• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems

    2013-07-29 09:42:26XingPengLiWenLuFuQingJunShiJianBingXuandQuanYuanJiang

    Xing-Peng Li,Wen-Lu Fu,Qing-Jun Shi,Jian-Bing Xu,and Quan-Yuan Jiang

    1.Introduction

    Wind turbine is an essential portion in wind generation systems.The amount of mechanical energy that can be extracted from wind is not only depending on wind speed,but also depending on the wind turbine rotational speed.The wind turbine rotational speed can be adjusted as the wind speed changes to tracking the maximum power point.

    Currently,researchers have developed many maximum power point tracking(MPPT)strategies.There are three common MPPT algorithms[1],[2]:a)hill climbing search(HCS)or perturbation and observation(P&O)[3],[4],b)wind speed measurement(WSM)[5],c)power signal feedback(PSK).There are also other MPPT algorithms introduced in[6]–[11].

    In comparison,the HCS algorithm is popular[12]due to its simplicity and independence of system characteristics and it can avoid using wind speed.However,the step size of HCS algorithm is constant[13].Choosing an appropriate step size is not an easy task,where large step size means faster response and less steady-state efficiency while small step size improves steady-state efficiency but slows down the convergence speed[8].The conventional HCS algorithm cannot combine rapidity and efficiency,which means the algorithm cannot adapt well both in the situation that wind speed changes quickly and in the situation that wind speed is constant.

    In this paper,a fuzzy-logical-controller based MPPT strategy for wind generation systems is proposed,which can realize variable step-size control.The strategy is independent of the turbine’s characteristics.Compared with conventional HCS algorithms with a big step size and a small step size respectively,the proposed algorithm is validated superiorly in MATLAB/Simulink environment.The simulation results indicate the proposed MPPT algorithm has three advantages:a)tracking MPP fast,b)the fluctuation magnitude of real power is small during steady state,and c)the wind energy captured is the most among the three MPPT algorithms.

    This paper is organized as follows:Section 2 gives a brief introduction to the wind turbine characteristics and to the wind generation system.Section 3 presents an introduction to the conventional HCS algorithm.In Section 4,we discuss the proposed fuzzy logical control(FLC)strategy and its advantages compared with conventional HCS strategy.Case studies are presented in detail in Section 5.Conclusions are finally made in Section 6.

    2.System Overview

    2.1 Wind Turbine Characteristics

    Depending on the aerodynamic characteristics,the wind power captured by the wind turbine can be expressed as

    where Cp(λ,β )is the wind turbine power coefficient which is a function of λ and β,ρ is the air density,R is the radius of wind turbine blade,V is the wind speed,β is the blade pitch angle,and λ is the tip speed ratio:

    where w is the wind turbine rotational speed.There exits an optimal tip speed ratio λoptthat can maximize Cpand P.Then,the maximum wind power Pmaxcaptured by wind turbine can be described as

    The output mechanical power versus rotational speed characteristic of wind turbine for different wind speeds is shown in Fig.1,in which the dotted line shows the maximum power points for different wind turbine rotational speed w and different wind speed V.Each P–w curve is characterized by a unique turbine speed corresponding to the maximum power point for that wind velocity[14].The peak power points in the P–w curves correspond to[15].

    A direct driven permanent magnet synchronous generator(PMSG)connected to a utility grid is selected in this paper.The specifications of the simulated PMSG generation system are listed in Table 1.

    2.2 Wind Generation System

    Direct driven PMSG wind generator can connect a utility grid through various converter topologies[16],where double PWM converters are a common topology for PMSG wind generation systems.The double PWM converters own a flexible structure for different control methods and can be used to adjust the motor speed and control the power injected into a utility grid.In this paper,the configuration of the imitation platform for the PMSG wind generation system is shown in Fig.2.

    In the operation control process,two PWM converters play different roles.The grid-side converter uses vector control technology based on decoupling control of active power and reactive power,which can smooth the output active power and provide reactive power support for the utility grid.Another task of the grid-side converter is to maintain the stability of the DC bus voltage.The turbine-side converter controls PMSG using vector control technology based on rotor flux oriented control.Then,the rotational speed can be adjusted to maintain the best tip speed ratio and to achieve the maximum wind power tracking when wind speed changes.The simulation model diagram of turbine-side converter control is shown in Fig.3.From Fig.3,we can see that the turbine is operated in the rotational speed control mode.The reference rotational speed is dynamically modified as the wind speed changes.

