• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微納米多孔不銹鋼表面高效吸附活性生物大分子

    2013-09-17 06:58:44余占江陳永強(qiáng)楊曉達(dá)
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:藥學(xué)院物理化學(xué)學(xué)報(bào)

    余占江 陳永強(qiáng) 楊曉達(dá),*

    (1北京大學(xué)藥學(xué)院化學(xué)生物學(xué)系,天然和仿生藥物國家重點(diǎn)實(shí)驗(yàn)室,北京100191;2樂普(北京)醫(yī)療器械股份有限公司,北京100022)

    1 Introduction

    In the efforts for discovery of novel biomaterials in medical devices and implants,improving the biocompatibility and mechanical performance has always been the two primary issues.The next generation of biomaterials has been proposed to be smart or biomimetic materials.A key challenge in designing smart biomaterials is to modify material surface with functional biological or synthetic molecules/nanoparticals to mimic the extracellular matrix(ECM)of natural tissue.1

    Among biopolymers,alloys,and ceramics,stainless steel(AISI 316L)is one of the most prominent available commercial materials for medical devices,2-4e.g.,cardiovascular stents,bone,and dental implants.The 316 L stainless steel exhibits long-standing performance and good biocompatibility,2which make stainless steel implants safe and efficient treatment option over the much more expensive anecdotal superior titanium alloys.5

    One major limitation for stainless steel is the lack of chemically active groups on the metal surface for covalently immobilization of functional molecules.A great deal of efforts have been made to engineer the metal surface with a variety of organic and inorganic coatings,for instance,heparin hydrogel,6carbohydrates,7polydopamine,8,9poly(ethylene glycol)and various hydrophilic polymers,10-12peptides and peptide nanofiber,13-16polyelectrolyte micelles,17alkanethiol layers,18doped diamond-like carbon,19sputtered TiN/TiO2,20,21hydroxylapatite,22hydrothermal calcium nanocomposites,23and S-phase layers,24etc.On these bases,antibodies,vascular endothelial growth factor(VEGF),VE-cadherin,thrombin inhibitor,and liposomes were covalently attached to the surface of metal implants.These works improved greatly the cytocompatibility of the materials,for instance,the pro-healing approach immobilized antibodies capturing endothelial progenitor cells(EPC)from circulation on the blood contact surface of the stents;25the stents were shown to significantly reduce the thrombosis by facilitating stent endothelialization.26,27However,the use of synthetic polymer matrixes was suggested negative for in-stent restenosis by some studies.25,28

    Surface modification at the nanoscale was suggested to promote protein adsorption and cell adhesion.12,29-31Grafting the surface roughness and topography by electrochemical erosion29or ultrafast laser irradiation32has been investigated to improve cytocompatibility.A functionalized TiO2nanonodule-in-micropit smart titanium surfaces was shown to enhance osteoblast proliferation and differentiation while the micropitted surface actually inhibited osteoblast growth.20Comparing with mirror-polished stainless steel surfaces,nanostructured surfaces showed better adhesion and differentiation for osteoblastic cells.29It was found that cells responsed to surface energy and three dimensional(3D)patterns.31The 40-75 nm nanopores on 316L stainless steel enhanced fibroblast cell proliferation and signal transduction while~200 nm nanopore surfaces greatly attenuated.30However,the effects of micro/nano surface on adsorption of functional biological molecules for smart biomaterial have so far not been well investigated.

    It has long been recognized that stainless steel surface can irreversibly adsorb proteins33-35but far less effective for functional protein immobilization than some noble metals,e.g.,gold that is most frequently used for immobilization of biomolecules.36,37Providing that micro/nano-structured surface of stainless steel can effectively adsorb active biomacromolecules,a novel polymer-free smart metal platform for developing new biomaterials,e.g.,stents,would be achieved.For this purpose,the present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.

    2 Experimental

    2.1 Materials

    316L stainless steel plates and stents were from Lepu Medical Technology Co.,Ltd.(Beijing).Mouse monoclonal antibody against human CD34 was from Biolegend(USA),FITC-labeled goat anti-mouse monoclonal antibody(FITC-IgG)and horseradish peroxidase conjugated goat anti-mouse immunoglobulins(HRP-IgG)from BD Biosciences(USA).4?,6-Diamidino-2-phenylindole(DAPI,the purity≥99%),RPIM 1640,4?,6-diamidino-2-phenylindole,diaminobenzidine(DAB,the purity ≥99%)and tetramethylbenzidine(TMB,the purity≥99%)from Amresco(USA),L929 fibroblast and CD34 positive KG-1a cells were from American Type Culture Collection(ATCC,USA).Horse radish peroxidase(HRP,EC.1.11.1.7)and all other reagents of analytical grade were from Sigma-Aldrich(USA).

    2.2 Preparation of 316L stainless steel surface

    The polished 316L stainless steel plates(1.0 cm×1.0 cm)were cleansed with 20%hydrochloride acid for 10 h at room temperature and 75%ethanol for 15 min at 100 kHz ultrasonicator,the plates were dried in a stream of filtrated air.To produce a porous surface,the plates were acid-etched with 10%hydrochloride acid for 10 min in the assistance of 0.2 A,500 Hz electric current.For gold coating,the plates were either sputter-coated with gold or incubated with 5%H2AuCl4solution for 17 h at 37°C.All the treated metal plates were cleaned finally by 75%ethanol as described above.Then the products were observed and analyzed with a S-4800 scanning electron microscope(SEM,Hitachi,Japan).

    2.3 Adsorption of anti-CD34 antibodies or HRP on metal surface

    The metal plates were incubated for 30 min at 37°C with antihuman CD34 monoclonal antibody(0-200 μg·mL-1)or HRP(0-0.5 mg·mL-1)in 0.1 mmol·L-1of carbonate sodium buffer,pH 9.6.Then the plates were washed three times with 10 mmol·L-1phosphate buffered saline(PBS,pH 7.4)containing 0.2%Tween-20.

