• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Formaldehyde OTFT Sensors Based on Airbrushed Different Ratios of P3HT/ZnO Films

      2013-11-26 10:48:08WenChaoDanHuiLingTaiYaDongJiangGuangZhongXieXianLiFangXuandTaoZhu

      Wen-Chao Dan, Hui-Ling Tai, Ya-Dong Jiang, Guang-Zhong Xie, Xian Li, Fang Xu, and Tao Zhu

      1.Introduction

      The formaldehyde (HCHO) is colorless and strongly stimulating smell gas at room temperature, easily soluble in water, alcohol, and ether, as well an important chemical industrial material and organic solvent[1].HCHO is widely used as an intermediate for the production of various materials such as paints, foams, and polymer products due to its high reactivity and relatively low cost[2].As an economically important chemical, it is very popular in the construction industry and used for building materials[3].However, HCHO is very poisonous, prolonged exposure to low concentrations of HCHO, people feel uncomfortable,headache, pain in the eyes, and respiratory allergies[4].The Occupational Safety and Health Administration (OSHA)has established a 2 ppm short-term (15 min) exposure limit[3],[5],[6].Moreover, HCHO has a relationship with the“sick building syndrome”, which refers to the situation that people living in the sick building for a continuous time suffer health problem, so it is of great necessity to detect the HCHO.

      Many methods have been developed to detect HCHO,and the gas sensor gets much attention in this field[7].Compared with other gas sensors, organic thin film transistor (OTFT) sensor has several merits, such as multipleparameters, rapid response, good selectivity, and specially its operation at room temperature[8].So the OTFT device was chosen and developed to detect HCHO in this work.

      Based on our early experiments, the P3HT/ZnO composite films with different airbrush mass can be successfully applied to detect HCHO at room temperature,and the OTFT sensor with 1.0 ml composite film behaved the best response and recovery, so this paper studies the effect of P3HT/ZnO composite films with different ratios for detecting HCHO in the condition that the amount of spraying is fixed at 1.0 ml.

      2.Experiment

      Typically, OTFT devices have two structures:source/drain electrodes locate above and below the organic semiconductor layer, named as top electrode and bottom electrode device configuration, respectively[9].In this paper,bottom electrode structure was applied because of its offering with a more efficient contact[10],[11]to HCHO.Fig.1 shows the structure of the prepared OTFT.Highly doped N-type monocrystalline silicon was used as substrate with the thickness of 450 μm, and the thickness of insulating layer SiO2was about 195 nm.The titanium/aurum thin films were made as the source/drain electrodes,with thicknesses about 20 nm and 50 nm, respectively.The OTFT with the ratio of channel width to length as 160 were chosen to fabricate sensors in this paper.

      Fig.1.Structure of prepared OTFT.

      Fig.2.Sketch map of spraying instrument.

      Fig.3.Output characteristic curve of OTFT with P3HT/ZnO ratios: (a) 3:1, (b) 1:1, and (c) 1:3 in air.

      The P3HT (poly-3-hexylthiophene regioregular) was purchased from Luminescence Technology Corp, and the ZnO nanoparticles (40wt%) dispersion was purchased from Sigma-Aldrich.The composite thin film was fabricated as the active layer for formaldehyde by spraying, several different volume ratios for P3HT chloroform solution(3 mg/ml) to ZnO ethanol solution (3 mg/ml) were 3:1, 1:1,and 1:3, and all the solutions were ultrasonic treated nearly 15 minutes to ensure the solute completely dissolved.Fig.2 shows the rough spraying instrument.In the system, the height from device to airbrush was fixed at 9 cm, N2was used as carrier gas, and the pressure of N2was controlled through the reading of reducing pressure valve.The gas flowing time of 1 ml P3HT/ZnO solution was regularly about 80 s.