    2.3 Issues with MPPT

    To maintain the best tip speed ratio and to achieve MPPT control,the rotational speed needs to be adjusted as the wind speed changes in practical operation.The issue with MPPT is how to determine the optimal rotational speed for different wind speed.

    Many MPPT algorithms have already been proposed.Among them,the HCS method is popularly applied for the method is simple,fast and it can operate independently from predefined wind turbine characteristic.

    Fig.1.Wind turbine P-w characteristics and maximum power curve.

    Table 1:Parameters of PMSG

    Fig.2.PMSG wind generation system with double PWM converters.

    Fig.3.Turbine-side converter control model for simulation.

    Fig.4.Control block of FLC algorithm.

    Fig.5.Principle illustration of HCS control algorithm.

    However,the step size of the conventional HCS algorithm is constant and it cannot change suitably as the environment changes.This paper presents a fuzzy logical control algorithm to determine the reference rotational speed which can realize variable step-size control as wind speed changes.As shown in Fig.4,the input variables of fuzzy logical control algorithm are rotational speed w and mechanical power P.The reference rotational speed wrefcan be calculated through fuzzy logic rules.The proposed FLC algorithm is described in detail in Section 4.

    3.Basic Principle of HCS Algorithm

    The process of the conventional hill climbing searching algorithm used for the maximum power point tracking can be explained using Fig.5.The basic principle of the HCS algorithm is:if the previous increment of rotational speed Δw results in an increase of mechanical power ΔP,the search of Δw continues in the same direction; otherwise,the search reverses its direction.The algorithm is described in detail as follows.

    Assume that the wind turbine is operating at point A in the characteristic curve shown in Fig.5.The wind turbine rotational speed is increased and the corresponding mechanical power is detected.If the power is increased compared with that in the earlier step,the search process is in the correct direction,and the wind turbine rotational speed is increased again.If the power is decreased compared with that in the earlier step,the search will be in the opposite direction.This process is continued until the powers slope becomes zero,indicating that the HCS algorithm succeeds to reach the maximum power point,which corresponds to point B.

    If the wind speed changes from v3to v1,the turbine operating-point will jump to point C from point B instantly.Then P-w slope is positive and the turbine rotational speed is increased.The slope is observed until it becomes zero.Then the wind turbine can track the maximum power point,i.e.,it will operate at point D.Now if there is a decrease in wind speed from v1to v2,the operating-point could eventually shift from point D to point F,depending on the same principle.

    The flow chart of conventional HCS algorithm is illustrated in Fig.6.

    Fig.6.Flow chart of HCS algorithm.

    4.Introduction to FLC Algorithm

    The conventional HCS algorithm implementation is simple and is independent of turbine characteristics[12],but there still exist issues like the selection of step size.A big step size can track the MPP fast but at the same time it can result in severe oscillations around the maximum power point.Reducing the perturbation step size can minimize the oscillations around MPP.However,a small step size can slow down the MPPT process especially when wind speed varies fast.To give a solution to this conflicting situation,a fuzzy logical control algorithm which has a variable perturbation step size is proposed in this paper.The FLC algorithm can effectively track the MPP fast and smoothly.

    In the part of setting reference wind turbine rotational speed,the conventional HCS algorithm is replaced by the proposed FLC algorithm,which can realize variable step-size control.Through fuzzy control,the step size can be large when the operating point is far away from the MPP while the step size can become small when the operating point comes close to the MPP.Therefore,the FLC algorithm can dynamically change its step size,depending on the turbine operation condition.

    The set of the fuzzy logical controller is described as follows:the input variables are ΔP(k)and Δw(k),while the output variable is Δwref(k).ΔP(k)and Δw(k)can be obtained by

    The member function of input variables of fuzzy logical controller with MATLAB is defined as follows:there are seven member functions of input variable ΔP(k):PB(positive big),PM(positive medium),PS(positive small),ZE(zero),NS(negative small),NM(negative medium),and NB(negative big),respectively,as shown in Fig.7; the member functions of input variable Δw(k)are P(positive),Z(zero),and N(negative),respectively.

