• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PREDICTION OF SURFACE ROUGHNESS FOR END MILLING TITANIUM ALLOY USING MODIFIED PARTICLE SWARM OPTIMIZATION LS-SVM

    2013-12-02 01:39:04LiuChunjing劉春景TangDunbing唐敦兵Hehua何華ChenXingqiang陳興強(qiáng)
    關(guān)鍵詞:春景

    Liu Chunjing(劉春景),Tang Dunbing(唐敦兵),He hua(何華) Chen Xingqiang(陳興強(qiáng))

    (1.College of Mechanical and Electronic Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.Department of Mechanical and Electronic Engineering,College of Bengbu,Bengbu,233030,P.R.China)

    INTRODUCTION

    Since titanium alloys like Ti6Al4Vhas dislocation motion obstacles in microstructure,it has additional desired characteristics such as,high strength and excellent mechanical resistance even at elevated temperatures[1-2].Many manufacturers propose titanium alloy applications which offer higher strength and wider processing window than conventional hard steels do[3].Compressor blades,discs and rings for jet engines,airframe and space components,pressure vessels,rocket engine cases,helicopter rotor hubs and fasteners are all made of Ti6Al4Vtitanium alloys[4-8].

    The quality of components,normally referring to dimensional accuracy,form,and surface finish,is the main concern of manufacturing industry.Among them,the arithmetic average of absolute roughness parameter(Ra)is the most extended index of product quality and,in most cases,a technical requirement for mechanical products[9].During cutting titanium alloys,complex interactions are created between the tool and the workpiece at the contact surface.Consequently,significant forces and high temperatures are recorded causing wear and sometimes breakage of the tool.As a result,the dimension precisions of the finished workpiece and the surface roughness are altered,but the generation process of surface roughness is not fully understood[10].Thus,experimental and analytical models,or those called empirical models developed by conventional approaches like the statistical regression technique which is combined with the response surface methodology(RSM),have remained as an alternative in modeling machining process.Although the statistical regression technique works well for modeling,it can not describe precisely the underlying complicated nonlinear relations between machining parameters and surface roughness[11].Researchers proposed several approaches for predicting surface roughness to increase precision.Palani and Natarajan[12]presented a system for automated and flexible noncontact prediction of the surface roughness of end milling parts through a machine vision system with an integrated artificial neural network (ANN).Costes and Moreau[13]proposed a methodology to predict surface topography using tool displacements and based on tool center point.From the recorded signals and the machining parameters,the tool deformation was modeled.Then,from the calculated deflection,the surface topography in 3-D was predicted.Ne?eli,et al[14]used RSM to find out the effect of tool geometry parameters on the surface roughness during turning.The results indicated that the tool nose radius was the dominant factor on the surface roughness.Brezocnik,et al[15]proposed a genetic programming approach to predict surface roughness in end milling process.It was believed that the surface roughness was influenced most highly by feed rate,whereas the vibrations increased the prediction accuracy.Brecher,et al[16]used NC kernel data for monitoring surface roughness in milling operations and developed a human-machine interface through global user data to analyze on-line data with ANN.Zhang,et al[17]studied the development of a surface roughness model for the finish turning of TC11.The multi-quadratic regression equation predicting formula for surface roughness was established by means of the central composite de-sign of experiment.

    As we all know,conventional methods like back-propagation(BP)network model based on empirical risk minimization principle have some drawbacks in practical applications,such as slow convergence,easy immerging in local minimum,network structure and type overdepending on experiences,and so on[18].In recent years,support vector machine(SVM)based on statistical learning theory has been developed and successfully used to solve the problem with small samples,nonlinearity,and higher dimension.SVM is designed to minimize structural risk,so it is usually less vulnerable to overfit,local minimum problem,etc.SVM maps input data into a high dimensional feature space and constructs an optimal separating hyperplane in this space.This basically involves solving aquadratic programming(QP)problem with inequality constraints in dual space[19].Least square (LS)-SVM is a modified version of SVM,in which analytical solutions can be obtained by solving linear equations instead of a QP problem,and it greatly reduces the computational complexity[20].Therefore,aprediction model of surface roughness is established by means of LS-SVM.As the prediction model is smooth,nonconvex and constrained,it can hardly be solved by conventional methods.And considering the bigger dimensions of practical engineering with large-scale problems,to ensure a reliable convergence and improve the convergence speed,the modified partical swarm optimization(PSO)algorithm without calculating the inversion of matrix is applied for the control parameters.