      3.Results and Discussion

      3.1 Output Characteristic

      The electrical properties of all the prepared OTFT devices including the voltage-current and transfer characteristics were measured by Keithley 4200-SCS source measurement unit in air.The typical drain current(Ⅰds) and drain voltage (Vds) characteristics at different gate biases of sensors with the P3HT/ZnO ratios of 3:1, 1:1, and 1:3 composites are shown in Fig.3 (a), Fig.3 (b), and Fig.3 (c), respectively.It can be seen that all the sensors exhibit the clear p-channel transistor behavior and the OTFT sensors with 1:1 or 1:3 composite film both exhibit the obvious saturation region, but the sensor of 1:1 composite film behaves with a larger drain current.

      3.2 HCHO Sensing Properties

      The tested HCHO concentration in the experiment was 100 ppm with N2as the carrier gas.The OTFT operated in the accumulation mode, and the working point of the OTFT was that: Vgs= -50 V, Vds= -60 V.After the source-drain current (Ⅰds) of the OTFT was stable in the pure N2, the HCHO was introduced into the sealed chamber.It is interesting that, once the HCHO was introduced, the Ⅰdsdecreased dramatically, as shown in Fig.4 (a) and Fig.4 (b),whereas the Ⅰdsof the device with 1:3 composite film exhibited the opposite changes, as shown in Fig.4 (c).It may be because that, P3HT was typical p-type conducting organic material, while the ZnO nanoparticle was n-type material.With the increasing ratio of n-type ZnO, the major sensing role of p-type P3HT may be reduced.So the OTFT sensor based on the P3HT/ZnO film with the ratio of 1:3 exhibited the opposite response compared with other two devices.It is also noticeable that the recovery was obtained by degassing the chamber with N2for the OTFT sensor with 1:1 composite film, however, the other two prepared sensors could not be reproducibly returned to their original baselines.

      The sensing response of the sensor is defined by response values (%)=(Ⅰair-Ⅰgas)/Ⅰair×100%, where Ⅰgasand Ⅰairare the stable drain-source on currents in gas and dry air[12],respectively.Table 1 shows the response values of all the sensors exposed to 100 ppm HCHO at room temperature.It can be seen that the device with P3HT/ZnO ratio of 1:1 had the largest response values.

      Fig.4.Response of OTFT with P3HT/ZnO ratios: (a) 3:1, (b) 1:1,and (c) 1:3 to HCHO at room temperature.

      Table 1: Response values of all the sensors exposed to 100 ppm HCHO at room temperature

      The transfer characteristic curves were recorded when the sensors were exposed in air and 100 ppm HCHO,respectively.Ⅰdsversus Vgscurves are shown in Fig.5 (a),Fig.5 (b), and Fig.5 (c), respectively.

      The threshold voltage is acquired by extending the biggest tangent to the Vgs-axis[13]from Fig.5, and the carrier mobility of OTFT sensors can be obtained according to the following formulas[14]:

      Fig.5. curve of OTFT with P3HT/ZnO ratios: (a) 3:1,(b) 1:1, and (c) 1:3 in air and 100 ppm HCHO.

      Table 2: Carrier mobility and the threshold-voltage of all thesensors exposed to 100 ppm HCHO

      Table 2 shows the carrier mobility and the thresholdvoltage of all the sensors exposed to 100 ppm HCHO.It can be seen that the OTFT sensor with the P3HT/ZnO ratio of 1:1 composite has the largest change in threshold voltage and carrier mobility.This result is coincident with the sensing property.

      3.3 SEM Images

      The surface morphology of the material has great influence on properties of films.The scanning electron microscopy (SEM) images with different ratios of composite films surface are shown in Fig.6.It can be clearly seen that the surface of composite film with the ratio of 1:1 is fluffy enough, providing a more efficient contact sites with HCHO.

      Fig.6.SEM images of P3HT/ZnO films with the P3HT/ZnO ratio:(a) 3:1, (b) 1:1, and (c) 1:3.