    Fig.7.Member functions of input variablesΔP(k).

    Fig.8.Member functions of output variableΔwref(k).

    Table 2:Rules for the fuzzy logical controller

    The member functions of output variable Δwref(k),which are similar to ΔP(k),are PB,PM,PS,ZE,NS,NM,NB,respectively.The detail information can be viewed from Fig.8.

    The relationship between turbine mechanical power and turbine rotational speed can be expressed in(6)to(8)depending on the P-w curve.

    where wmppdenotes the turbine rotational speed corresponding to the MPP.

    The fuzzy logical control rules are based on the properties of wind turbine,as shown in Table 2.Then the newly setting reference rotational speed can be updated by

    5.Case Studies

    Case studies on the proposed MPPT control strategy and two conventional HCS algorithms with different size steps have been conducted to validate the proposed MPPT strategy.

    Four performance indices for MPPT in a grid-connected wind generation system are also proposed in this paper.They are the wind energy captured by wind turbine,the maximum power point tracking time when the wind speed changes slowly,the fluctuation magnitude of real power during steady-state,and the wind energy captured by wind turbine when the wind speed changes fast.

    Table 3:Results of case 1

    Table 4:Results of case 2

    Three cases are designed,and three MPPT control strategies are simulated in the environment of MATLAB/Simulink respectively.The three MPPT control strategies are:a)HCS algorithm with a big perturbation step size,b)HCS algorithm with a small perturbation step size,and c)FLC algorithm with variable perturbation step size.

    Initial conditions of the three cases are the same:the wind speed is 7 m/s,and the wind turbine operates at the optimal point,i.e.MPP.

    5.1 Case 1

    Case 1:Wind speed rises to 11 m/s linearly from 0.9 s to 1.0 s.The time used for tracking the MPP is T1after the first change of wind speed.From 1.9 s to 2.0 s,wind speed drops to 8 m/s linearly.The time used for tracking the MPP is T2after the second change of wind speed.The symbol ΔP denotes the fluctuation magnitude of real power during steady state,while the symbol W denotes the wind energy captured by the wind turbine from 0.9 s to 3.0 s.The result of case 1 is shown in Table 3.

    5.2 Case 2

    Case 2:The wind speed is up to 11 m/s in step change at time 1.0 s while down to 8 m/s in step change at time 2.0 s.The result of Case 2 is shown in Table 4.The symbols T1,T2,and ΔP of Table 4 have the same meaning as defined in Case 1.Here W denotes the wind energy captured by the wind turbine from 1.0 s to 3.0 s.

    The output mechanical power curves(1.0 s to 1.5 s)of three different MPPT strategies after the first change of wind speed are given in Fig.9 in order to compare the performance of the three MPPT strategies more easily.Fig.10 shows variable perturbation step size of the proposed FLC algorithm.Through Fig.10,it can be concluded that the step size controlled by the FLC algorithm can be changed suitably depending on the system operation condition.At time 1.073 s,the step size becomes small which can indicate the system operating point is very close to MPP or it is the MPP itself.

    Fig.9.Output power curves of three MPPT strategies:(a)HCS algorithm(step size:0.08 r/min),(b)HCS algorithm(step size:0.04 r/min),and(c)FLC algorithm(variable step size).

    Fig.10.Variable step size of FLC algorithm.

    Fig.11.Curve of wind speed.

    Table 5:Results of Case 3

    5.3 Case 3

    Case 3:The wind speed changes fast and irregularly from 1.0 s to 4.0 s.The curve of wind speed is shown in Fig.11.The wind energies captured by turbines from 1.0 s to 4.0 s through three different MPPT algorithms are listed in Table 5.

    Through the above three cases,we can see that the system can always operate at its optimal points for a certain wind speed by using any of the three MPPT strategies.But the emphasis is when the wind speed changes,the FLC algorithm shows good performances than the conventional HCS algorithm no matter its step size is large or small.FLC algorithm can track the MPP much faster than the other two methods.At the same time,the fluctuation magnitude of real power of FLC algorithm is small during steady state.Case studies also show that the wind energy captured by FLC algorithm is the most among the three MPPT strategies both in the situation of wind speed changing slowly and in the situation of wind speed changing fiercely.All these results can validate that the proposed MPPT algorithm is highly efficient than the conventional HCS algorithms.