    To investigate the effect of surfactant on protein adsorption,the cleaned plates were pre-incubated with 0.5%-5%Tween-20 before incubation with 200 μg·mL-1of monoclonal antibody against human CD34 or 0.5 mg·mL-1of HRP as described above.

    2.4 Analysis of protein adsorption on metal surface

    For analysis of the amount of HRP adsorbed on the metal surface,38the treated plate was put into a 12-well cultural plate and then 0.8 mL of colorization solution containing 0.1 mmol·L-1of tetramethylbenzidine(TMB)was added and incubated for 15 min at 37°C.The reaction was terminated with 0.5 mL of 1 mol·L-1H2SO4and the absorbance at 450 nm was measured with a microplate reader(ASCENT,Labsystems Oy,Finland).

    For analysis of the amount of anti-CD34 antibodies on the metal surface with an ELISA assay,the plates were first blocked with 10%bovine serum albumin(BSA)in 10 mmol·L-1phosphate buffered saline(pH 7.4)for 24 h at 4°C,then incubated with HRP-conjugated goat anti-mouse antibody(BD Biosciences,USA)diluted(1:500)in 10 mmol·L-1PBS,pH 7.4 for 1 h at 37°C.After three-times washing,colorization with TMB substrate was conducted as described above.

    2.5 Wettability assessment

    For comparison of the wettability,the contact angles for metal plates were measured with an optical contact angle instrument(DSA100,Kruss Inc.,Germany).

    2.6 In vitro cell capturing activity of anti-CD34 antibodies-coated 316L stainless steel stents

    To determine the specific activity of antibody coated on stainless steel surface,the in vitro cell capturing activity of micro/nanoporous stents with or without antibody coating were incubated at 37 °C with cell suspension(1×106mL-1,either CD34+KG-1a cells or fibroblast L929 cells)for 1 h.These cells were previously stained with 50 μg·mL-1DAPI fluorescent dye as described in literature.39After rinsing three times with PBS,the stents were photographed and analyzed on a Fluorescence Microscope equipped with an image analyzing program(BX41,OLYMPUS,Japan).

    2.7 Statistical analysis

    All results were expressed as mean±standard error of each sample.Each experiment was repeated independently three times.One-way ANOVA was conducted using an OriginTM8.0 program(Microcal,USA)for data comparison.A value of p<0.05 was considered significant.

    3 Results

    3.1 SEM observation on 316L stainless steel surface

    The surface of various 316L stainless steel plates were observed under a microscopy(Fig.1).Although sputter-gold plates showed yellow color,these plates exhibited a similar shining smooth surface to that of polished metal plate(Fig.1(A,B)).Chemically deposited-gold plates(Fig.1(C))showed a tarnished but plainer surface with a lightly golden color when compared with the sputter-gold plates.In contrast,the porous plates by anodization treatment(Fig.1(D))showed a rough surface.When taking a closer look on SEM(Fig.2),the plates showed a microtexture that is full of irregular pores with an average size of(400±160)nm.The surface roughness was estimated and the contour arithmetic mean deviations(Ra)were 0.007,0.005,0.013,and 0.033 μm for polished stainless steel plate,sputter-gold plate,chemically deposited-gold plate and porous plate,respectively.

    3.2 Protein adsorption on surface of metal plates

    For assessment of protein adsorption,an enzyme(HRP)and a mouse monoclonal antibody against human CD34 were used as the representative of functional biological macromolecules.The physical data of HRP and antibody are listed in Table 1.

    Fig.1 Microscopic images(30×)of surfaces of polished stainless steel plate(A),sputter-gold plate(B),chemically deposited-gold plate(C),and porous plate by anodization treatment(D)

    Fig.2 Scanning electron microscope(SEM)images of the surface of porous stainless steel plate by anodization treatment

    Adsorption of HRP on various stainless steel plates were shown in Fig.3(A).The amount of HRP,expressed as enzymatic activity,increased with enzyme concentrations in solution.Polished plates and gold-coated plates exhibited similar extents of enzyme adsorption while porous plate adsorbed most amount of HRP than the other three plates.

    For antibody(monoclonal anti-CD34 antibodies)adsorption(Fig.3(B)),polished stainless steel plates hardly adsorb antibodies.Chemically deposited-gold plates adsorbed a few with increase of antibody concentration in solution.The sputter-gold plates could most effectively adsorb antibody in a concentration-dependent manner.The porous plates exhibited a similar capacity of antibody adsorption as the sputter-gold plate,however,with a saturation concentration.The maximal amount of antibody adsorption on porous plates was calculated to be ~1200 ng·cm-2according to a calibration method described previously.38

    3.3 Effect of surfactant on protein adsorption

    As shown in Fig.4,pretreatment of metal plates by surfactant Tween-20 could significantly reduce antibody adsorption almost by half;Herein,the porous plates exhibited a similar effect with the sputter-gold plates.However,Tween-20 did not affect adsorption of HRP on both metal surfaces.

    3.4 Wettability of metal plates upon protein adsorption

    Surface wettability was thought to be one important factor tuning cell adhesion and protein adsorption31,40,41and also closely related with the adsorbed amount of proteins.42The results of water contact angles of the plates before and after protein adsorption were shown in Fig.4.It is noted that porous treatment and gold coating barely reduced the contact angles.However,adsorption of protein can significantly increase the wettability of the metal surface.Although on the porous plate,protein adsorption produced the best wetness surface,nevertheless,the difference between the plates was far less than that between the protein species.This indicated that change of surface wettability for metal plates is more dependent on the adsorbed protein.

