• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization*

    2013-06-07 11:21:31BAOYongzhong包永忠ZHAOWenting趙雯婷andHUANGZhiming黃志明

    BAO Yongzhong (包永忠)**, ZHAO Wenting (趙雯婷) and HUANG Zhiming (黃志明)

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    Preparation of Mesoporous Carbons from Acrylonitrile-methyl Methacrylate Copolymer/Silica Nanocomposites Synthesized by in-situ Emulsion Polymerization*

    BAO Yongzhong (包永忠)**, ZHAO Wenting (趙雯婷) and HUANG Zhiming (黃志明)

    State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2′-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMA copolymer/silica nanocomposites showed that the carbon yield of copolymer was slightly decreased as silica particle incorporated. N2adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and TEM results showed that disordered mesopores were formed in the obtained carbon material mainly through templating effect of silica nanoparticles. The diameter of mesopores was mainly distributed in the range from 5 nm to 15 nm. The mean pore diameter and total pore volume of the material increased as the mass fraction of silica in the nanocomposites increased from 0 to 24.93%. The significant increase of the mean pore diameter and the decrease of surface area for the carbon material prepared from the nanocomposite with 24.93% silica were caused by partial aggregation of silica nanoparticles in the polymer matrix.

    mesoporous carbon, templated synthesis, acrylonitrile, silica, emulsion polymerization

    1 INTRODUCTION

    Mesoporous carbons have pores of diameter ranging from 2 nm to 50 nm. Due to high surface areas and pore volume, high thermal stability and chemical inertness of mesoporous carbons, they are fostered by prospects of their application as adsorbents for large, hydrophobic molecules and biomolecules [1]; catalyst supports [2]; components of electro-chemical double-layer capacitors [3], fuel cells [4] and lithium ion batteries [5]; chromatographic packing [6]; and templates for synthesis of nanostructured inorganic materials [7]. Typical synthetic methods for mesoporous carbons include [8, 9]: (1) chemical activation, physical activation, or their combination; (2) catalytic activation of carbon precursors using metal salts or organicmetallic compounds; (3) carbonation of polymer blends composed of a carbonizable polymer and a pyrolyzable polymer; (4) carbonization of polymer aerogels or cryogels; (5) templating with rigid and designed inorganic particles, either incorporated or formed in-situ during the synthesis of carbon precursor.

    Among these methods, the inorganic templating method is the most efficient method to prepare mesoporous carbons with strictly controlled pore structures (such as porosity, surface area and pore volume) by tuning the trait of inorganic templates. Up to date, colloidal silica [10-13] and mesoporous silica [14-16] have been widely employed as templates, and many polymers, such as phenolic resin [10], polyacrylonitrile [12, 15-17], poly(furfuryl alcohol) [18], polyvinylbenzene [11] and vinylidene chloride copolymers [13] as carbon precursors.

    Compared to porous silica templating, using of commercial colloidal silica as templates is a convenient way to prepare mesoporous carbon [10-13]. It is not required to pre-synthesize suitable porous silica templates at high cost due to complicated synthetic routes. Moreover, the pore size of mesoporous carbon can be easily controlled by using colloidal silica with different diameters. However, nanometer silica particles are easily to aggregate during their synthesis and combination with carbon precursors. Thus, the formation of nanocomposite containing carbon precursors and well-dispersed silica particles becomes a key step in the preparation of mesoporous carbon by the colloidal silica templating method. Han et al. [19] conducted the polymerization of resorcinol and formaldehyde (RF) in the presence of colloidal silica to generate RF gel/silica nanocomposite. The mesoporous carbon materials with high pore volume were obtained by carbonization of the nanocomposites and successive HF etching of the silica templates. Due to the aggregation of silica nanoparticles during the synthesis, the obtained carbon materials exhibited a broad pore size distribution ranging from 10 to 100 nm. In order to prevent the aggregation of silica nanoparticles during the synthesis of RF gel/silica nanocomposite, they [10] used cationic surfactant (cetryltrimethylammonium bromide) stabilized colloidal silica as templates. The produced carbon material exhibited a narrow pore size distribution centered at 12 nm, which matched very well with the size of the silica nanoparticles. Jang andLim [11] reported the selective fabrication of carbon nanocapusules and mesocellular foams by colloidal silica templating. The colloidal silica nanoparticles chemically treated with chlorodimethylvinylsilane and stabilized with an anionic surfactant, sodium dodecylsulfate, were used as templates. Encapsulation of silica nanoparticle with divinylbenzene (co)polymer was achieved by in-situ polymerization initiated by 2,2′-azobisisobutyronitrile (AIBN). Jang et al. [12] also reported the synthesis of mesoporous carbons from polyacrylonitrile (PAN)/silica nanocomposites prepared by vapor deposition polymerization.

    Herein, a novel templating method is applied to prepare mesoporous carbon using colloidal silica as templates and acrylonitrile (AN) copolymer as a carbon precursor. In order to achieve a well dispersion of silica nanoparticles in the polymer matrix, in-situ emulsion copolymerization of AN and methyl methacrylate is conducted in the presence of colloidal silica particles absorbed with an azo initiator. The mesoporous carbon can be obtained after the carbonization of the nanocomposite and removal of the silica template. The morphology of porous carbon and effects of the mass ratio of AN copolymer to silica on the pore structure were investigated.