    Generally speaking,compared with the conventional HCS control approaches,the proposed algorithm reflects significant advantages no matter in the aspect of tracking speed or in the aspect of the fluctuation magnitude of real power.

    6.Conclusions

    This paper proposes a fuzzy-logical-controller based MPPT strategy with variable step size,which can consider both tracking speed and steady-state efficiency.The proposed algorithm can change its perturbation step size dynamically depending on the change of wind speed,which enables the turbine to track the MPP quickly and smoothly.

    Three MPPT algorithms and three cases were developed in this paper.The effectiveness of the proposed algorithm is verified in MATLAB/Simulink environment with SimPowerSystems and Fuzzy Logical Toolbox.The simulation results indicate that the proposed fuzzy-logicalcontroller based MPPT algorithm shows good performance.The wind turbine could track the optimum operating point swiftly using the proposed algorithm and the steady-state power would not fluctuate fiercely.In general,the proposed FLC MPPT algorithm can enhance the efficiency of wind turbine operation compared with the conventional HCS strategy.

    [1]A.Soetedjo,A.Lomi,and W.P.Mulayanto,“Modeling of wind energy system with MPPT control,” presented at Int.Conf.on Electrical Engineering and Informatics,Bandung,Jul.2011.

    [2]S.M.Barakati,“Modeling and controller design of a wind energy conversion system including a matrix converter,”Ph.D.dissertation,University of Waterloo,Canada,2008.

    [3]E.Koutroulis and K.Kalaitzakis,“Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans.on Industrial Electronics,vol.53,no.2,pp.486–494,Apr.2006.

    [4]Q.Wang and L.Chang,“An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Trans.on Power Electronics,vol.19,no.5,pp.1242–1249,Sep.2004.

    [5]A.M.Eltamaly,“Modeling of wind turbine driving permanent magnet generator with maximum power point tracking system,” Journal of King Saud University,Engineering Science,vol.19,no.2,pp.223–237,2007.

    [6]C.Patsios,A.Chaniotis,M.Rotas,and A.G.Kladas,“A comparison of maximum-power-point tracking control techniques for low-power variable-speed wind generators,”presented at 2009 8th Int.Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium,Lille,Jul.2009.

    [7]M.Shirazi,A.H.Viki,and O.Babayi,“A comparative study of maximum power extraction strategies in PMSG wind turbine system,” in Proc.of 2009 IEEE Electrical Power & Energy Conf.,Montreal,2009,pp.1–6.

    [8]M.A.Abdullah,A.H.M.Yatim,and C.W.Tan.“A study of maximum power point tracking algorithms for wind energy system,” in Proc.of 2011 IEEE First Conf.on Clean Energy and Technology,Kuala Lumpur,2011,pp.321–326.

    [9]S.M.Raza Kazmi,H.Goto,H.-J.Guo,and O.Ichinokura,“Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system,” in Proc.of 2010 IEEE Energy Conversion Congress and Exposition,Atlanta,2010,pp.4075–4082.

    [10]R.Vepa,“Nonlinear,optimal control of a wind turbine generator,” IEEE Trans.Energy Conversion,vol.26,no.2,pp.468–478,Jun.2011.

    [11]M.Pucci and M.Cirrincione,“Neural MPPT control of wind generators with induction machines without speed sensors,” IEEE Trans.on Industrial Electronics,vol.58,no.1,pp.37–47,Jan.2011.

    [12]S.Musunuri and H.L.Ginn,“A fast maximum power extraction algorithm for wind energy systems,” in Proc.of 2011 IEEE Power and Energy Society General Meeting,Detroit,Jul.2011,pp.1–7.

    [13]M.G.Molina and P.E.Mercado,“A new control strategy of variable speed wind turbine generator for three-phase gridconnected applications,” in 2008 IEEE/PES Transmission and Distribution Conf.and Exposition,Chicago,Aug.2008,pp.1–8.

    [14]V.Agarwal,R.K.Aggarwal,P.Patidar,and C.Patki,“A novel scheme for rapid tracking of maximum power point in wind energy generation systems,” IEEE Trans.Energy Conversion,vol.25,no.1,pp.228–236,Mar.2010.