    1 EXPERIMENTAL SETUP AND ANALYSIS

    1.1 Means and materials

    Milling tests are performed on a three-axis vertical milling center with numerical control provided by a FANUC 0i.The machine tool axes have a range of 0—900mm in Xdirection,0—500mm in Ydirection and 0—300mm in Zdirection.It has a 16kW spindle motor with a maxi-mum rotation speed of 15 000rad/m.Prior to machining trials,the six surfaces of the workpiece are machined for removing the hard layer on the outer surface.

    PVD-TiAlN base coated carbide tools with a 12mm diameter and 4flutes are used in the experiments.Rake angle,helix angle and relief an-gle of the tool are 4°,30°and 10°,respectively.The composition and properties of the cutting tools are illustrated in Table 1.

    α-βtitanium alloy′Ti6Al4V′is selected as the workpiece material.The physical and chemical properties of Ti6Al4Valloy are summarized in Tables 2-3.

    Table 1 Composition and property of cuttingtool

    Table 2 Chemical property of titanium alloy Ti6Al4Vwt%

    Table 3 Physical property of titanium alloy Ti6A14V

    The surface roughness(Ra)is measured by using Mitutoyo Surftest 301.The measurements are repeated three times.The considered result is an average of these values for a given machining pass.

    1.2 Orthogonal array experiment

    Taguchi method studies the influence of the input parameters on the outputs by using the analysis of variance(ANOVA)and signal-to-noise(S/N)ratio[21].To determine the influence of control factors on surface roughness,three input parameters are selected:cutting speed,feed rate and axial depth of cut.Moreover,the radial depth of cut is kept as a constant of 8.6mm.The L27(313)orthogonal array is employed.Cutting speed,feed rate and axial depth of cut are arranged in columns 1,2and 5,respectively.The levels of the test factors and the L27(313)orthogonal array are presented in Tables 4-5,respectively.In Table 4,the three experimental variables are coded as X1=(Vc-160)/40,X2=(fz-0.12)/0.02,and X3=(aa-0.35)/0.15.where X1,X2and X3are coded values of the variables.Vcis the cutting speed,fzthe feed rate and aathe axial depth of cut.

    Table 4 Cutting parameters and their levels

    1.3 Result and analysis

    For evaluating the reliability of experimental results and the credibility of mathematical models,the experimental results must be tested.ANOVA is used for graphically analyzing the data to obtain the interaction between the process variables and the responses.The quality of the fit model is expressed by the coefficient of determination R2,and its statistical significance is checked by Fisher′s F-test in the same program.Model terms are evaluated by P (probability)with 95%confidence level[22].ANOVA of surface roughness are shown in Table 6.

    Table 5 Experimental result for surface roughness

    Table 6 Response and ANOVA of surface roughness

    Data given in Table 6demonstrates that the model is significant at the 5%confidence level since P is less than 0.05.R2(0.986 8)ensures a 98.68%adjustment of the model to the experimental data,and only 1.32%does not agree with the model.The correlation coefficient AdjR2is 0.982 9,which indi-cates that there is a good correlation between the predicted values and the test results of surface roughness.Adequate precision(AP)compares the range of the predicted values at the design points with the average prediction error.AP value higher than 4(51.862)for the response confirms that the predicted model can be used to navigate the design space defined by the L27(313)orthogonal experiment.In Table 6,DOF is the degree of freedom,Seq SS the sequential sum of square and Adj SS the adjust sum of square.

    S/N ratios are calculated and listed in Table 5.The highest S/N ratio is observed at the 19th test condition with the cutting parameters listed as 1level(cutting speed),-1level(feed rate)and-1level(axial depth of cut).The values of Raand S/N are also plotted in Figs.1-2.