    2 EX PERIMENTAL

    2.1 Materials

    Commercial acrylonitrile (AN, Wulian Chemical Co., China) and methyl methacrylate (MMA, Wulian Chemical, China) were distilled under atmospheric and reduced pressure, respectively, and kept refrigerated until use. Colloidal silica [32% (by mass) solid content in water] was purchased from Zhejiang Yuda Chemical Co., China. The mean size of silica particles was 12 nm, determined by dynamic light scattering on a Zetasizer 3000HS particle size analyzer (Malvern Instruments, Laramie, USA). 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA, Across Organics Co., Geel, Belgium) and sodium dodecylsulfate (SDS, Shantou Xilong Chemical Co., Guangdong, China, analytical purity) were used as received. Nonionic surfactant, polysorbate 80 (Tween-80) were supplied by Qingming Chemical Factory, Wenzhou, China. Aqueous solution of hydrofluoride acid [30% (by mass)] was supplied by Juhua Group Co., Quzhou, China.

    2.2 Preparation of AN-MMA copolyme r/silica nanocomposites

    The recipes for the preparation of AN-MMA copolymer and AN-MMA copolymer/silica nanocomposites are shown in Table 1. In a typical preparation procedure, certain amounts of colloidal silica and AIBA aqueous solution [5.0% (by mass)] were weighed and the pH value of them was adjusted to 11. The electrostatic adsorption of AIBA onto silica particles surface carried out by adding AIBA aqueous solution dropwise into the colloidal silica under magnetic stirring in 10 min under ambient temperature. The above dispersion was added into a 500 ml glass reactor fitted with a condenser, an N2inlet, a thermometer and a paddle-type agitator. After agitation under ambient temperature for further 20 min, the remained deionized water (pH value also adjusted to 11), 0.4 g Tween-80 and 20 g AN and MMA monomers (AN/MMA=5/1 in mass) were added into the reactor. After agitating the mixture for 20 min, the polymerization was started by increasing the temperature to 65 °C under nitrogen atmosphere. 4 ml SDS solution [10% (by mass)] was added when the emulsion polymerization proceeded for 3 h. The polymerization time of all runs was 5 h.

    Table 1 Recipes for emulsion polymerizations of AN-MMA in the presence of AIBA adsorbed silica particles

    2.3 Preparation of mesoporous carbon

    The AN-MMA copolymer/silica nanocomposite powder was obtained by coagulating the resultant AN-MMA copolymer/silica nanocomposite latex, filtering, washing and drying at 65 °C. The nanocomposite powder was carbonized under pure N2atmosphere at 800 °C for 1 h to achieve complete carbonization of AN copolymer. Then, the obtained carbon/silica nanocomposites were dispersed in HF aqueous solution [10% (by mass)] for 24 h to remove the silica. The desired mesoporous carbon materials were obtained after separating, washing with distilled water and drying.

    2.4 Characterization

    Thermogravimetric analysis (TGA) of AN-MMA copolymer/silica nanocomposites was conducted to determine the carbon yield under nitrogen atmosphere using a Pyris1 TGA thermogravimetric instrument (Perkin-Elmer Co. USA). The heating rate was set at 20 °C·min?1, and temperature was ranged from room temperature to 800 °C.

    Nitrogen adsorption-desorption isotherms of carbon materials were measured by using an Autosorb-1-C analyzer (Quantachrome Instruments Co., USA) at 77.4 K. The carbon samples were degassed undervacum at 200 °C for at least 3 h prior to the nitrogen adsorption measurements. The specific surface area was calculated from the adsorption data in the relative pressure below 0.3 using the Brunauer-Emmett-Teller (BET) method, and the mesopore size distribution curve were calculated by the Barrett-Joyner-Halenda (BJH) method from the desorption result [20]. The total pore volume and micro-pore volume were calculated from the amount of absorbed nitrogen (in the liquid state) at the highest relative pressure (P/P0) and at P/P0=0.1.

    A Nexus 670 Fourier transform infrared (FT-IR) spectrometer was used to characterize the composition of the samples. X-ray diffraction (XRD) patterns of mesoporous carbons were determined using a Shimadzu XRD-6000 X-ray diffractometer at 40 kV and 36 mA, using CuKαradiation (k=0.1506 nm), at 2θ=4°·min?1between 15° and 70°.

    The morphology of mesoporous carbon materials was observed by using a 1230EX type transmission electron microscope (TEM, JEOL Co., Japan) and a S-4800 type scanning electron microscopy (SEM, Hitachi Co., Japan).

    3 RESUL TS AND DISCUSSION

    3.1 Thermal decomposition of AN-MMA copolymer/silica nanocomposites

    The previous papers showed that most of added AIBA could be absorbed onto silica at pH=11 through the electrostatic action, and the encapsulation of silica by polymer could be achieved through the polymerization initiated by absorbed AIBA initiator [21, 22]. Under polymerization conditions of Table 1, the conversion of monomers to polymer was determined by the weighing method. The mass percentages of copolymer and silica in the nanocomposite (wcopolymerand wsilica) calculated from the feed mass percentages of silica and monomers, and the conversion are shown in Table 2. It can be seen that the monomers conversion of in-situ emulsion polymerization is increased as the usage of AIBA increased, but the conversion of in-situ emulsion polymerization is lower than that of conventional emulsion (Sample S0) at the same usage of AIBA.