    [15]R.Datta and V.T.Ranganathan,“A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Trans.on Energy Conversion,vol.18,no.1,pp.163–168,Mar.2003.

    [16]J.A.Baroudi,V.Dinavahi,and A.M.Knight,“A review of power converter topologies for wind generators,” Renewable Energy,vol.32,no.14,pp.2369–2385,Nov.2007.

    av在线蜜桃| 最近在线观看免费完整版| 色综合亚洲欧美另类图片| 午夜福利18| 我的老师免费观看完整版| 岛国在线观看网站| 亚洲 欧美一区二区三区| 国产人伦9x9x在线观看| 免费看日本二区| 99精品久久久久人妻精品| 日本免费a在线| 99精品欧美一区二区三区四区| 亚洲精品一区av在线观看| 一级黄色大片毛片| 天天一区二区日本电影三级| 中文字幕最新亚洲高清| 久久久水蜜桃国产精品网| 好男人电影高清在线观看| 不卡一级毛片| 久久久精品大字幕| 欧美日韩福利视频一区二区| 女生性感内裤真人,穿戴方法视频| 午夜影院日韩av| h日本视频在线播放| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 久久久久久人人人人人| 亚洲电影在线观看av| 色综合婷婷激情| 亚洲五月天丁香| 国产主播在线观看一区二区| 亚洲国产高清在线一区二区三| 亚洲av成人精品一区久久| 在线观看免费午夜福利视频| 欧美一区二区国产精品久久精品| www.自偷自拍.com| 国产伦一二天堂av在线观看| 中出人妻视频一区二区| 日本 欧美在线| 亚洲精品美女久久久久99蜜臀| 亚洲国产高清在线一区二区三| 中文字幕久久专区| 热99re8久久精品国产| 最近最新免费中文字幕在线| 天堂动漫精品| 亚洲午夜理论影院| 免费看日本二区| 精品熟女少妇八av免费久了| 嫩草影院精品99| 一a级毛片在线观看| 一本综合久久免费| 国产aⅴ精品一区二区三区波| 成人鲁丝片一二三区免费| 中亚洲国语对白在线视频| 国产一区二区激情短视频| 此物有八面人人有两片| 不卡av一区二区三区| 好男人在线观看高清免费视频| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区免费观看 | 女警被强在线播放| 精品乱码久久久久久99久播| 亚洲精品在线观看二区| 99视频精品全部免费 在线 | 村上凉子中文字幕在线| 黄色日韩在线| 国产又黄又爽又无遮挡在线| 老司机福利观看| 精品熟女少妇八av免费久了| 性色avwww在线观看| 亚洲狠狠婷婷综合久久图片| 少妇丰满av| 亚洲av成人不卡在线观看播放网| 免费无遮挡裸体视频| 国产伦精品一区二区三区四那| 午夜福利成人在线免费观看| 成年人黄色毛片网站| 精品免费久久久久久久清纯| 久久精品aⅴ一区二区三区四区| 日本与韩国留学比较| 三级男女做爰猛烈吃奶摸视频| 曰老女人黄片| 亚洲欧美日韩高清在线视频| 欧美中文综合在线视频| 亚洲欧美精品综合久久99| 欧美成人一区二区免费高清观看 | 国产av一区在线观看免费| 99久国产av精品| 99热这里只有精品一区 | 看片在线看免费视频| 国产高清三级在线| 久久国产精品人妻蜜桃| 国产高清三级在线| 丁香六月欧美| 又黄又粗又硬又大视频| 国产精品乱码一区二三区的特点| 日韩国内少妇激情av| 欧美大码av| 亚洲无线在线观看| 99re在线观看精品视频| 麻豆成人av在线观看| 啦啦啦韩国在线观看视频| 欧美黄色淫秽网站| 女警被强在线播放| 国产黄色小视频在线观看| 亚洲精品粉嫩美女一区| 一级a爱片免费观看的视频| 欧美三级亚洲精品| 欧美丝袜亚洲另类 | 人人妻人人看人人澡| xxxwww97欧美| 99在线视频只有这里精品首页| 国产成人精品无人区| 琪琪午夜伦伦电影理论片6080| 婷婷六月久久综合丁香| 身体一侧抽搐| 国产乱人伦免费视频| 一个人看的www免费观看视频| 日本熟妇午夜| 国产伦一二天堂av在线观看| 国产高清三级在线| 成人三级做爰电影| 免费在线观看成人毛片| 亚洲国产色片| 高清毛片免费观看视频网站| 一个人观看的视频www高清免费观看 | 很黄的视频免费| 国产黄a三级三级三级人| 国产91精品成人一区二区三区| 香蕉av资源在线| 色在线成人网| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久成人av| 精品一区二区三区四区五区乱码| 久久性视频一级片| 国产精品久久久人人做人人爽| 夜夜看夜夜爽夜夜摸| 夜夜躁狠狠躁天天躁| 久久国产精品人妻蜜桃| 天堂网av新在线| 制服人妻中文乱码| 欧美成人免费av一区二区三区| 美女 人体艺术 gogo| 国产成人一区二区三区免费视频网站| 免费看十八禁软件| 亚洲黑人精品在线| 久久久久久大精品| 