    3.5 Cell capture capacity of antibodies adsorbed tomicro/nanoporous 316L stainless steel stents

    In smart biomaterials,antibodies are used to selectively attach target cells(e.g.,stem cell or progenitor cells)to form mimetic tissue on the implants in situ.To test the efficiency and the selectivity of the antibodies immobilized,we tested the cellcapture capacity of porous metal stents coated with anti-CD34 mouse monoclonal antibodies.The results are shown in Fig.5 and Fig.6.For CD34 negative L929 fibroblast cells,bare porous metal surface caught a few cells(~9844 cells·cm-2);while the antibody-coated metal surface held a little more(~11593 cells·cm-2),probably due to better wettability after antibody coating.For CD34 positive KG-1a cells,bare porous metal surface caught much fewer amount(~3929 cells·cm-2)than L929 cells.This is conceivable because fibroblasts usually have higher adhesive capacity.Remarkably,the antibody-coated metal surface caught almost ten folds of cells(~36256 cells·cm-2).These results indicated the antibody can remain high efficiency and specificity on the micro/nanoporous sur-face of stainless steel.

    Table 1 Physical data of tested proteins

    Fig.3 Adsorption curves for HRP(A)and mouse monoclonal antibodies against CD34(B)on 316Lstainless steel plates variously treated as described above

    Fig.4 Effect of surfactant on antibody(A)and horse radish peroxidase(B)adsorption on porous and sputter-gold stainless steel plates

    Fig.5 Contact angles of various 316Lstainless steel plates before and after adsorption of proteins(HRPor mouse monoclonal antibodies)

    Fig.6 Fluorescence microscopic images(40×)of CD34 positive or negative cells adhesive to micro/nanoporous 316Lstainless steel stents

    4 Discussion

    For effective immobilization of functional biological molecules on surface of biomaterials,the amount of biomolecules,the stability of immobilization,and the residue activity are the key concerns.Therefore,most methods use covalent bonds to attach biomolecules10,43,44and in this way modification of metal surface with organic polymers or inorganic particles with active groups(e.g.,―OH,―CHO,―COOH,―NH2,etc.)would be necessary.

    In the present work,we tested the efficiency of direct physical adsorption of antibodies and enzymes on stainless steel surface by making use of micro/nano structures with an aim to develop novel smart metal implant,e.g.,prohealing stents.The experimental results indicate that the stainless steel with micro/nano texture can high-efficiently adsorb biomacromolecules with desired biological activity.

    First,the micro/nanoporous stainless steel surface adsorbed high amount of proteins(Fig.3),which is close to(for antibodies)or even more(for HRP)than those attached to sputter-gold surface.Gold can form coordination bond with―SH of proteins or adsorb protein via strong van der Waals interactions.36Gold surface is well-known in biomedical and bioanalytical applications for immobilization of protein or even protein particles.37Herein,the protein adsorption capacity of the porous stainless steel surface is shown to be at least comparable with the gold surface that is much more expensive.

    The reasons for high protein adsorption capacity for the porous stainless steel surface may lie on the followings:(i)the porous plates exhibited much rougher surface.The surface roughness is one key factor for molecular adsorption because the rough surface has bigger external surface area and pocket effect supports more protein loading.45,46In fact,the amount of HRP adsorption was by and large with the surface roughness(Fig.3(A));(ii)formation of protein multilayers by surface-induced aggregation as observed previously on stainless steel microparticles;34,47(iii)the monoclonal antibody showed different adsorption profile from that of HRP.The molecular size of monoclonal antibody(~15 nm)is larger than that of HRP(~6 nm);however,considering the pore size(~400 nm)of the metal plate,this size difference is too small to explain the adsorption profile.The mechanism of interaction between protein molecules with porous surface is worthwhile to be investigated further.

    Second,the protein attached on the porous stainless steel surface is stable.The experimental results showed that adsorption treatment with 10%BSA or 0.2%Tween-20 solution could not remove the enzymes/antibodies from the metal plate,which agrees with that stainless steel-protein interaction is strong48and protein adsorption to stainless steel could be irreversible.34,47While pre-treatment with Tween-20 buffer could reduce antibody adsorption by half(Fig.4(A))but had no effects on HRP adsorption,possibly because of the interaction between the antibody and surfactant.

    The wettability of the stainless steel has been proposed to be a predominant mechanism governing both protein adsorption and cell adhesion.40,41As shown in Fig.5,there was a great reduce of water contact angles upon antibody or HRP adsorption,indicating significant reduce of surface Gibbs free energy and suggesting a highly spontaneous and strong adsorption of antibody/HRP protein onto the surface like fibrinogen.49Several points are worthwhile to note here:(1)the wettability of HRP coated surfaces are much higher than that of antibody-coated surface,indicating that the wettability of protein-modified metal surface is primarily dependent on the properties of the protein rather than the nature of metal.Similar adsorption behavior of proteins at stainless steel-liquid interfaces has been observed previously;33(2)although the surface of gold-modified plates adsorbed more proteins than the stainless steel plates,however,the wettability of gold surface is apparently less.Since surface wettability is correlated to the transition of surface cytocompatibility from cell-phobic to cell-philic,31,41this result may suggest that the protein-engineered stainless steel surface could be better than gold for medical implants;(3)for the same type of metal surfaces,higher amount of protein adsorption gave higher wettability,which is consistent with previous observation.42

    Third,many works have shown that due to the strong surface interaction,adsorption of protein(e.g.,fibrinogen and BSA)on 316L stainless steel could result in partial unfolding of proteins and significant changes in the secondary structure that occur predominantly within the first minute of adsorption.46,49This raises a question of whether the proteins directly on the metal surface can keep their biological activity and specificity.