    The residual mass percentages (wresidual) of AN-MMA copolymer and AN-MMA copolymer/silica nanocomposites determined by TGA are also shown in Table 2. The carbon yields of AN-MMA copolymers calculated by

    Figure 1 Typical TEM micrographs of AN-MMA copolymer/silica nanocomposite latex particles S20

    Table 2 TGA result and carbon yields of AN-MMA copolymer/silica nanocomposites with different compositions

    are also shown in Table 2.

    In Eq. (1), x is the residual mass percentage of pure silica and equal to 95% as obtained from TGA analysis. It can be seen that the carbon yield of AN-MMA copolymer in the nanocomposite is slightly lower than that of pure AN-MMA copolymer. The incorporation of silica nanoparticles may change the thermal decomposition process of AN-MMA copolymer, and cause the decrease of carbon yield.

    The typical TEM micrographs of AN-MMA copolymer/silica nanocomposite latex particles are shown in Fig. 1. It can be seen that the obtained nanocomposite latex comprises big particles with size of greater than 200 nm, and small particles with size of about 25 nm. Due to the presence of encapsulated silica particles, the big particles show dark in TEM micrographs. The size of most small particles is greater than the size of original silica colloidal particles, indicated the coating of copolymer onto them. It is expected that both encapsulated and coated silica particles would be acted as templates during the formation of porous carbon.

    Figure 2 Infrared spectra of (1) pure silica, (2) AN-MMA copolymer/silica nanocomposite (S20), (3) carbon/silica composite S20, (4) carbon S20 after HF etching

    3.2 Composition change during preparation process of mesoporous carbon

    Figure 2 shows FT-IR spectra of silica, AN-MMA copolymer/silica nanocomposite, carbon/silica composite, and carbon material obtained after HF etching. It can be seen that pure silica exhibits the characteristic bands at 1112.7 cm?1and 476.6 cm?1assigned to SiOSi asymmetric and bending vibrations, respectively. Other bands appeared at 800.7 cm?1, 1603.3 cm?1and 3432.2 cm?1are assigned to SiOSi elastic stretching vibrations. AN-MMA copolymer/silica nanocomposite exhibits all the characteristic bands of silica, and absorption bands at 2359.2 cm?1, 2245.1 cm?1, 1629.3 cm?1corresponding to CN bond, and a band at 1727.7 cm?1corresponding to CO bond. From the FT-IR spectrum of carbon/silica composite obtained by carbonization of AN-MMA copolymer/silica nanocomposite, it can be seen that the characteristic absorption bands of AN-MMA copolymer disappear, and the characteristic bands of silica still remain. After removal of the silica template, the characteristic bands of silica also disappear, demonstrating the completely removal of silica template by HF treatment.

    X-ray diffraction (XRD) patterns of the resulted carbon materials are shown in Fig. 3.

    Figure 3 X-ray diffraction patterns of mesoporous carbon prepared: S10, S20, S30

    The appearance of a broad characteristic peak at~24° corresponding to (002) reflection and a less intense peak at ~44° corresponding to (101) reflection demonstrates the graphitized structure of the obtained carbon materials. The characteristic patterns of silica do not appear in XRD patterns, also indicating the complete removal of silica from the composite after HF etching.

    3.3 Nitrogen adsorption-desorption behavior and pore structure of carbon materials

    Figure 4 shows nitrogen adsorption-desorption isotherms of the carbon materials prepared from the pure AN-MMA copolymer and AN-MMA copolymer/ silica nanocomposites with different silica contents.

    It can be seen from Fig. 4 (b), 4 (c) and 4 (d) that the nitrogen adsorption-desorption isotherm of the carbon materials prepared by carbonization of AN-MMA copolymer/silica nanocomposites with silica removed by HF etching, exhibit hysteretic loops at great relative pressures (P/P0), indicating the presence of mesopores. While the carbonization products of AN-MMA copolymer [Fig. 4 (a)] and of AN-MMA copolymer/silica nanocomposite without the HF etching exhibit very small hysteretic loops. It can also be seen that the absorption volume of the carbonization product before HF etching is much lower that after HF etching using the same AN-MMA copolymer/silica nanocomposite.

    The calculated pore size distributions of carbon materials are shown in Fig. 5.

    It can be seen that the carbonization products of AN-MMA copolymer [Fig. 5 (a)] and AN-MMA copolymer/silica nanocomposite without HF etching [in Fig. 5 (c)] show less volume of pores with size greater than 2 nm, while the carbons prepared by carbonization of AN-MMA copolymer/silica nanocomposites exhibit greater pore size distributions in the range of 5-15 nm after removal of silica. The size distribution of pores was in consistent with that of silica particles,demonstrating that silica particles actually act as template in the formation of mesopores in the carbon. So, it is feasible to control the diameter of mesopores in carbon materials using the proposed method.

    The porosity parameters of carbons prepared from AN-MMA copolymer and AN-MMA copolymer/ silica nanocomposites with different silica contents are shown in Table 3. It can be seen that the mean pore size and the total pore volume of carbons increase as the silica content in AN-MMA copolymer/silica nanocomposites increased from 12.24% to 24.93%. The mean pore size and the total pore volume of carbon sample S30 are much greater than that of carbons S10 and S20, while SBETof carbon S30 is lower than that of carbon S20. This should be caused by the aggregation of silica nanoparticles when the content of incorporated silica particles is greater.