    Fig.1 S/N ratio at different control levels

    Fig.2 Raat different control levels

    2 MODIFIED PSO LS-SVM

    Given a training data set{(xi,yi)|xi∈ Rn,yi∈ R}ni=1,where xiand yiare the input and the corresponding output,respectively.Using nonlinear relations,the data samples are mapped from the original space to a higher-dimensional characteristic space.In the higher-dimensional space,the optimal decision function is constructed in the form

    where the nonlinear functionφ(·)maps the input pattern into a higher-dimensional feature space.The coefficient vectorωand bias termbare unknown.These unknown parameters can be obtained through solving the following optimization problem

    whereξiis the non-negative slack variable,representing the error in the classification problem.The regularized parameterγis a constant denoting a trade-off between the maximum margin 1/‖ω‖2and the minimum experience risk.

    The corresponding Lagrange function is given as

    where Lis the Lagrangian and aithe Lagrange multiplier.It follows the saddle point condition that the partial derivatives of L with respect to the primal variables(ω,b,ξ,a)have to vanish for optimality.

    Taking partial derivatives of L with respect toω,b,ξand a,the following equations are derived

    According to Karush-Kuhn-Tucker (KKT)conditions[23],the optimization is converted to solving the set of linear Eq.(5)by eliminating the parameters ofωandξof Eq.(4)

    where y=[y1y2… yn]T,Θ=[1 1 …1]T,a=[a1a2… an]T,Ωij=ψ(xi,xj)=φ(xi)Tφ(xj),andψ(·)is a symmetric function satisfying the Mercer condition.The regression function of LS-SVM is

    Duo to Eq.(5),the original problem can be described as

    Generally least square method is used to resolve these equations in LS-SVM.Considering the bigger dimensions of ATAin practical engineering with largescale problems,PSO algorithm with the performance of avoiding calculating the inversion of matrix is applied to resolve the optimum particle S=[s1,s2,…,sn]Tof Eq(7).

    PSO is one of the modern heuristic algorithms developed by Kennedy and Eberhart.It uses a number of particles that constitute a swarm,and each particle represents a potential solution within the search space.The i-th particle has its own best position pbest= (pi1,pi2,…,piD)at which the best fitness is encountered by the particle so far,and the global best position is denoted by gbest=(pg1,pg2,…,pgD)corresponding to all particles in current generation.

    The change of position of each particle from one iteration to another can be computed according to the distance between the current position and its previous best position and the distance between the current position and the best position of swarm.Then the updating of velocity and particle position can be obtained by using the following equations

    where viis the velocity and sithe position of particle,φ1andφ2are accelerative constants,r1and r2random variables uniformly distributed in the range of[0,1].

    To ensure a reliable convergence and improve the convergence speed,the modified PSO is carried out to solve the considered problem by adding convergence factor (χ),inertia weight (μ)and constrain factor (β).Particle iteration formulas are as follows

    3 PREDICTION MODEL OF SURFACE ROUGHNESS

    Based on formation mechanism and process analysis,the main factors affecting the surface roughness are cutting speed,feed rate and depth of cut.Therefore,they are selected as the input variables of the model.The output is surface roughness.Due to the complicated relations between influential factors and surface roughness,the prediction model can not be constructed through analyzing the formation mechanism of surface roughness.Experimental data are used to establish the prediction model directly based on modified PSO LS-SVM.The analysis of surface roughness formation mechanism is converted to the parameter identification problem of prediction model.

    The procedures for establishing the prediction model are as follows:

    Step 1 Record the relations between influencing factors and surface roughness by using L27(313)orthogonal array experiments.

    Step 2 Construct the training set of prediction model based on modified PSO LS-SVM{xi,yi},where i is the experiment number,xithe cutting speed,feed rate and axial depth of cut,yithe i-th experiment value of surface roughness.

    Step 3 Initialize particle swarm randomly,including generating nparticles of s1,s2,…,snto form initial population S(t)and acquiring the velocity matrix v(t)by using the velocity of each particle,where S(t)=[s1,s2,…,sn],v(t)=[v1,v2,…,vn].The initial value of particle best value pbest,iis the initial value of si.