    Fig.7 Quantatification of adhesion of CD34 positive(KG-1a)or negative(L-929)cells to bare or antibody-coated micro/nanoporous 316Lstainless steel stents

    Fortunately,we observed that both HRP enzyme and antibodies retained high activity on the porous metal surface.Especially,as shown in Figs.6 and 7,stainless steel stents with micro/nanoporous surface coated with an anti-CD34 antibody can capture the target cells with both high efficiency and high specificity,which shall allow the development of novel polymer-free and economic smart biomaterials with stainless steel by direct protein adsorption on micro/nanoporous surface.

    The reasons for antibodies and HRP to keep their specific activity remain further investigated.However,several possibilities may include:(1)unlike fibrinogen and BSA,HRP and antibodies are rigid global proteins and thus resist to conformational change;(2)the surface pocket of the porous metal may accommodate the enzyme/antibody molecules in favorable states similarly to the case of protease on microporous zeolite MCM-22;45(3)the proteins may form multilayers on the metal surface.Then the proteins in the upper layers may be less influenced by surface forces and then keep a full activity.Nonetheless,in the future studies,systematic exploration to the roles of 3D micro/nano morphology of metal surface on immobilization of a variety of biological macromolecules and the effects on their structure and biological functions are envisaged.

    5 Conclusions

    In summary,the present work investigated adsorption of two important functional biomolecules,i.e.,monoclonal antibodies and HRP enzymes,on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.Our results indicate that antibodies and enzymes can be loaded firmly on the micro/nanoporous surface in a large amount and these proteins retained high biological activity.In addition,the porous metal surface coated with functional protein exhibited much enhanced wettability,indicating a better cytocompatibility.The current work suggested novel polymerfree and economic smart biomaterials with stainless steel for biomedical applications.

    (1) Holzapfel,B.M.;Reichert,J.C.;Schantz,J.T.;Gbureck,U.;Rackwitz,L.;Noth,U.;Jakob,F.;Rudert,M.;Groll,J.;Hutmacher,D.W.Adv.Drug Deliv.Rev.2013,65,581.doi:10.1016/j.addr.2012.07.009

    (2) Nagarajan,S.;Mohana,M.;Sudhagar,P.;Raman,V.;Nishimura,T.;Kim,S.;Kang,Y.S.;Rajendran,N.ACS Appl.Mater.Interfaces 2012,4,5134.

    (3)Abdel-Fattah,T.M.;Loftis,D.;Mahapatro,A.J.Biomed.Nanotechnol.2011,7,794.doi:10.1166/jbn.2011.1346

    (4) Hayes,J.S.;Richards,R.G.Expert.Rev.Med.Devices 2010,7,843.doi:10.1586/erd.10.53

    (5)Weckbach,S.;Losacco,J.T.;Hahnhaussen,J.;Gebhard,F.;Stahel,P.F.Unfallchirurg 2012,115,75.doi:10.1007/s00113-011-2145-0

    (6)Joung,Y.K.;You,S.S.;Park,K.M.;Go,D.H.;Park,K.D.Colloids Surf.B:Biointerfaces 2012,99,102.doi:10.1016/j.colsurfb.2011.10.047

    (7) Slaney,A.M.;Wright,V.A.;Meloncelli,P.J.;Harris,K.D.;West,L.J.;Lowary,T.L.;Buriak,J.M.ACS Appl.Mater.Interfaces 2011,3,1601.doi:10.1021/am200158y

    (8) Lionetto,S.;Little,A.;Moriceau,G.;Heymann,D.;Decurtins,M.;Plecko,M.;Filgueira,L.;Cadosch,D.J.Biomed.Mater.Res.A 2013,101,991.

    (9)Yang,Z.;Tu,Q.;Zhu,Y.;Luo,R.;Li,X.;Xie,Y.;Maitz,M.F.;Wang,J.;Huang,N.Adv.Healthc.Mater.2012,1,548.doi:10.1002/adhm.201200073

    (10)Kang,C.K.;Lim,W.H.;Kyeong,S.;Choe,W.S.;Kim,H.S.;Jun,B.H.;Lee,Y.S.Colloids Surf.B:Biointerfaces 2013,102,744.doi:10.1016/j.colsurfb.2012.09.008

    (11) Caro,A.;Humblot,V.;Methivier,C.;Minier,M.;Salmain,M.;Pradier,C.M.J.Phys.Chem.B 2009,113,2101.doi:10.1021/jp805284s

    (12)Kang,C.K.;Lee,Y.S.J.Mater.Sci.Mater.Med.2007,18,1389.doi:10.1007/s10856-006-0079-9

    (13) Ceylan,H.;Tekinay,A.B.;Guler,M.O.Biomaterials 2011,32,8797.doi:10.1016/j.biomaterials.2011.08.018

    (14) Davis,E.M.;Li,D.Y.;Irvin,R.T.Biomaterials 2011,32,5311.doi:10.1016/j.biomaterials.2011.04.027

    (15) Ignatova,M.;Voccia,S.;Gabriel,S.;Gilbert,B.;Cossement,D.;Jerome,R.;Jerome,C.Langmuir 2009,25,891.doi:10.1021/la802472e

    (16)Imamura,K.;Kawasaki,Y.;Awadzu,T.;Sakiyama,T.;Nakanishi,K.J.Colloid Interface Sci.2003,267,294.doi:10.1016/S0021-9797(03)00700-8

    (17) Falentin-Daudre,C.;Faure,E.;Svaldo-Lanero,T.;Farina,F.;Jerome,C.;Van De Weerdt,C.;Martial,J.;Duwez,A.S.;Detrembleur,C.Langmuir 2012,28,7233.doi:10.1021/la3003965

    (18) Harvey,J.;Bergdahl,A.;Dadafarin,H.;Ling,L.;Davis,E.C.;Omanovic,S.Biotechnol.Lett.2012,34,1159.doi:10.1007/s10529-012-0885-8