    Jang et al. [12] prepared PAN/silica naocomposites with the mass fraction of silica closed to 50% by vapor polymerization. The porous carbons obtained after carbonization and removal of silica exhibited BET surface area of 473 m2·g?1, using silica particles with size of 12 nm as templates. The BET surface areas of carbon materials obtained in this work were all greater than that of Jang’s results, even at lower usage of silica templates.

    Figure 4 Nitrogen adsorption (solid sy mbol) and desorption(open symbol) isotherms curves of carbon materials obtained by carbonization of products from S0 (a), S10 (b) (after HF etching), S20 (c) (before and after HF etching) and S30 (d) (after HF etching)

    Table 3 Porous textural parameters of carbons prepared from AN-MMA copolymer and its nanocomposites with different silica contents

    3.4 Morphology of mesoporous carbon

    SEM and TEM micrographs of mesoporous carbons prepared from AN-MMA copolymer/silica nanocomposite with different silica percentages are shown in Figs. 6 and 7, respectively.

    Figure 5 Pore size distributions of carbons obtained by carbonization of AN-MMA copolymer (a), and nanocomposites of S10 (b) (after HF etching), S20 (c) (before and after HF etching) and S30 (d) (after HF etching) runs

    Figure 6 SEM micrographs of mesoporous carbons prepared from AN-MMA copolymer/silica nanocomposites with different silica percentages (a) S10, (b) S20, (c) S30

    Figure 7 TEM micrographs of mesoporous carbons prepared by AN-MMA copolymer/silica nanocomposites with different silica percentages

    From Fig. 6, it can be seen that many mesopores appear at the surface of the resulted carbons, and the number of mesopores increases with the increase of silica contents in polymer/silica nanocomposites. From Fig. 7, it reveals that all the carbons have thetypical morphology of mesoporous materials with 3-dimensionlly interconnected and disordered pore structure. The mesopores are evident in carbon frameworks and entirely close-packed. It demonstrates that the mesopores in the carbons are generated by removal of the silica particles and remained intact during the etching process.

    4 CONCLU SIONS

    Silica nanoparticles could be effectively encapsulated and well dispersed into AN-MMA copolymer latex particles via in-situ emulsion polymerization initiated by AIBA initiator absorbed onto silica particles. The carbon yield of AN-MMA copolymer was slightly decreased as silica incorporated into the copolymer. The silica nanoparticles template could be completely removed from the carbons by HF etching, and acted as templates to form the mesopores in the AN copolymer-based carbon. The mesoporous carbons with different pore sizes and pore structures could be prepared by varying the mass ratios of silica to AN copolymer, and the resulted carbons exhibited greater BET surface areas than the previous reported PAN-based carbons prepared by silica templating method via vapor polymerization. Due to the aggregation of silica nanoparticles at higher silica content, the obtained carbon showed a widened pore size distribution and decreased surface area. So far, to synthesize AN copolymer/silica nanocomposite with greater silica content and well dispersion of silica are still challenge in preparing mesoporous carbon with greater pore volume and surface area, and narrow pore size distribution through the proposed approach.

    REFERENCES

    1 Tamai, H., Kakii, T., Hirota, Y., Kumamota, T., Yasuda, H., “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules”, Chem. Mater., 8 (2), 454-462 (1996).

    2 Joo, J.B., Kim, P., Kim, J., Yi, J., “Advances in catalysis and catalytic materials for energy and environmental protection: Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells”, Catal. Today, 111 (3-4), 171-175 (2006).

    3 Xia, N.N., Zhou, T.X., Mo, S.S., Zhou, S.L., Zou, W.J., Yuan, D.S.,“Supercapacitive behaviors of worm-like mesoporous carbon in non-aqueous electrolyte”, J. Appl. Electrochem., 41 (1), 71-75 (2011).

    4 Chai, S., Yoon, S.B., Yu, J.S., Choi, J.H., Sung, Y.E., “Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell”, J. Phys. Chem. B, 108 (22), 7074-7079 (2004).

    5 Guo, B.K., Wang, X.Q., Fulvio, P.F., Chi, M.F., Mahurin, S.M., Sun, X.G., Dai, S., “Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries”, Adv. Mater., 23 (40), 4661-4666 (2011).

    6 Li, Z.J., Jaroniec, M., “Colloid-imprinted carbons as stationary phases for reversed-phase liquid chromatography”, Anal. Chem., 76 (18), 5479-5485 (2004).

    7 Kim, S.S., Shah, J., Pinnavaia, T.J., “Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite”, Chem. Mater., 15 (8), 1664-1668 (2003).

    8 Lee, J., Kim, J., Hyeon, T., “Recent progress in the synthesis of porous carbon materials”, Adv. Mater., 18 (16), 2073-2094 (2006).

    9 Liang, C.D., Li, Z.J., Dai, S., “Mesoporous carbon materials: Synthesis and modification”, Angew. Chem. Int. Ed., 47 (20), 3696-3717 (2008).