    Step 4 Calculat fitness function f(s)of each particle according to the mean squared deviation of

    Step 5 Compare f(si)of each particle with f(pbest,i),if f(si)<f(pbest,i),then pbest,i=si,and if f(si)<f(gbest,i),then gbest,i=si,where f(si)is fitness function,f(pbest,i)the optimal fitness of iteration process,f(gbest,i)the optimum fitness of particle swarm,gbest,ithe global optimal solution.

    Step 6 Acquire the new swarmS(t+1)by updating the velocity and the position of particle according to Eqs.(10-11).Adjustment rules of

    Step 7 If the maximum iteration number is abtained,stop searching,and output the optimal solution b and{ai}ni=1,or else t=t+1,return to Step 2.

    Step 8 Establish the prediction model of surface roughness based on modified PSO LSSVM by inserting b and {ai}ni=1into Eq.5.

    The model response of^yiis acquired when xiis inserted into the prediction model based on modified PSO LS-SVM.The prediction error can be obtained by comparing predictive value and measured value.

    4 CASE STUDY FOR SURFACE ROUGHNESS MODELING

    Comparison test for surface roughness modeling are carried out by using BP neural network,LS-SVM and modified PSO LS-SVM according to Table 5,respectively.The initial parameters of BP algorithm are given as follows:learning rate:α=0.2;training epochs are equal to 10 000;the numbers of neuron in hidden layer are set as 9and 12.LS-SVM algorithm is directly realized based on Matlab′s(Matlab 7.1programming language)function of matrix operation.The initial parameters of LS-SVM are given as follows:kernel bandwidth:δ=0.45;penalty coefficient:γ=500.In order to solve high dimension problem efficiently,Gaussian radial basis functionφ(x,y)=exp[ -(x-y)(x-y)T/2δ2] is used as the kernel function of LS-SVM.

    The experiments are exerted on a 2.0GHz(M)CPU personal computer with 512MB memory under the operation system of Microsoft Windows XP professional.Time cost of prediction models and learning accuracy of training sets of 4 methods are shown in Table 7.The time cost of modified PSO LS-SVM is one to two orders of magnitude lower than thant of BP neural network,and nearly one order lower than that of LSSVM.

    The confirmation experiments are performed by using those parameters excluding experiment parameters.When the experiments are repeated three times,the following surface roughness results of actual values and prediction values are observed as shown in Table 8.The research results show that the mean square error(MSE)of modified PSO LS-SVM is nearly two to three orders of magnitude lower than that of BP neural network,while it is nearly one order of magnitude lower than that of LS-SVM.The modified PSO LSSVM prediction model can explain the influences of cutting speed,feed rate and axial depth of cut on surface roughness.The surface roughness decreases with the increase of the cutting speed.The higher feed rate and axial depth of cut lead to the increase of surface roughness.Higher cutting speed,lower feed rate and smaller axial depth of cut are more optimal cutting conditions.

    Table 7 Comparison of BP neural network,LS-SVM and modified PSO LS-SVM

    Table 8 Predictive result comparison of surface roughness

    5 CONCLUSION

    A novel prediction model based on modified PSO LS-SVM is proposed.The modified PSO LSSVM model is validated theoretically and experimentally.The research results show that the construction speed of the modified PSO LS-SVM model is two orders of magnitude faster than that of BP model.Moreover,the prediction accuracy is about one order of magnitude higher than that of BP model.The modified PSO LS-SVM prediction model can explain the influences of cutting speed,feed rate and axial depth of cut on the surface roughness of machined titanium alloys.

    In future researches,we will further study the optimizing techniques hybridized with modified PSO LS-SVM to optimize all the cutting parameters that affect the predicted surface roughness.

    [1] Ulutan D,Ozel T.Machining induced surface integrity in titanium and nickel alloys:A review[J].International Journal of Machine Tools and Manufacture,2011,51(3):250-280.

    [2] Boyer R R.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering,1996,213(1/2):103-114.

    [3] Nouari M,Ginting A.Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy[J].Surface and Coatings Technology,2006,200(18/19):5663-5676.