午夜福利免费观看在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲专区国产一区二区| 亚洲在线观看片| 少妇的丰满在线观看| 成年免费大片在线观看| av片东京热男人的天堂| 高清毛片免费观看视频网站| 亚洲av电影在线进入| 国产黄a三级三级三级人| 国产成人福利小说| 亚洲成人中文字幕在线播放| 亚洲av成人不卡在线观看播放网| 999久久久国产精品视频| 日本成人三级电影网站| www日本在线高清视频| 窝窝影院91人妻| 久久久精品大字幕| 黄色丝袜av网址大全| 一进一出抽搐动态| 欧美日韩福利视频一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区黑人| 国产一区二区激情短视频| 97超视频在线观看视频| 亚洲激情在线av| 黄色女人牲交| 最好的美女福利视频网| 国产一区二区三区视频了| 午夜两性在线视频| 日本黄色视频三级网站网址| 国产极品精品免费视频能看的| 国产精品国产高清国产av| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区免费观看 | 国产高清三级在线| 欧美另类亚洲清纯唯美| 亚洲第一欧美日韩一区二区三区| 国产成人av教育| 国产真实乱freesex| 一本一本综合久久| 成年人黄色毛片网站| 成人无遮挡网站| 母亲3免费完整高清在线观看| 男女视频在线观看网站免费| 亚洲第一电影网av| 国产亚洲精品久久久com| 欧美日韩一级在线毛片| 女人被狂操c到高潮| 一级毛片女人18水好多| 久久久久国内视频| 国产v大片淫在线免费观看| 成人亚洲精品av一区二区| 国产欧美日韩精品一区二区| 婷婷亚洲欧美| 91字幕亚洲| 国产精品久久久av美女十八| 亚洲精品美女久久av网站| 亚洲欧美日韩卡通动漫| 精品熟女少妇八av免费久了| svipshipincom国产片| 搡老熟女国产l中国老女人| 一区二区三区激情视频| 啦啦啦免费观看视频1| 嫩草影院精品99| 嫁个100分男人电影在线观看| 婷婷丁香在线五月| 真人做人爱边吃奶动态| 国产亚洲av高清不卡| 巨乳人妻的诱惑在线观看| 亚洲无线在线观看| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 韩国av一区二区三区四区| 变态另类成人亚洲欧美熟女| 啦啦啦免费观看视频1| 嫩草影院精品99| 三级毛片av免费| 两个人看的免费小视频| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 少妇的丰满在线观看| 欧美高清成人免费视频www| 成年女人看的毛片在线观看| 国产不卡一卡二| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 无人区码免费观看不卡| 久久热在线av| 老熟妇乱子伦视频在线观看| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 这个男人来自地球电影免费观看| 日本黄色片子视频| 看片在线看免费视频| 999久久久精品免费观看国产| 一区福利在线观看| 99国产综合亚洲精品| 别揉我奶头~嗯~啊~动态视频| 午夜成年电影在线免费观看| 搞女人的毛片| 99国产极品粉嫩在线观看| 亚洲av成人av| 久久久久九九精品影院| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| 亚洲成人精品中文字幕电影| 哪里可以看免费的av片| 亚洲五月天丁香| www.精华液| www日本在线高清视频| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 好男人在线观看高清免费视频| 精品99又大又爽又粗少妇毛片 | 国产成人啪精品午夜网站| 久久精品亚洲精品国产色婷小说| 999久久久国产精品视频| 在线免费观看的www视频| 91在线精品国自产拍蜜月 | 成人av在线播放网站| 日本在线视频免费播放| 免费观看精品视频网站| 天天一区二区日本电影三级| www.自偷自拍.com| 噜噜噜噜噜久久久久久91| 在线观看日韩欧美| 亚洲av中文字字幕乱码综合| 亚洲成人久久性| 99热只有精品国产| 中国美女看黄片| 一卡2卡三卡四卡精品乱码亚洲| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 天堂√8在线中文| 久久九九热精品免费| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 日本 av在线| 69av精品久久久久久| 欧美丝袜亚洲另类 | 亚洲 欧美一区二区三区| 久久精品91蜜桃| 久久中文看片网| 国产精华一区二区三区| 级片在线观看| 精品不卡国产一区二区三区| 一区福利在线观看| 亚洲欧美日韩卡通动漫| 亚洲一区高清亚洲精品| 日韩欧美在线乱码| 免费在线观看影片大全网站| 久久精品国产清高在天天线| 夜夜爽天天搞| 欧美日韩亚洲国产一区二区在线观看| av天堂中文字幕网| 