    (19) Secker,T.J.;Herve,R.;Zhao,Q.;Borisenko,K.B.;Abel,E.W.;Keevil,C.W.Biofouling 2012,28,563.doi:10.1080/08927014.2012.698387

    (20) Horia,N.;Iwasaa,F.;Uenoa,T.;Takeuchib,K.;Tsukimuraa,N.;Yamadaa,M.;Hattorib,M.;Yamamotoc,A.;Ogawaa,T.Dental Materials 2010,26,275.doi:10.1016/j.dental.2009.11.077

    (21)Subramanian,B.;Ananthakumar,R.;Kobayashi,A.;Jayachandran,M.J.Mater.Sci.Mater.Med.2012,23,329.doi:10.1007/s10856-011-4500-7

    (22) Subramanian,B.;Dhandapani,P.;Maruthamuthu,S.;Jayachandran,M.J.Biomater.Appl.2012,26,687.doi:10.1177/0885328210377534

    (23)Valanezahad,A.;Ishikawa,K.;Tsuru,K.;Maruta,M.;Matsuya,S.Dent.Mater.J.2011,30,749.doi:10.4012/dmj.2010-153

    (24) Buhagiar,J.;Bell,T.;Sammons,R.;Dong,H.J.Mater.Sci.Mater.Med.2011,22,1269.

    (25)Wendel,H.P.;Avci-Adali,M.;Ziemer,G.Int.J.Cardiol.2010,145,115.doi:10.1016/j.ijcard.2009.06.020

    (26) Granada,J.F.;Inami,S.;Aboodi,M.S.;Tellez,A.;Milewski,K.;Wallace-Bradley,D.;Parker,S.;Rowland,S.;Nakazawa,G.;Vorpahl,M.;Kolodgie,F.D.;Kaluza,G.L.;Leon,M.B.;Virmani,R.Circ.Cardiovasc.Interv.2010,3,257.doi:10.1161/CIRCINTERVENTIONS.109.919936

    (27) McGuigan,A.P.;Sefton,M.V.Biomaterials 2007,28,2547.doi:10.1016/j.biomaterials.2007.01.039

    (28) Rossi,M.L.;Zavalloni,D.;Gasparini,G.L.;Mango,R.;Belli,G.;Presbitero,P.Int.J.Cardiol.2010,141,e20.

    (29) Le Guehennec,L.;Martin,F.;Lopez-Heredia,M.A.;Louarn,G.;Amouriq,Y.;Cousty,J.;Layrolle,P.Nanomedicine 2008,3,61.doi:10.2217/17435889.3.1.61

    (30) Pan,H.A.;Liang,J.Y.;Hung,Y.C.;Lee,C.H.;Chiou,J.C.;Huang,G.S.Biomaterials 2013,34,841.doi:10.1016/j.biomaterials.2012.09.078

    (31) Ranellaa,A.;Barberogloua,M.;Bakogiannia,S.;Fotakisa,C.;Stratakisa,E.Acta Biomaterialia 2010,6,2711.doi:10.1016/j.actbio.2010.01.016

    (32) Nayak,B.K.;Gupta,M.C.Optics and Lasers in Engineering 2010,48,940.doi:10.1016/j.optlaseng.2010.04.010

    (33) Fukuzaki,S.;Urano,H.;Nagata,K.J.Ferment.Bioeng.1995,80,6.doi:10.1016/0922-338X(95)98168-K

    (34) Bee,J.S.;Chiu,D.;Sawicki,S.;Stevenson,J.L.;Chatterjee,K.;Freund,E.;Carpenter,J.F.;Randolph,T.W.J.Pharm.Sci.2009,98,3218.

    (35)Sakiyama,T.;Aya,A.;Embutsu,M.;Imamura,K.;Nakanishi,K.J.Biosci.Bioeng.2006,101,434.doi:10.1263/jbb.101.434

    (36)Hagiwara,T.;Sakiyama,T.;Watanabe,H.Langmuir 2009,25,226.

    (37) He,C.X.;Yuan,A.P.;Zhang,Q.L.;Ren,X.Z.;Li,C.H.;Liu,J.H.Acta Phys.-Chim.Sin.2012,28,2721.[何傳新,袁安朋,張黔玲,任祥忠,李翠華,劉劍洪.物理化學(xué)學(xué)報(bào),2012,28,2721.]doi:10.3866/PKU.WHXB201207191

    (38)Zhang,F.;Guo,W.;Yu,Z.;Wang,Y.C.Chin.J.Pharm.Anal.2011,31,862.

    (39) Berry,J.L.;Santamarina,A.;Moore,J.E.,Jr.;Roychowdhury,S.;Routh,W.D.Ann.Biomed.Eng.2000,28,386.doi:10.1114/1.276

    (40) Hao,L.;Lawrence,J.Proc.Inst.Mech.Eng.H 2006,220,47.doi:10.1243/095441105X68999

    (41) Mikulewicz,M.;Chojnacka,K.Biol.Trace.Elem.Res.2011,142,865.doi:10.1007/s12011-010-8798-7

    (42) Matsumura,H.;Saburi,M.Colloids Surf.B:Biointerfaces 2006,47,146.doi:10.1016/j.colsurfb.2005.12.004

    (43) Mourtas,S.;Kastellorizios,M.;Klepetsanis,P.;Farsari,E.;Amanatides,E.;Mataras,D.;Pistillo,B.R.;Favia,P.;Sardella,E.;d?Agostino,R.;Antimisiaris,S.G.Colloids Surf.B:Biointerfaces 2011,84,214.doi:10.1016/j.colsurfb.2011.01.002