    [4] Arrazola P J,Garay A,Iriarte L M,et al.Machinability of titanium alloys(Ti6Al4Vand Ti555.3)[J].Journal of Materials Processing Technology,2009,209(5):2223-2230.

    [5] Li R,Hegde P,Shih A.High-throughput drilling of titanium alloys[J].International Journal of Machine Tools and Manufacture,2007,47(1):63-74.

    [6] Cheharon C,Jawaid A.The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J].Journal of Materials Processing Technology,2005,166(2):188-192.

    [7] Ginting A,Nouari M.Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material[J].International Journal of Machine Tools and Manufacture,2006,46(7/8):758-768.

    [8] Tansel I N,G¨ulmez S,Demetgul M,et al.Taguchi method-GONNS integration: Complete procedure covering from experimental design to complex optimization[J].Expert Systems with Applications,2011,38(5):4780-4789.

    [9] Quintana G,Rudolf T,Ciurana J,et al.Using kernel data in machine tools for the indirect evaluation of surface roughness in vertical milling operations[J].Robotics and Computer-Integrated Manufacturing,2011,27(6):1011-1018.

    [10]Yallese M,Chaoui K,Zeghib N,et al.Hard machining of hardened bearing steel using cubic boron nitride tool[J].Journal of Materials Processing Technology,2009,209(2):1092-1104.

    [11]Mukherjee I,Ray P.A review of optimization techniques in metal cutting processes[J].Computers &Industrial Engineering,2006,50(1/2):15-34.

    [12]Palani S,Natarajan U.Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2DFourier transform[J].The International Journal of Advanced Manufacturing Technology,2010,54(9/12):1033-1042.

    [13]Costes J P,Moreau V.Surface roughness prediction in milling based on tool displacements[J].Journal of Manufacturing Processes,2011,13(2):133-140.

    [14]Ne?eli S,Yald?z S,T¨urke?E.Optimization of tool geometry parameters for turning operations based on the response surface methodology[J].Measurement,2011,44(3):580-587.

    [15]Brezocnik M,Kovacic M,F(xiàn)icko M.Prediction of surface roughness with genetic programming[J].Journal of Materials Processing Technology,2004,157-158(20):28-36.

    [16]Brecher C,Quintana G,Rudolf T,et al.Use of NC kernel data for surface roughness monitoring in milling operations[J].The International Journal of Advanced Manufacturing Technology,2010,53(19/12):953-962.

    [17]Zhang Hongzhou,Ming Weiwei,An Qinglong,et al.Application of response surface methodology in surface roughness prediction model and parameter optimization[J].Journal of Shanghai JiaoTong University,2010,44(4):447-452.(in Chinese)

    [18]Liu X,Shao C,Ma H,et al.Optimal earth pressure balance control for shield tunneling based on LS-SVM and PSO[J].Automation in Construction,2011,20(4):321-327.

    [19]Luts J,Ojeda F,Van de Plas R,et al.A tutorial on support vector machine-based methods for classification problems in chemometrics[J].Analytica Chimica Acta,2010,665(2):129-145.

    [20]Deng S,Yeh T H.Applying least squares support vector machines to the airframe wing-box structural design cost estimation[J].Expert Systems with Applications,2010,37(12):8417-8423.

    [21]Oktem H,Erzurumlu T,Uzman I.Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part[J].Materials & Design,2007,28(4):1271-1278.

    [22]Tansel I N,G¨ulmez S,Demetgul M,et al.Taguchi Method-GONNS integration: Complete procedure covering from experimental design to complex optimization[J].Expert Systems with Applications,2011,38(5):4780-4789.

    [23]Suykens J A K,Vandewalle J,De Moor B.Optimal control by least squares support vector machines[J].Neural Networks,2001,14(1):23-35.

