):1996-2004.
[16]Paul CP,Zuiderbaan HA,Zandieh doulabi B,et al.Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbarintervertebral discs in ex vivo culture[J].PLoS One,2012,7(3):e33147.
[17]Walter BA,Korecki CL,Purmessur D,et al.Complex loading affects intervertebral disc mechanics and biology[J].Osteoarthritis Cartilage,2011,19(8):1011-1018.
[18]Wallach CJ.Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs[J].Spine,2003,28:2331-2337.
[19]Rutges JP,Kummer JA,Oner FC,et al.Increased mmP-2 activity during intervertebral disc degeneration is correlated to mmP-14 levels[J]. J Pathol,2008,214(4):523-530.
[20]Handa T,Ishihara H,Ohshima H,et al.Effects of hydrostatie pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc[J].Spine,1997,22(10):1085-1091.
[21]Zhu Q,Jackson AR,Gu WY.Cell viability in intervertebral disc under various nutritional and dynamic loading conditions:3d finite element analysis[J].J Biomech,2012,45(16):2769-2777.
[22]Lee JM,Song JY,Baek M,et al.Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration[J].J Orthop Res,2011,29(2):265-269.
[23]Beatrice E.Bachmeier,Andreas Nerlich,et al.Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration[J].Eur Spine,2009,18(11):1573-1586.
[24]david G,Ciurea AV,Mitrica M,et al.Impact of changes in extracellular matrix in the lumbar degenerative disc[J].J Med Life,2011,4(3):269 -274.
[25]Li H,Liang C,Tao Y,et al.Acidic pH conditions mimicking degenerative intervertebral discs impair the survival and biological behavior of human adipose-derived mesenchymal stem cells[J].Exp Biol Med(Maywood),2012,237(7):845-52.
(2013-01-23收稿)
An Overview on Research of Intervertebral Disc Degeneration Mechanism
Gu Jun,Xie Lin,Kang Ran,Wang Gengqi
(Jiangsu Provincial Hospital on Integration of Chinese and Western Medicine,Nanjing 210028,China)
The mechanism of intervertebral disc degeneration is not clear yet,and relevant literatures in recent years show that oxidative stress,inflammatory factors,nutrition pathway,biomechanics,matrix metalloproteinases and their inhibitors play multi-factor role in the progress of intervertebral disc degeneration.
Intervertebral disc degeneration;Mechanism research;Overview
10.3969/j.issn.1673-7202.2013.06.037
江蘇省衛(wèi)生國(guó)際交流支撐計(jì)劃及江蘇省中醫(yī)藥局領(lǐng)軍人才項(xiàng)目資助(編號(hào):BZ2008071);江蘇省生命健康科技專項(xiàng)(編號(hào):BL2012069)
謝林,男,(1965—),博士,主任醫(yī)師,研究方向:脊柱退行性病變,E-mail:xinlin117@126.com