    (44) Muller,R.;Abke,J.;Schnell,E.;Macionczyk,F.;Gbureck,U.;Mehrl,R.;Ruszczak,Z.;Kujat,R.;Englert,C.;Nerlich,M.;Angele,P.Biomaterials 2005,26,6962.doi:10.1016/j.biomaterials.2005.05.013

    (45)Liu,P.;Xing,G.W.;Li,X.W.;Ye,Y.H.Acta Phys.-Chim.Sin.2010,26,1113.[劉 平,邢國文,李宣文,葉蘊(yùn)華.物理化學(xué)學(xué)報(bào),2010,26,1113.]doi:10.3866/PKU.WHXB20100448

    (46) Omanovic,S.;Roscoe,S.G.J.Colloid Interface Sci.2000,227,452.doi:10.1006/jcis.2000.6913

    (47) Bee,J.S.;Davis,M.;Freund,E.;Carpenter,J.F.;Randolph,T.W.Biotechnol.Bioeng.2010,105,121.doi:10.1002/bit.v105:1

    (48) Hedberg,Y.S.;Killian,M.S.;Blomberg,E.;Virtanen,S.;Schmuki,P.;Odnevall Wallinder,I.Langmuir 2012,28,16306.doi:10.1021/la3039279

    (49)Desroches,M.J.;Omanovic,S.Phys.Chem.Chem.Phys.2008,10,2502.doi:10.1039/b719371h