    猜你喜歡
    春景
    春景
    公民與法治(2022年6期)2022-07-26 06:16:34
    春雪
    花枝妝春景 燈彩耀新年——鄭州市紫荊山公園春節(jié)布景營建側(cè)記
    鹿泉岸下石窯小鎮(zhèn)
    詩選刊(2020年12期)2020-12-03 13:58:18
    春天·春景
    小讀者(2020年2期)2020-03-12 10:34:24
    春上行
    春上行
    人間春景
    中國三峽(2017年3期)2017-06-09 08:14:59
    李春景攝影作品選
    劉英作品
    畫刊(2016年1期)2016-11-01 21:32:37
    精品一区二区三区视频在线| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 色94色欧美一区二区| 中文资源天堂在线| 在现免费观看毛片| 校园人妻丝袜中文字幕| a级毛片免费高清观看在线播放| 这个男人来自地球电影免费观看 | 成人亚洲精品一区在线观看| 亚洲无线观看免费| 国产高清三级在线| 亚洲欧美日韩东京热| 精品国产露脸久久av麻豆| 亚洲av欧美aⅴ国产| 久久人妻熟女aⅴ| 国产乱人偷精品视频| 国产一级毛片在线| 色视频www国产| 在线观看国产h片| 日日撸夜夜添| 国产免费福利视频在线观看| 亚洲成人一二三区av| 精品99又大又爽又粗少妇毛片| 九九爱精品视频在线观看| 国产成人aa在线观看| 妹子高潮喷水视频| 有码 亚洲区| 插阴视频在线观看视频| 精品国产一区二区三区久久久樱花| 韩国av在线不卡| 午夜91福利影院| av国产久精品久网站免费入址| 亚洲av免费高清在线观看| 99热这里只有是精品在线观看| 黑人巨大精品欧美一区二区蜜桃 | 自拍偷自拍亚洲精品老妇| 成人国产麻豆网| 日韩制服骚丝袜av| 多毛熟女@视频| 中国三级夫妇交换| 亚洲精品乱久久久久久| 99久久中文字幕三级久久日本| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 欧美 日韩 精品 国产| 自线自在国产av| av女优亚洲男人天堂| 精品国产乱码久久久久久小说| 日本wwww免费看| 有码 亚洲区| 丰满少妇做爰视频| 久久人人爽av亚洲精品天堂| 亚洲精品国产av成人精品| 建设人人有责人人尽责人人享有的| 妹子高潮喷水视频| 丰满饥渴人妻一区二区三| av卡一久久| 亚洲色图综合在线观看| 我要看日韩黄色一级片| 美女国产视频在线观看| 偷拍熟女少妇极品色| 国产免费一区二区三区四区乱码| 在线观看美女被高潮喷水网站| 日韩强制内射视频| 欧美精品国产亚洲| 亚洲一级一片aⅴ在线观看| 三级经典国产精品| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 日韩制服骚丝袜av| 22中文网久久字幕| 亚洲电影在线观看av| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 免费观看无遮挡的男女| 久久精品久久精品一区二区三区| 青青草视频在线视频观看| 国产成人免费无遮挡视频| 美女cb高潮喷水在线观看| 亚洲四区av| av女优亚洲男人天堂| 国产乱人偷精品视频| 特大巨黑吊av在线直播| 国产成人a∨麻豆精品| 亚洲av成人精品一区久久| 丝袜喷水一区| 国产亚洲一区二区精品| 久久99热6这里只有精品| 国产91av在线免费观看| 国产91av在线免费观看| 最近2019中文字幕mv第一页| 亚洲av不卡在线观看| 狠狠精品人妻久久久久久综合| 丝袜喷水一区| 免费看日本二区| 麻豆精品久久久久久蜜桃| 婷婷色av中文字幕| 超碰97精品在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品成人av观看孕妇| 99热这里只有是精品在线观看| 亚洲国产欧美日韩在线播放 | 久久鲁丝午夜福利片| 国产又色又爽无遮挡免| 精品一品国产午夜福利视频| 久久精品熟女亚洲av麻豆精品| 久热这里只有精品99| 伦精品一区二区三区| 黄色日韩在线| 国产黄片美女视频| 高清黄色对白视频在线免费看 | 亚洲av电影在线观看一区二区三区| 国产成人91sexporn| 国产亚洲欧美精品永久| 欧美日韩国产mv在线观看视频| 国产乱来视频区| 乱码一卡2卡4卡精品| 精品亚洲成国产av| 国产亚洲av片在线观看秒播厂| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 