    10 Han, S., Hyeon, T., “Simple silica-particle template synthesis of mesoporous carbons”, Chem. Commun., 999 (19), 1955-1956 (1999).

    11 Jang, J., Lim, B., “Selective fabrication of carbon nanocapsules and mesocellular foams by surface-modified colloidal silica templating”, Adv. Mater., 14 (19), 1390-1393 (2002).

    12 Jang, J., Lim, B., Choi, M., “A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization”, Chem. Commun., (33), 4214-4216 (2005).

    13 Choma, J., Zawislak, A., Gorka, J., “Synthesis and adsorption properties of colloid-imprinted mesoporous carbons using poly(vinylidene chloride-co-viny chloride) as a carbon precursor”, Adsorption, 15 (1), 167-171 (2009).

    14 Ryoo, R., Joo, S.H., Kruk, M., Jaroniec, M., “Ordered mesoporous carbons”, Adv. Mater., 13 (9), 677-681 (2001).

    15 Kruk, M., Dufour, B., Celer, E.B., Kowalewski, T., Jaroniec, M., Matyjaszewski, K., “Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor”, J. Phys. Chem. B, 109 (19), 9216-9225 (2005).

    16 Kruk, M., Kohlhaas, K.M., Dufour, B., Celer, E.B., Jaroniec, M., Matyjaszewski, K., Ruoff, R. S., Kowalewski, T., “Partially graphitic, high-surface-area mesoporous carbons form polyacrylonitrile templated by ordered and disordered mesoporous silicas”, Micropor. Mesopor. Mater., 102 (1-3), 178-187 (2007).

    17 Yang, Z.L., Tang, F.F., Yuan, J.J., Pu, H.T., Luo, Z.Y., Shao, Q.C.,“Preparation and applications of mesoporous carbon materials from polyacrylonitrile”, Polym. Mater. Sci. Eng., 27 (7), 187-190 (2011). (in Chinese)

    18 Kawashima, D., Aihara, T., Kobayashi, Y., Kyotani, T., Tomita, A.,“Preparation of mesoporous carbon from orgainc polymer/silica nanocomposite”, Chem. Mater., 12 (11), 3397-3401 (2000).

    19 Han, S., Sohn, K., Hyeon, T., “Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes”, Chem. Mater., 12 (11), 3337-3341 (2000).

    20 Barrett, E.P., Joyner, L.G., Halenda, P.P., “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms”, J. Am. Chem. Soc., 73 (1), 373-380 (1951).

    21 Qi, D.M., Bao, Y.Z., Weng, Z.X., Huang, Z.M., “Synthesis and characterization of poly(butyl acrylate) /silica and poly(butyl acrylate)/silica/poly(methyl methacrylate) composite particles”, J. Appl. Polym. Sci., 99 (6), 3425-3432 (2006).

    22 Qi, D.M., Bao, Y.Z, Weng, Z.X., Huang, Z.M., “Anchoring of polyacrylate onto silica and formation of polyacrylate/silica nanocomposite particles via in situ emulsion polymerization”, Colloid Polym. Sci., 286 (2), 233-241 (2008).

    2011-05-22, accepted 2011-11-02.

    * Supported by the Program for New Century Excellent Talents in University (NCET-07-0738).