    猜你喜歡
    藥學(xué)院物理化學(xué)學(xué)報(bào)
    蘭州大學(xué)藥學(xué)院簡介
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    《深空探測學(xué)報(bào)》
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    HSCCC-ELSD法分離純化青葙子中的皂苷
    欧美人与性动交α欧美精品济南到| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 午夜福利欧美成人| 啦啦啦免费观看视频1| avwww免费| 91字幕亚洲| 精品国产亚洲在线| av免费在线观看网站| 亚洲国产精品合色在线| 久久午夜综合久久蜜桃| 亚洲av电影不卡..在线观看| 午夜久久久在线观看| 欧美丝袜亚洲另类 | 日日夜夜操网爽| 免费在线观看成人毛片| 十八禁人妻一区二区| 国产精品九九99| 午夜免费成人在线视频| 国产亚洲精品一区二区www| 伦理电影免费视频| 亚洲男人的天堂狠狠| 99久久综合精品五月天人人| 久久香蕉激情| 久久久久久国产a免费观看| 亚洲国产看品久久| 久久欧美精品欧美久久欧美| 国产成人欧美| 国产黄片美女视频| 又黄又粗又硬又大视频| 看片在线看免费视频| 色尼玛亚洲综合影院| 精品午夜福利视频在线观看一区| 最新在线观看一区二区三区| 精品久久久久久成人av| 国产片内射在线| 校园春色视频在线观看| 日日爽夜夜爽网站| 国产精品亚洲美女久久久| 亚洲一区二区三区不卡视频| 999久久久精品免费观看国产| 亚洲成人精品中文字幕电影| 亚洲av成人av| 一级片免费观看大全| 1024手机看黄色片| 久久国产精品人妻蜜桃| 一级a爱视频在线免费观看| 亚洲全国av大片| 国产免费av片在线观看野外av| 午夜福利免费观看在线| 青草久久国产| 级片在线观看| 亚洲av五月六月丁香网| 国产成人系列免费观看| 国产成年人精品一区二区| 国产高清有码在线观看视频 | 长腿黑丝高跟| 男人的好看免费观看在线视频 | √禁漫天堂资源中文www| 国产成人av激情在线播放| 超碰成人久久| 男女做爰动态图高潮gif福利片| 深夜精品福利| 久久中文字幕一级| 狂野欧美激情性xxxx| 国产精品亚洲美女久久久| 91字幕亚洲| 国产精品免费一区二区三区在线| 夜夜爽天天搞| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点| 亚洲全国av大片| 91成年电影在线观看| 亚洲色图 男人天堂 中文字幕| 美女扒开内裤让男人捅视频| 国产亚洲av高清不卡| 美女免费视频网站| 51午夜福利影视在线观看| 久久草成人影院| 亚洲第一电影网av| 一二三四在线观看免费中文在| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 免费在线观看成人毛片| 香蕉久久夜色| 久热这里只有精品99| 午夜亚洲福利在线播放| 国产亚洲欧美98| 欧美乱码精品一区二区三区| 国产av在哪里看| www.999成人在线观看| 俺也久久电影网| 亚洲第一电影网av| 久久国产精品影院| 国产又爽黄色视频| 少妇粗大呻吟视频| 亚洲成人国产一区在线观看| 亚洲国产欧美一区二区综合| 中文在线观看免费www的网站 | 97碰自拍视频| 99re在线观看精品视频| 亚洲 国产 在线| 制服诱惑二区| 免费搜索国产男女视频| 一个人免费在线观看的高清视频| 亚洲熟妇熟女久久| 亚洲精品美女久久av网站| 哪里可以看免费的av片| 国产成人系列免费观看| 亚洲国产看品久久| 久久精品国产亚洲av香蕉五月| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 日本五十路高清| 欧美av亚洲av综合av国产av| 日韩欧美一区二区三区在线观看| 免费在线观看完整版高清| 久久国产乱子伦精品免费另类| 村上凉子中文字幕在线| 一夜夜www| 欧美中文日本在线观看视频| 韩国av一区二区三区四区| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 国产三级黄色录像| 制服丝袜大香蕉在线| 欧美激情高清一区二区三区| 99热只有精品国产| 国产精品久久久久久人妻精品电影| 欧美黑人巨大hd| 久久久精品欧美日韩精品| 在线天堂中文资源库| 女生性感内裤真人,穿戴方法视频| 亚洲熟妇熟女久久| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 久久精品国产亚洲av高清一级| 中文字幕另类日韩欧美亚洲嫩草| 一夜夜www| a级毛片在线看网站| 黄色视频,在线免费观看| 51午夜福利影视在线观看| 啪啪无遮挡十八禁网站| 日韩大码丰满熟妇| bbb黄色大片| 美女扒开内裤让男人捅视频| 好看av亚洲va欧美ⅴa在| 少妇熟女aⅴ在线视频| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频 | 制服人妻中文乱码| 亚洲成人免费电影在线观看| 一二三四社区在线视频社区8| 禁无遮挡网站| 国产免费男女视频| 国产野战对白在线观看| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 夜夜看夜夜爽夜夜摸| 午夜免费观看网址| 99热6这里只有精品| 热re99久久国产66热| 伊人久久大香线蕉亚洲五| 国产午夜精品久久久久久| 一本一本综合久久| 久久久久免费精品人妻一区二区 | 久久久久久大精品| 久9热在线精品视频| aaaaa片日本免费| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| tocl精华| 亚洲人成网站高清观看| 91字幕亚洲| 欧美激情极品国产一区二区三区| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 香蕉国产在线看| 精品欧美一区二区三区在线| 777久久人妻少妇嫩草av网站| 色综合亚洲欧美另类图片| 日韩大码丰满熟妇| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 午夜免费激情av| 亚洲在线自拍视频| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 成人18禁高潮啪啪吃奶动态图| 久久久久久免费高清国产稀缺| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 9191精品国产免费久久| 国产不卡一卡二| 久久精品91无色码中文字幕| 脱女人内裤的视频| 久久精品人妻少妇| 国产伦人伦偷精品视频| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 亚洲av美国av| 性欧美人与动物交配| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 好男人在线观看高清免费视频 | 国产激情久久老熟女| 亚洲三区欧美一区| av视频在线观看入口| 亚洲男人的天堂狠狠| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 日韩成人在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 12—13女人毛片做爰片一| 女人高潮潮喷娇喘18禁视频| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区四区第35| 婷婷六月久久综合丁香| 久久精品国产清高在天天线| 免费高清视频大片| 色播亚洲综合网| 亚洲国产欧美一区二区综合| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 最好的美女福利视频网| 制服丝袜大香蕉在线| 午夜成年电影在线免费观看| 午夜福利高清视频| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 中文字幕另类日韩欧美亚洲嫩草| aaaaa片日本免费| 国产精品野战在线观看| 777久久人妻少妇嫩草av网站| 午夜两性在线视频| 国产成人系列免费观看| 黄片小视频在线播放| 欧美成人一区二区免费高清观看 | 亚洲,欧美精品.| 久久狼人影院| 国产欧美日韩精品亚洲av| 久久性视频一级片| 国产高清videossex| 欧美日韩瑟瑟在线播放| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| 给我免费播放毛片高清在线观看| 欧美日韩福利视频一区二区| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 少妇熟女aⅴ在线视频| 波多野结衣av一区二区av| 国产成人精品久久二区二区91| 亚洲人成伊人成综合网2020| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 日韩成人在线观看一区二区三区| 1024香蕉在线观看| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 怎么达到女性高潮| 日韩欧美 国产精品| 免费在线观看完整版高清| cao死你这个sao货| 桃色一区二区三区在线观看| 精品无人区乱码1区二区| xxx96com| 亚洲三区欧美一区| 久久狼人影院| av超薄肉色丝袜交足视频| 男人操女人黄网站| 国产99久久九九免费精品| 成人永久免费在线观看视频| 精品一区二区三区视频在线观看免费| 国产亚洲精品久久久久久毛片| 色在线成人网| 宅男免费午夜| 国产成人精品无人区| 国产精品久久视频播放| 欧美色欧美亚洲另类二区| 在线av久久热| 国产精品 欧美亚洲| 亚洲av中文字字幕乱码综合 | 日本成人三级电影网站| 1024香蕉在线观看| 性欧美人与动物交配| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 女人被狂操c到高潮| 在线观看66精品国产| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看 | 法律面前人人平等表现在哪些方面| 