      4.Conclusions

      The OTFTs based on sprayed P3HT/ZnO composite with different ratios were fabricated to detect HCHO at room temperature in this paper.The electronic characteristics and sensing properties of three OTFT sensors were studied in detail.The properties had dependence on the ratios of ZnO nanoparticle in composite.The results exhibited that the ratio of 1:1 composite was the optimization by comparing the electrical properties, sensing properties, and SEM images.

      [1]C.J.Drury, C.M.J.Mutsaers, C.M.Hart, et al.“Low-cost all-polymer integrated circuits,” Appl.Phys.Lett., vol.73,no.1, pp.108-110, 1998.

      [2]K.C.Gupta, A.G.Ulsamer, and P.W.Preuss,“Formaldehyde in indoor air: sources and toxicity,” Environ.Ⅰnt., vol.8, no.1-6, pp.349-358.1982.

      [3]J.A.Pickreil, B.V.Mokier, and L.C.Griffis, “Formaldehyde release rate coefficients from selected consumer products,”Environ.Sci.Technol., vol.17, no.12, pp.753-757, 1983.

      [4]C.A.Redlich, J.Sparer, and M.R.Cullen, “Sick building syndrome,” Lancet, vol.349, no.9057, pp.1013-1016,1997.

      [5]Air Quality Guidelines for Europe, 2nd ed., WHO, Regional Office for Europe, Copenhagen, 2000.

      [6]Z.-T.Zhu, T.Mason, R.Dieckmann, and G.G.Malliaras,“Humidity sensors based on pentacene thin-film transistors,”Appl.Phys.Lett., vol.81, no.24, pp.4643-4645, 2002.

      [7]H.Fukuda, K.Kasama, and S.Nomura, “Highly sensitive MISFET sensors with porous Pt-SnO2gate electrode for CO gas sensing applications,” Sens.Actuators B, vol.64, no.1,pp.163-168, 2000.

      [8]L.Torsi, A.Dodabalapur, L.Sabbatini, and P.G.Zambonin,“Multiparameter gas sensor based on organic thin-film transistors,” Sens.Actuators B, vol.67, no.3, pp.312-316,2000.

      [9]G.Horowitz, D.Fichou, X.Peng, Z.Xu, and F.Garnier, “A field effect transistor based on conjugated alpha-sexithienyl,”Solid State Communications, vol.72, no.4, pp.381-384,1989.

      [10]F.J.Touwslager, N.P.Willard, and D.M.de Leeuw,“I-Line lithography of poly-(3,4-ethylenediokylthiophene)electrodes and application in all-polymer integrated circuits,”Appl.Phys.Lett., vol.81, no.24, pp.4556-4558, 2002.

      [11]M.Baibarac, M.Lapkowski, A.Pron, S.Lefrant, and I.Batlog, “SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states,” Journal of Raman Spectroscopy, vol.29, no.9, pp.825-832, 1998.

      [12]M.Kane, “Printed organic transistors on plastic for electronic displays and circuits,” presented at the 2003 IMAPS Printing an Intelligent Future Workshop, Boston,MA, 2003.

      [13]J.B.Lee and V.Subramanian, “Organic transistors on fibers:a first step towards electronic textiles,” presented at IEEE Int.Electron Dev.Meeting, washington, DC, 2003.

      [14]L.Torsi, M.C.Tanese, N.Cioffi, M.C.Gallazi, L.Sabbatini, and P.G.Zambonin, “Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors,”Sens.Actuators B, vol.98, no.2-3, pp.204-207, 2004.

      专栏| 达拉特旗| 汉寿县| 读书| 明水县| 海安县| 邵武市| 天峻县| 南宁市| 社会| 临安市| 清新县| 永顺县| 富裕县| 竹山县| 开原市| 牡丹江市| 石台县| 六盘水市| 昭觉县| 宜春市| 苏州市| 怀仁县| 龙海市| 翁源县| 望谟县| 永春县| 太湖县| 渑池县| 辛集市| 调兵山市| 慈溪市| 广饶县| 峨边| 南安市| 应城市| 怀仁县| 亚东县| 商水县| 措勤县| 陆川县|