    ** To whom correspondence should be addressed. E-mail: yongzhongbao@zju.edu.cn

    色综合色国产| 丰满人妻一区二区三区视频av| 黑人高潮一二区| 美女xxoo啪啪120秒动态图| 国产精品久久视频播放| 亚州av有码| 日日干狠狠操夜夜爽| 久久精品国产亚洲网站| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜 | 人人妻人人澡欧美一区二区| 久久精品综合一区二区三区| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频 | 全区人妻精品视频| www日本黄色视频网| 国产一区二区亚洲精品在线观看| 禁无遮挡网站| 亚洲精品乱码久久久v下载方式| kizo精华| 2022亚洲国产成人精品| 国产一区二区在线av高清观看| 日韩av在线大香蕉| 成年免费大片在线观看| 99热这里只有是精品50| 精品国内亚洲2022精品成人| 中文字幕制服av| 1024手机看黄色片| 99国产精品一区二区蜜桃av| 国产精品久久久久久精品电影| 亚洲精品乱码久久久久久按摩| 成年版毛片免费区| 久久久精品大字幕| 亚洲一区高清亚洲精品| 99久久无色码亚洲精品果冻| 亚洲国产精品成人综合色| 欧美性感艳星| 国产精品人妻久久久影院| 亚洲真实伦在线观看| 欧美一区二区精品小视频在线| 国产一区二区三区av在线| 男人舔奶头视频| 男女啪啪激烈高潮av片| 成人高潮视频无遮挡免费网站| 国产精品不卡视频一区二区| 色尼玛亚洲综合影院| 欧美成人午夜免费资源| 精品久久久久久成人av| videos熟女内射| 最近最新中文字幕大全电影3| 日本一本二区三区精品| 尤物成人国产欧美一区二区三区| 日韩,欧美,国产一区二区三区 | 中文字幕制服av| 久久久久国产网址| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人精品二区| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 啦啦啦观看免费观看视频高清| 你懂的网址亚洲精品在线观看 | 青春草视频在线免费观看| 欧美人与善性xxx| 久久久久久久久中文| 国产免费男女视频| 国产精品不卡视频一区二区| 亚洲国产色片| 狂野欧美激情性xxxx在线观看| 自拍偷自拍亚洲精品老妇| 国产毛片a区久久久久| 十八禁国产超污无遮挡网站| 水蜜桃什么品种好| 天美传媒精品一区二区| av又黄又爽大尺度在线免费看 | 日本午夜av视频| 永久免费av网站大全| 国产精品1区2区在线观看.| 精品久久久噜噜| 久久久久久久久久久丰满| 中文字幕制服av| 亚洲人与动物交配视频| 插阴视频在线观看视频| a级毛片免费高清观看在线播放| 日本午夜av视频| 国产毛片a区久久久久| 老师上课跳d突然被开到最大视频| av卡一久久| av天堂中文字幕网| 国产精品久久电影中文字幕| 亚洲国产成人一精品久久久| 亚洲精品一区蜜桃| 嫩草影院精品99| 美女内射精品一级片tv| 午夜激情欧美在线| 国产一区有黄有色的免费视频 | 麻豆一二三区av精品| 欧美最新免费一区二区三区| 精品久久久久久久久亚洲| 长腿黑丝高跟| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频| 国产成人freesex在线| 亚洲av日韩在线播放| 精品久久久久久久久亚洲| 狂野欧美激情性xxxx在线观看| 最近手机中文字幕大全| 久久精品国产亚洲av天美| 欧美高清成人免费视频www| 久久久久久久久久久免费av| 日日啪夜夜撸| 色播亚洲综合网| 国产视频内射| a级一级毛片免费在线观看| 欧美日韩一区二区视频在线观看视频在线 | 91久久精品国产一区二区三区| 最近手机中文字幕大全| 国产高清三级在线| 久久精品91蜜桃| 国产欧美另类精品又又久久亚洲欧美| 18禁裸乳无遮挡免费网站照片| 嘟嘟电影网在线观看| 欧美不卡视频在线免费观看| 国产不卡一卡二| 欧美性猛交╳xxx乱大交人| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 日本免费在线观看一区| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人a区在线观看| 麻豆成人av视频| 伊人久久精品亚洲午夜| 少妇的逼水好多| 十八禁国产超污无遮挡网站| 亚洲三级黄色毛片| 久久草成人影院| 成人av在线播放网站| 国语对白做爰xxxⅹ性视频网站| av免费在线看不卡| 亚洲精品,欧美精品| 精品国产一区二区三区久久久樱花 | 三级国产精品片| 最近手机中文字幕大全| 久久久色成人| 亚洲国产色片| 国产成人aa在线观看| av在线播放精品| 国产成人精品婷婷| 最新中文字幕久久久久| 日韩精品青青久久久久久| 成年版毛片免费区| 亚洲av二区三区四区| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| 亚洲av电影在线观看一区二区三区 | 在线a可以看的网站| 日韩欧美精品v在线| 九九热线精品视视频播放| 免费观看的影片在线观看| 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 国产亚洲91精品色在线| 久99久视频精品免费| 十八禁国产超污无遮挡网站| 亚洲第一区二区三区不卡| 久久久成人免费电影| 亚洲av熟女| 插阴视频在线观看视频| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 18禁裸乳无遮挡免费网站照片| 日韩欧美精品免费久久| 能在线免费观看的黄片| 亚洲不卡免费看| 久久久精品大字幕| 精品久久久噜噜| 中文字幕人妻熟人妻熟丝袜美| 成人二区视频| 蜜桃久久精品国产亚洲av| 女人被狂操c到高潮| 综合色av麻豆| 亚洲av电影在线观看一区二区三区 | 三级经典国产精品| 日本熟妇午夜| 成人高潮视频无遮挡免费网站| 国产老妇女一区| 久久精品91蜜桃| av在线蜜桃| 色综合色国产| 国产成人免费观看mmmm| 国产精品嫩草影院av在线观看| 国产私拍福利视频在线观看| 亚洲欧美清纯卡通| 久久精品久久久久久久性| 午夜精品国产一区二区电影 | 久久99热这里只有精品18| 欧美又色又爽又黄视频| 午夜日本视频在线| 男的添女的下面高潮视频| 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 