国产99白浆流出| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 日本免费一区二区三区高清不卡| 人成视频在线观看免费观看| 丁香六月欧美| 国产在线观看jvid| 18禁裸乳无遮挡免费网站照片 | 精品不卡国产一区二区三区| videosex国产| 最近最新中文字幕大全电影3 | 国产午夜精品久久久久久| 很黄的视频免费| 午夜激情av网站| videosex国产| 久久久久久久久免费视频了| 亚洲片人在线观看| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 亚洲男人天堂网一区| 亚洲成国产人片在线观看| 国产一级毛片七仙女欲春2 | 亚洲 欧美一区二区三区| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 久久国产精品男人的天堂亚洲| 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品综合一区在线观看 | 麻豆成人午夜福利视频| 天堂影院成人在线观看| 日韩精品中文字幕看吧| 无遮挡黄片免费观看| 91成人精品电影| 亚洲熟妇中文字幕五十中出| 成人午夜高清在线视频 | 精品高清国产在线一区| 亚洲精品中文字幕在线视频| 欧美在线黄色| 欧美日韩中文字幕国产精品一区二区三区| a在线观看视频网站| 精品一区二区三区四区五区乱码| 人人澡人人妻人| 黄色 视频免费看| АⅤ资源中文在线天堂| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 美女高潮到喷水免费观看| 久久这里只有精品19| 久久伊人香网站| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 老熟妇仑乱视频hdxx| 一个人观看的视频www高清免费观看 | 国产亚洲精品第一综合不卡| 中国美女看黄片| 成人国产综合亚洲| 久久精品国产亚洲av香蕉五月| 18禁裸乳无遮挡免费网站照片 | 精品国产国语对白av| 日本成人三级电影网站| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 久久国产亚洲av麻豆专区| 99国产极品粉嫩在线观看| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站| 精品日产1卡2卡| 国产免费男女视频| www日本黄色视频网| 级片在线观看| 亚洲精品中文字幕在线视频| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 国产91精品成人一区二区三区| 首页视频小说图片口味搜索| 亚洲av片天天在线观看| 国产野战对白在线观看| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 少妇 在线观看| 88av欧美| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 美女高潮喷水抽搐中文字幕| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| a在线观看视频网站| 久久精品国产综合久久久| 一级a爱片免费观看的视频| 91国产中文字幕| 成人欧美大片| 亚洲自拍偷在线| 人成视频在线观看免费观看| 国产精品一区二区免费欧美| 亚洲精品在线美女| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 熟女少妇亚洲综合色aaa.| 少妇 在线观看| 黑丝袜美女国产一区| 色综合欧美亚洲国产小说| av免费在线观看网站| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 老熟妇仑乱视频hdxx| 99国产综合亚洲精品| 在线播放国产精品三级| 婷婷精品国产亚洲av在线| 在线观看免费日韩欧美大片| 久久香蕉精品热| 最近最新免费中文字幕在线| 国产亚洲精品综合一区在线观看 | 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色| 91字幕亚洲| 欧美色视频一区免费| 亚洲五月色婷婷综合| 日韩欧美免费精品| 97超级碰碰碰精品色视频在线观看| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 2021天堂中文幕一二区在线观 | 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| x7x7x7水蜜桃| 亚洲中文字幕日韩| 久久精品91无色码中文字幕| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲国产看品久久| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看 | 久久久久久亚洲精品国产蜜桃av| 日日摸夜夜添夜夜添小说| avwww免费| x7x7x7水蜜桃| 少妇粗大呻吟视频| 久久天躁狠狠躁夜夜2o2o| 精品国产国语对白av| 哪里可以看免费的av片| 成人亚洲精品av一区二区| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 国产久久久一区二区三区| 国产视频一区二区在线看| 久久精品影院6| 女人被狂操c到高潮| 日韩中文字幕欧美一区二区| 91成年电影在线观看| 91大片在线观看| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 一级a爱视频在线免费观看| 日韩av在线大香蕉| 色老头精品视频在线观看| 免费看十八禁软件| 人人妻人人看人人澡| 村上凉子中文字幕在线| 成年免费大片在线观看| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区| av天堂在线播放| 18禁裸乳无遮挡免费网站照片 | 老司机靠b影院| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 身体一侧抽搐| 国产成人欧美在线观看| 国产欧美日韩一区二区三| 国产成人av激情在线播放| 亚洲狠狠婷婷综合久久图片| 欧美日韩瑟瑟在线播放| 99riav亚洲国产免费| 好男人电影高清在线观看| 欧美黄色淫秽网站| 此物有八面人人有两片| 性欧美人与动物交配| 久久精品国产亚洲av香蕉五月| 午夜免费鲁丝| 亚洲成av片中文字幕在线观看| 国产激情欧美一区二区| 十八禁网站免费在线| 国内精品久久久久精免费| 亚洲无线在线观看| 国产免费男女视频| 99国产精品一区二区蜜桃av| 亚洲av五月六月丁香网| 亚洲国产欧美一区二区综合| 麻豆成人av在线观看| cao死你这个sao货| 动漫黄色视频在线观看| 禁无遮挡网站| 精品少妇一区二区三区视频日本电影| 又大又爽又粗| 777久久人妻少妇嫩草av网站| av超薄肉色丝袜交足视频| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| 美女国产高潮福利片在线看| 欧美zozozo另类| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 岛国在线观看网站| a级毛片a级免费在线| 精品高清国产在线一区| 叶爱在线成人免费视频播放| 久久久久国产精品人妻aⅴ院| 国产成人精品无人区| 免费无遮挡裸体视频| 日韩大码丰满熟妇| 亚洲成人久久性| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 在线av久久热| 亚洲精品久久成人aⅴ小说| 精品无人区乱码1区二区| 男人舔奶头视频| 国产97色在线日韩免费| 最好的美女福利视频网| 在线av久久热| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 在线天堂中文资源库| 成人精品一区二区免费| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 99国产综合亚洲精品| 韩国av一区二区三区四区| 露出奶头的视频| 搡老熟女国产l中国老女人| 欧美日韩亚洲综合一区二区三区_| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 悠悠久久av| 两人在一起打扑克的视频| 美女午夜性视频免费| 亚洲第一电影网av| 88av欧美| 我的亚洲天堂| 琪琪午夜伦伦电影理论片6080| 99久久99久久久精品蜜桃| а√天堂www在线а√下载| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜 | 亚洲av电影不卡..在线观看| 日韩三级视频一区二区三区| 亚洲国产欧美网| 国产伦人伦偷精品视频| 日本成人三级电影网站| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 亚洲av第一区精品v没综合| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 嫩草影视91久久| 成熟少妇高潮喷水视频| 国产精品免费一区二区三区在线| 久久热在线av| 女性生殖器流出的白浆| 亚洲国产欧美网| 欧美性猛交╳xxx乱大交人| 欧美乱色亚洲激情| 国产精品久久视频播放| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 嫩草影视91久久| 精品久久蜜臀av无| 久久婷婷人人爽人人干人人爱| 99精品在免费线老司机午夜| 国产av不卡久久| 色老头精品视频在线观看| 国产色视频综合| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 1024香蕉在线观看| 日韩欧美在线二视频| 国产高清激情床上av| 老司机福利观看| 美女免费视频网站| 久久人妻av系列| 免费高清在线观看日韩| 亚洲最大成人中文| 18美女黄网站色大片免费观看| 黄色 视频免费看| 国产区一区二久久| 黄色女人牲交| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 欧美日韩精品网址|