国产精品久久久久久亚洲av鲁大| 国产午夜精品久久久久久| 午夜精品久久久久久毛片777| 天堂影院成人在线观看| 黄色成人免费大全| 久久99热这里只有精品18| 久久久久国内视频| 伦理电影免费视频| 免费在线观看影片大全网站| 国产精品一区二区三区四区久久| 亚洲五月婷婷丁香| 99热这里只有是精品50| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 精品无人区乱码1区二区| 日韩欧美在线乱码| av天堂在线播放| 亚洲av电影在线进入| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 琪琪午夜伦伦电影理论片6080| 午夜激情福利司机影院| 国产欧美日韩精品一区二区| 99国产极品粉嫩在线观看| 久久中文字幕一级| 99热这里只有精品一区 | 国内少妇人妻偷人精品xxx网站 | 亚洲在线自拍视频| 国产高清视频在线播放一区| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 好男人电影高清在线观看| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 国产av麻豆久久久久久久| 亚洲av成人不卡在线观看播放网| 综合色av麻豆| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 波多野结衣高清无吗| 国产av不卡久久| x7x7x7水蜜桃| 一本综合久久免费| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 日本在线视频免费播放| 国内精品美女久久久久久| 久久久水蜜桃国产精品网| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 欧美黑人巨大hd| 一本精品99久久精品77| 精品不卡国产一区二区三区| 美女黄网站色视频| 麻豆国产av国片精品| 丁香六月欧美| 99国产极品粉嫩在线观看| 偷拍熟女少妇极品色| 国产成人欧美在线观看| 成人高潮视频无遮挡免费网站| 丰满的人妻完整版| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| h日本视频在线播放| 欧美黑人欧美精品刺激| 亚洲人成电影免费在线| 中文字幕av在线有码专区| 91av网一区二区| 男人和女人高潮做爰伦理| 色综合婷婷激情| 色在线成人网| 亚洲国产欧美一区二区综合| 国产精品久久电影中文字幕| 一级黄色大片毛片| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 亚洲国产日韩欧美精品在线观看 | 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 在线看三级毛片| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 国产精品美女特级片免费视频播放器 | 在线观看美女被高潮喷水网站 | 亚洲电影在线观看av| 国产免费男女视频| 99久国产av精品| 高潮久久久久久久久久久不卡| 欧美三级亚洲精品| 成年女人永久免费观看视频| 成年女人毛片免费观看观看9| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 欧美日韩亚洲国产一区二区在线观看| 欧美三级亚洲精品| 黄色视频,在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 国产97色在线日韩免费| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 99久久精品国产亚洲精品| av福利片在线观看| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 99国产精品99久久久久| 国产精品久久久av美女十八| 一本久久中文字幕| 91九色精品人成在线观看| 国产精品一及| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 欧美xxxx黑人xx丫x性爽| 在线国产一区二区在线| av欧美777| 欧美丝袜亚洲另类 | 网址你懂的国产日韩在线| 久久久成人免费电影| xxxwww97欧美| 亚洲专区国产一区二区| 国产精品九九99| 欧美另类亚洲清纯唯美| 男人舔女人的私密视频| 一个人观看的视频www高清免费观看 | 桃色一区二区三区在线观看| 男女那种视频在线观看| 99视频精品全部免费 在线 | 真实男女啪啪啪动态图| 国产野战对白在线观看| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 免费看日本二区| 国产午夜福利久久久久久| 亚洲av第一区精品v没综合| xxx96com| 99re在线观看精品视频| 国产成人aa在线观看| 精品福利观看| 亚洲熟妇熟女久久| 99久久综合精品五月天人人| 