• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類條件不等式的控制證明與應(yīng)用

      2013-06-27 05:45:01石煥南張靜
      關(guān)鍵詞:凸性北京聯(lián)合大學(xué)張靜

      石煥南,張靜

      (1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)

      一類條件不等式的控制證明與應(yīng)用

      石煥南1,張靜2

      (1.北京聯(lián)合大學(xué)師范學(xué)院電氣信息系,北京 100011;2.北京聯(lián)合大學(xué)基礎(chǔ)部,北京 100101)

      通過判斷相關(guān)函數(shù)的Schur凸性、Schur幾何凸性和Schur調(diào)和凸性,證明并推廣了一類條件不等式,并據(jù)此建立了某些單形不等式.

      Schur凸性;Schur調(diào)和凸性;Schur幾何凸性;條件不等式;單形

      DO I:10.3969/j.issn.1008-5513.2013.05.001

      1 定義和引理

      2 主要結(jié)果及其證明

      3 幾何應(yīng)用

      證明由定理3的(13)式可得證.

      致謝作者感謝張晗方教授給予本文的熱情幫助.

      [1]M arshall A W,Olkin I,A rnold B C.Inequalities:Theory of Ma jorization and Its App lication[M].2nd ed. New York:Sp ringer Press,2011.

      [2]王伯英.控制不等式基礎(chǔ)[M].北京:北京師范大學(xué)出版社,1990.

      [3]張小明.幾何凸函數(shù)[M].合肥:安徽大學(xué)出版社,2004.

      [4]Chu Yum ing,L¨u Yupei.The Schur harmonic convexity of the Ham y symmetric function and its app lications[J].Journal of Inequalities and Applications,2009,13:29-38.

      [5]石煥南.受控理論與解析不等式[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2012.

      [6]Chu Yum ing,Sun T ianchuan.The Schur harm onic convexity for a class of symm etric functions[J].Acta M athematica Scientia,2010,30B(5):1501-1506.

      [7]Chu Y M,Wang G D,Zhang X H.The Schur mu ltiplicative and harmonic convexities of the comp lete symmetric function[J].M athematische Nachrichten,2011,284(5/6):653-663.

      [8]Guan Kaizhong,Guan Ruke.Som e properties of a generalized Ham y symm etric function and its app lications[J].Journal of M athematical Analysis and App lications,2011,376(2):494-505.

      [9]ShiHuannan.Two Schur-convex functions related to Hadamard-type integral inequalities[J].Pub licationes M athem aticae Debrecen,2011,78(2):393-403.

      [11]Xia W eifeng,Chu Yum ing.The Schur convexity of G inimean values in the sense of harmonic mean[J]. A cta M athem atica Scien tia,2011,31B(3):1103-1112.

      [12]Yang Zhenhang.Schur harmonic convexity of Ginimeans[J].International Mathematical Forum,2011,6 (16):747-762.

      [13]Chu Yum ing,Xia Weifeng.Necessary and su f cient conditions for the Schur harmonic convexity of the Generalized M uirhead M ean[J].Proceed ings of A.Razm adze M athem atical Institu te,2010,152:19-27.

      [14]Wu Y ing,QiFeng.Schur-harmonic convexity for dif erences of somemeans[J].Analysis,2012,32(4):263-270.

      [15]Chu Yum ing,X iaWeifeng,Zhang Xiaohui.The Schur concavity,Schurmu ltip licative and harmonic convexities of the second dual form of the Ham y symm etric function w ith app lications[J].Jou rnal of M u ltivariate Analysis,2012,105(1):412-421.

      [16]X iaWeifeng,Chu Yum ing,Wang Gendi.Necessary and suf cient conditions for the Schur harmonic convexity or concavity of theextendedmean values[J].Revista De La Uni`on M atem′atica Argentina,2010,51(2):121-132.

      [17]夏衛(wèi)鋒,褚玉明.一類對(duì)稱函數(shù)的Schur凸性與應(yīng)用[J].數(shù)學(xué)進(jìn)展,2012,41(4):436-446.

      [18]邵志華.一類對(duì)稱函數(shù)的Schur-幾何凸性Schur-調(diào)和凸性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2012,42(16):199-206.

      [19]匡繼昌.常用不等式[M].4版.濟(jì)南:山東科學(xué)技術(shù)出版社,2010.

      [20]楊學(xué)枝.數(shù)學(xué)奧林匹克不等式研究[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2009.

      [21]M itrinovi′c D S,Peˇcri′c J E,Volenec V.Recent Advances in Geometric Inequalities[M].Dord recht:K luwer Academ ic Pub lishers,1989.

      [22]石煥南.一個(gè)有理分式不等式的加細(xì)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2006,22(2):256-262.

      [23]張晗方.幾何不等式導(dǎo)引[M].北京:中國科學(xué)文化出版社,2003.

      M a jorized p roof and app lications for a class of cond itional inequality

      Shi Huannan1,Zhang Jing2

      (1.Departm ent of E lectronic Inform ation,Teacher′s College of Beijing Union University,
      Beijing 100011,China;
      2.Basic Courses Department,Beijing Union University,Beijing 100101,China)

      To determ ine Schur convexity,Schur-geometric and harmonic convexities of the related function,a class of conditional inequality is p roved.As an application,several sim plex inequalities are obtained.

      Schu r-convexity,Schu r harm onic convexity,Schu r geom etric convexity,cond itional inequality, sim p lex

      O178

      A

      1008-5513(2013)05-0441-09

      2013-05-22.

      北京市屬高等學(xué)校人才強(qiáng)教計(jì)劃資助項(xiàng)目(PHR 201108407).

      石煥南(1948-),教授,研究方向:解析不等式.

      張靜(1975-),副教授,研究方向:解析不等式、優(yōu)化理論、數(shù)學(xué)模型.

      2010 MSC:26D 15

      猜你喜歡
      凸性北京聯(lián)合大學(xué)張靜
      讀圖
      臺(tái)灣現(xiàn)代文學(xué)發(fā)展的歷史輪廓
      ——評(píng)《中國現(xiàn)代文學(xué)三十年》臺(tái)灣文學(xué)部分
      Self—redemption in Desire—Analysis of Desire under the Elms
      趙堅(jiān)室內(nèi)設(shè)計(jì)作品
      專升本會(huì)計(jì)專業(yè)畢業(yè)論文存在的問題及改進(jìn)建議——以北京聯(lián)合大學(xué)生物化學(xué)工程學(xué)院為例
      A Study of Current English Learning and Teaching for College Art Majors and a Brief Discussion of Art—based English Teaching Strategy
      仁怀市| 邵东县| 武冈市| 甘孜县| 威远县| 霍山县| 璧山县| 黄浦区| 毕节市| 行唐县| 通州市| 松原市| 扎兰屯市| 进贤县| 天峨县| 阳新县| 娄底市| 西安市| 乐山市| 桂东县| 黑河市| 浦北县| 惠水县| 武平县| 浦县| 辽中县| 电白县| 辽宁省| 宁德市| 房山区| 徐汇区| 大港区| 无锡市| 蛟河市| 志丹县| 应用必备| 花莲市| 页游| 临夏市| 图木舒克市| 乡宁县|