在线观看av片永久免费下载| 午夜福利在线观看免费完整高清在| 欧美三级亚洲精品| 精品国产露脸久久av麻豆 | 亚洲真实伦在线观看| 成人国产麻豆网| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片久久久久久久久女| 色综合站精品国产| 汤姆久久久久久久影院中文字幕 | 91在线精品国自产拍蜜月| 一级毛片我不卡| 午夜爱爱视频在线播放| 亚洲av免费高清在线观看| 嘟嘟电影网在线观看| 久久久久久久亚洲中文字幕| 国产伦理片在线播放av一区| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 久久6这里有精品| 亚洲国产精品成人久久小说| 久久草成人影院| 欧美成人免费av一区二区三区| 99热这里只有精品一区| 男女那种视频在线观看| 看黄色毛片网站| 岛国毛片在线播放| 国产极品精品免费视频能看的| 人人妻人人澡欧美一区二区| 国产成人精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产成人91sexporn| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合久久99| 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 一夜夜www| 久久人人爽人人片av| 亚洲人成网站在线播| 免费无遮挡裸体视频| 国产成人91sexporn| 亚洲精品国产av成人精品| 中文字幕亚洲精品专区| 亚洲国产日韩欧美精品在线观看| av天堂中文字幕网| 91aial.com中文字幕在线观看| АⅤ资源中文在线天堂| 免费大片18禁| 一区二区三区免费毛片| av线在线观看网站| 久久久欧美国产精品| 大香蕉久久网| ponron亚洲| 亚洲精品日韩av片在线观看| 日本wwww免费看| 亚洲av成人精品一二三区| www.色视频.com| 亚洲av成人av| 乱人视频在线观看| 亚洲av电影在线观看一区二区三区 | 美女cb高潮喷水在线观看| 成人特级av手机在线观看| 日韩制服骚丝袜av| av在线观看视频网站免费| 亚洲精品aⅴ在线观看| 黄色配什么色好看| 国产成人午夜福利电影在线观看| 日本三级黄在线观看| 国产精品久久久久久精品电影小说 | 国产免费福利视频在线观看| 国产午夜精品论理片| 色5月婷婷丁香| 国产伦在线观看视频一区| 97超碰精品成人国产| 97超碰精品成人国产| 国产成人freesex在线| 日本黄大片高清| 国产精品一区二区性色av| 成人毛片a级毛片在线播放| 欧美日本亚洲视频在线播放| 精品人妻一区二区三区麻豆| 亚洲欧美日韩无卡精品| 日韩三级伦理在线观看| av免费在线看不卡| 一个人观看的视频www高清免费观看| 一级黄片播放器| 国产成人a区在线观看| 欧美极品一区二区三区四区| 能在线免费看毛片的网站| 欧美色视频一区免费| 午夜福利视频1000在线观看| 水蜜桃什么品种好| 免费在线观看成人毛片| videos熟女内射| 国产免费男女视频| 欧美人与善性xxx| 亚洲中文字幕日韩| 亚洲丝袜综合中文字幕| 欧美高清成人免费视频www| 国产又色又爽无遮挡免| 国产成人freesex在线| 国产高清不卡午夜福利| 少妇人妻一区二区三区视频| 爱豆传媒免费全集在线观看| 免费不卡的大黄色大毛片视频在线观看 | 99久久精品热视频| 国产亚洲午夜精品一区二区久久 | 国产不卡一卡二| 一级毛片aaaaaa免费看小| 亚洲一区高清亚洲精品| 亚洲欧美中文字幕日韩二区| 丰满少妇做爰视频| 性插视频无遮挡在线免费观看| 搡老妇女老女人老熟妇| 18禁在线播放成人免费| 成人特级av手机在线观看| 床上黄色一级片| 国产精品女同一区二区软件| 嫩草影院新地址| av卡一久久| 日本欧美国产在线视频| 免费黄色在线免费观看| 日韩国内少妇激情av| 久久久成人免费电影| 国产真实乱freesex| 久久精品国产亚洲av涩爱| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 亚洲国产精品久久男人天堂| 又黄又爽又刺激的免费视频.| 亚洲性久久影院| 欧美人与善性xxx| 日韩av不卡免费在线播放| 久久久成人免费电影| 久久精品久久久久久噜噜老黄 | 欧美最新免费一区二区三区| 国产伦理片在线播放av一区| 亚洲在线观看片| 久久久久久久国产电影| 99热这里只有是精品在线观看| 免费观看的影片在线观看| 嫩草影院入口| 日本免费a在线| 色哟哟·www| 亚州av有码| 美女黄网站色视频| 国产高清有码在线观看视频| 精品一区二区三区视频在线| 一级爰片在线观看| 国产毛片a区久久久久| 中文字幕av成人在线电影| 99热网站在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 伊人久久精品亚洲午夜| 亚洲欧美成人精品一区二区| 国产淫语在线视频| 最近最新中文字幕大全电影3| 老司机福利观看| 免费看av在线观看网站| 51国产日韩欧美| 人妻少妇偷人精品九色| 春色校园在线视频观看| 色综合站精品国产| 国产高清视频在线观看网站| 精品一区二区免费观看| 久久精品夜夜夜夜夜久久蜜豆| 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕| 波多野结衣高清无吗| 日韩欧美 国产精品| 九九在线视频观看精品| 小说图片视频综合网站| 国产精品一区二区三区四区免费观看| 别揉我奶头 嗯啊视频| 午夜福利在线在线| 成人午夜精彩视频在线观看| 久久久a久久爽久久v久久| 在线播放国产精品三级| 亚洲av不卡在线观看| 国产一级毛片在线| 欧美3d第一页| 丝袜美腿在线中文| 91久久精品国产一区二区成人| 成人特级av手机在线观看| 久久久久久国产a免费观看| 又粗又硬又长又爽又黄的视频| 日韩中字成人| 亚洲乱码一区二区免费版| 久久久久久九九精品二区国产| 中文天堂在线官网| 久久久久久九九精品二区国产| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 久久久久久国产a免费观看| 美女cb高潮喷水在线观看| 久久草成人影院| 久久久久免费精品人妻一区二区| 纵有疾风起免费观看全集完整版 | 七月丁香在线播放| 观看美女的网站| 人妻少妇偷人精品九色| 99热这里只有是精品50| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 