石煥南,張靜
(1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)
一類條件不等式的控制證明與應(yīng)用
石煥南1,張靜2
(1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)
通過判斷相關(guān)函數(shù)的Schur凸性、Schur幾何凸性和Schur調(diào)和凸性,證明并推廣了一類條件不等式,并據(jù)此建立了某些單形不等式.
Schur凸性;Schur調(diào)和凸性;Schur幾何凸性;條件不等式;單形
DO I:10.3969/j.issn.1008-5513.2013.05.001
證明由定理3的(13)式可得證.
致謝作者感謝張晗方教授給予本文的熱情幫助.
[1]M arshall A W,Olkin I,A rnold B C.Inequalities:Theory of Ma jorization and Its App lication[M].2nd ed. New York:Sp ringer Press,2011.
[2]王伯英.控制不等式基礎(chǔ)[M].北京:北京師范大學(xué)出版社,1990.
[3]張小明.幾何凸函數(shù)[M].合肥:安徽大學(xué)出版社,2004.
[4]Chu Yum ing,L¨u Yupei.The Schur harmonic convexity of the Ham y symmetric function and its app lications[J].Journal of Inequalities and Applications,2009,13:29-38.
[5]石煥南.受控理論與解析不等式[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2012.
[6]Chu Yum ing,Sun T ianchuan.The Schur harm onic convexity for a class of symm etric functions[J].Acta M athematica Scientia,2010,30B(5):1501-1506.
[7]Chu Y M,Wang G D,Zhang X H.The Schur mu ltiplicative and harmonic convexities of the comp lete symmetric function[J].M athematische Nachrichten,2011,284(5/6):653-663.
[8]Guan Kaizhong,Guan Ruke.Som e properties of a generalized Ham y symm etric function and its app lications[J].Journal of M athematical Analysis and App lications,2011,376(2):494-505.
[9]ShiHuannan.Two Schur-convex functions related to Hadamard-type integral inequalities[J].Pub licationes M athem aticae Debrecen,2011,78(2):393-403.
[11]Xia W eifeng,Chu Yum ing.The Schur convexity of G inimean values in the sense of harmonic mean[J]. A cta M athem atica Scien tia,2011,31B(3):1103-1112.
[12]Yang Zhenhang.Schur harmonic convexity of Ginimeans[J].International Mathematical Forum,2011,6 (16):747-762.
[13]Chu Yum ing,Xia Weifeng.Necessary and su f cient conditions for the Schur harmonic convexity of the Generalized M uirhead M ean[J].Proceed ings of A.Razm adze M athem atical Institu te,2010,152:19-27.
[14]Wu Y ing,QiFeng.Schur-harmonic convexity for dif erences of somemeans[J].Analysis,2012,32(4):263-270.
[15]Chu Yum ing,X iaWeifeng,Zhang Xiaohui.The Schur concavity,Schurmu ltip licative and harmonic convexities of the second dual form of the Ham y symm etric function w ith app lications[J].Jou rnal of M u ltivariate Analysis,2012,105(1):412-421.
[16]X iaWeifeng,Chu Yum ing,Wang Gendi.Necessary and suf cient conditions for the Schur harmonic convexity or concavity of theextendedmean values[J].Revista De La Uni`on M atem′atica Argentina,2010,51(2):121-132.
[17]夏衛(wèi)鋒,褚玉明.一類對(duì)稱函數(shù)的Schur凸性與應(yīng)用[J].數(shù)學(xué)進(jìn)展,2012,41(4):436-446.
[18]邵志華.一類對(duì)稱函數(shù)的Schur-幾何凸性Schur-調(diào)和凸性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2012,42(16):199-206.
[19]匡繼昌.常用不等式[M].4版.濟(jì)南:山東科學(xué)技術(shù)出版社,2010.
[20]楊學(xué)枝.數(shù)學(xué)奧林匹克不等式研究[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2009.
[21]M itrinovi′c D S,Peˇcri′c J E,Volenec V.Recent Advances in Geometric Inequalities[M].Dord recht:K luwer Academ ic Pub lishers,1989.
[22]石煥南.一個(gè)有理分式不等式的加細(xì)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2006,22(2):256-262.
[23]張晗方.幾何不等式導(dǎo)引[M].北京:中國科學(xué)文化出版社,2003.
M a jorized p roof and app lications for a class of cond itional inequality
Shi Huannan1,Zhang Jing2
(1.Departm ent of E lectronic Inform ation,Teacher′s College of Beijing Union University,
Beijing 100011,China;
2.Basic Courses Department,Beijing Union University,Beijing 100101,China)
To determ ine Schur convexity,Schur-geometric and harmonic convexities of the related function,a class of conditional inequality is p roved.As an application,several sim plex inequalities are obtained.
Schu r-convexity,Schu r harm onic convexity,Schu r geom etric convexity,cond itional inequality, sim p lex
O178
A
1008-5513(2013)05-0441-09
2013-05-22.
北京市屬高等學(xué)校人才強(qiáng)教計(jì)劃資助項(xiàng)目(PHR 201108407).
石煥南(1948-),教授,研究方向:解析不等式.
張靜(1975-),副教授,研究方向:解析不等式、優(yōu)化理論、數(shù)學(xué)模型.
2010 MSC:26D 15