悠悠久久av| 色精品久久人妻99蜜桃| 国产午夜精品论理片| 五月玫瑰六月丁香| 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 日本黄大片高清| 一个人观看的视频www高清免费观看 | 国产激情久久老熟女| 久久精品人妻少妇| 中国美女看黄片| 亚洲欧美日韩东京热| 国产一区二区激情短视频| 黑人欧美特级aaaaaa片| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 国产av麻豆久久久久久久| 久久99热这里只有精品18| e午夜精品久久久久久久| 12—13女人毛片做爰片一| 久久精品91无色码中文字幕| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 国产精品亚洲av一区麻豆| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 91九色精品人成在线观看| 综合色av麻豆| 国产欧美日韩精品一区二区| 一区福利在线观看| 麻豆成人午夜福利视频| h日本视频在线播放| 久久久精品欧美日韩精品| 亚洲在线观看片| 国产蜜桃级精品一区二区三区| 久久这里只有精品19| av在线蜜桃| 国模一区二区三区四区视频 | 欧美午夜高清在线| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久电影 | 99精品欧美一区二区三区四区| 国产亚洲欧美98| 亚洲午夜精品一区,二区,三区| 床上黄色一级片| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 精品欧美国产一区二区三| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 亚洲av美国av| svipshipincom国产片| 91av网一区二区| 很黄的视频免费| ponron亚洲| 国产淫片久久久久久久久 | 精华霜和精华液先用哪个| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲av成人一区二区三| 国产欧美日韩精品亚洲av| 成熟少妇高潮喷水视频| 国产av在哪里看| 午夜激情福利司机影院| 1000部很黄的大片| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看| 国产高清三级在线| 99久久精品热视频| 亚洲av电影不卡..在线观看| 午夜福利18| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 男插女下体视频免费在线播放| 久久国产精品影院| 国产伦人伦偷精品视频| 亚洲成av人片在线播放无| 床上黄色一级片| 人妻丰满熟妇av一区二区三区| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| h日本视频在线播放| 51午夜福利影视在线观看| 亚洲成av人片在线播放无| 变态另类丝袜制服| 国产精品野战在线观看| 国产av不卡久久| 两个人看的免费小视频| 88av欧美| 久久人妻av系列| 99热只有精品国产| av黄色大香蕉| 黄片小视频在线播放| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 日韩成人在线观看一区二区三区| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 在线看三级毛片| 亚洲乱码一区二区免费版| 国产美女午夜福利| 久久久久久人人人人人| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 精品福利观看| 一边摸一边抽搐一进一小说| 国语自产精品视频在线第100页| 嫩草影院入口| 少妇熟女aⅴ在线视频| 两个人视频免费观看高清| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站 | 国产伦精品一区二区三区四那| 国产亚洲欧美在线一区二区| 天堂av国产一区二区熟女人妻| 久久久水蜜桃国产精品网| 脱女人内裤的视频| 亚洲精品美女久久av网站| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 免费在线观看日本一区| 床上黄色一级片| 亚洲av片天天在线观看| 国产三级黄色录像| 怎么达到女性高潮| 国产欧美日韩一区二区三| 精品久久久久久成人av| 成人三级黄色视频| 人妻久久中文字幕网| 国产精品久久久人人做人人爽| 欧美大码av| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 国内精品久久久久精免费| 露出奶头的视频| 在线观看舔阴道视频| 国产精品女同一区二区软件 | 欧美日韩国产亚洲二区| 91在线精品国自产拍蜜月 | 国产精品一区二区三区四区免费观看 | 少妇的丰满在线观看| 亚洲国产精品999在线| 蜜桃久久精品国产亚洲av|