精品免费久久久久久久清纯| 又爽又黄a免费视频| 国产精品国产高清国产av| 身体一侧抽搐| 国产精品国产三级国产av玫瑰| 午夜精品在线福利| 亚洲三级黄色毛片| 91久久精品电影网| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 久热久热在线精品观看| 久久久欧美国产精品| 在线观看av片永久免费下载| 亚洲av成人精品一区久久| 久久久久久久久中文| 麻豆久久精品国产亚洲av| 午夜a级毛片| 中国国产av一级| 毛片女人毛片| 日韩欧美国产在线观看| 亚洲在久久综合| 亚洲经典国产精华液单| www.av在线官网国产| 欧美不卡视频在线免费观看| h日本视频在线播放| av在线蜜桃| 波多野结衣高清无吗| 亚洲精品亚洲一区二区| 久久精品久久久久久噜噜老黄 | 亚洲综合精品二区| 亚洲欧美日韩高清专用| 久久久国产成人精品二区| 日韩成人伦理影院| eeuss影院久久| 18禁在线无遮挡免费观看视频| 一级黄片播放器| 可以在线观看毛片的网站| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 夫妻性生交免费视频一级片| 亚洲欧美成人综合另类久久久 | 99久国产av精品| 插逼视频在线观看| 欧美zozozo另类| 91狼人影院| 亚洲精品亚洲一区二区| av国产免费在线观看| 最近视频中文字幕2019在线8| 51国产日韩欧美| 精品酒店卫生间| 嫩草影院精品99| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看 | 午夜爱爱视频在线播放| 亚洲成av人片在线播放无| 97在线视频观看| 丝袜喷水一区| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 亚洲精品一区蜜桃| 一区二区三区高清视频在线| 26uuu在线亚洲综合色| 偷拍熟女少妇极品色| 丝袜美腿在线中文| 一卡2卡三卡四卡精品乱码亚洲| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 国产视频内射| 两个人的视频大全免费| 综合色av麻豆| 国模一区二区三区四区视频| 欧美人与善性xxx| 淫秽高清视频在线观看| 成人一区二区视频在线观看| 亚洲av男天堂| 亚洲av电影不卡..在线观看| 深夜a级毛片| 99在线视频只有这里精品首页| av天堂中文字幕网| av视频在线观看入口| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 国产在视频线精品| 免费人成在线观看视频色| 成年女人看的毛片在线观看| 狂野欧美激情性xxxx在线观看| 99热全是精品| 中文字幕av在线有码专区| 久久亚洲精品不卡| 久久久久九九精品影院| av在线老鸭窝| 国产免费福利视频在线观看| 少妇丰满av| 亚洲国产欧洲综合997久久,| 亚洲精品影视一区二区三区av| 又爽又黄无遮挡网站| 黄色配什么色好看| 美女大奶头视频| 嫩草影院精品99| 婷婷色av中文字幕| 亚洲在久久综合| 精品国产三级普通话版| 男人和女人高潮做爰伦理| 91精品一卡2卡3卡4卡| 精华霜和精华液先用哪个| 国产私拍福利视频在线观看| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 亚洲精品乱码久久久久久按摩| 亚洲av熟女| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 国产精品女同一区二区软件| 国产美女午夜福利| 真实男女啪啪啪动态图| 在线观看一区二区三区| 最近的中文字幕免费完整| 亚洲在久久综合| 亚洲怡红院男人天堂| 老司机影院成人| 丝袜喷水一区| 日韩人妻高清精品专区| 成人二区视频| 亚洲熟妇中文字幕五十中出| 免费搜索国产男女视频| 久久精品夜色国产| 日韩av在线大香蕉| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | 精品久久久久久久末码| 国产淫语在线视频| 高清日韩中文字幕在线| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 亚洲欧洲日产国产| 精品久久久久久久久久久久久| 91av网一区二区| 99热6这里只有精品| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 美女脱内裤让男人舔精品视频| 国产黄片视频在线免费观看| 欧美潮喷喷水| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 欧美极品一区二区三区四区| av免费观看日本| 特大巨黑吊av在线直播| 成人三级黄色视频| 人妻系列 视频| 亚洲精品自拍成人| 午夜激情福利司机影院| 男人舔奶头视频| 秋霞在线观看毛片| 国产三级中文精品| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 国产高潮美女av| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 人妻少妇偷人精品九色| 国产爱豆传媒在线观看| 国产人妻一区二区三区在| 永久网站在线| 国产成人aa在线观看| 日韩精品青青久久久久久| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 非洲黑人性xxxx精品又粗又长| 欧美日本亚洲视频在线播放| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 中文字幕亚洲精品专区| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费看| 最近最新中文字幕免费大全7| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 国产老妇女一区| 欧美色视频一区免费| 日韩av在线免费看完整版不卡| 99热这里只有是精品在线观看| 少妇人妻一区二区三区视频| 嘟嘟电影网在线观看| 久久99精品国语久久久| 免费看av在线观看网站| 免费观看a级毛片全部| 内地一区二区视频在线| 亚洲伊人久久精品综合 | 色综合色国产| 亚洲va在线va天堂va国产| 国内精品美女久久久久久| 久久久国产成人免费| 欧美一区二区精品小视频在线| 51国产日韩欧美| 黄片无遮挡物在线观看| 欧美极品一区二区三区四区|