一级片'在线观看视频| 亚洲精品国产成人久久av| 成年人免费黄色播放视频 | 中文字幕制服av| 色视频www国产| 成人综合一区亚洲| 国产欧美日韩精品一区二区| 伊人久久精品亚洲午夜| 亚洲精品自拍成人| 亚州av有码| 多毛熟女@视频| 日韩欧美精品免费久久| 特大巨黑吊av在线直播| 97超碰精品成人国产| 欧美区成人在线视频| 黄色一级大片看看| 99re6热这里在线精品视频| 99热这里只有精品一区| 日韩大片免费观看网站| xxx大片免费视频| 一级毛片电影观看| 国产精品女同一区二区软件| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 在线精品无人区一区二区三| 国产成人freesex在线| 日韩成人伦理影院| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 日日爽夜夜爽网站| 一本一本综合久久| 婷婷色综合www| 最近最新中文字幕免费大全7| 插阴视频在线观看视频| 日韩av不卡免费在线播放| 国产成人精品无人区| 亚洲av欧美aⅴ国产| 日韩中字成人| 99久久中文字幕三级久久日本| 大码成人一级视频| 久久人人爽人人爽人人片va| av在线播放精品| 久久久久久人妻| 久久97久久精品| 91精品伊人久久大香线蕉| 最近的中文字幕免费完整| 狂野欧美激情性xxxx在线观看| 国产精品一区二区三区四区免费观看| 少妇被粗大的猛进出69影院 | 夫妻性生交免费视频一级片| 少妇丰满av| 亚洲精品视频女| freevideosex欧美| 街头女战士在线观看网站| 精品国产一区二区久久| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 丰满饥渴人妻一区二区三| 97超碰精品成人国产| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx在线观看| 精品卡一卡二卡四卡免费| 免费看日本二区| 国产成人精品福利久久| 亚洲怡红院男人天堂| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 国产成人精品久久久久久| 五月玫瑰六月丁香| √禁漫天堂资源中文www| 激情五月婷婷亚洲| 亚洲欧美清纯卡通| 国产91av在线免费观看| 欧美老熟妇乱子伦牲交| 国产永久视频网站| 99热国产这里只有精品6| 女人久久www免费人成看片| 一个人看视频在线观看www免费| 亚洲中文av在线| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 曰老女人黄片| 国产毛片在线视频| 最新中文字幕久久久久| 久久 成人 亚洲| 啦啦啦啦在线视频资源| av视频免费观看在线观看| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 久久99热6这里只有精品| 国产色婷婷99| 99国产精品免费福利视频| 亚洲无线观看免费| 久久久久久久久久人人人人人人| 街头女战士在线观看网站| √禁漫天堂资源中文www| 久久久久网色| 一级毛片aaaaaa免费看小| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线观看一区二区三区| 少妇的逼好多水| 亚洲欧美日韩卡通动漫| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 少妇的逼好多水| 国产精品久久久久久精品古装| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 偷拍熟女少妇极品色| 亚洲欧美一区二区三区国产| 97超碰精品成人国产| 一区在线观看完整版| 免费大片18禁| 欧美日韩av久久| 亚洲国产精品国产精品| 久久国内精品自在自线图片| 久久久久精品久久久久真实原创| 精品一区在线观看国产| 国语对白做爰xxxⅹ性视频网站| 91精品国产九色| 亚洲在久久综合| 22中文网久久字幕| a级毛片在线看网站| 亚洲精品自拍成人| 中文欧美无线码| 国产成人免费观看mmmm| 国产日韩一区二区三区精品不卡 | 中文字幕人妻丝袜制服| 九色成人免费人妻av| 欧美丝袜亚洲另类| 亚洲中文av在线| 99久久中文字幕三级久久日本| 哪个播放器可以免费观看大片| 日本免费在线观看一区| 国产精品成人在线| 五月玫瑰六月丁香| 水蜜桃什么品种好| .国产精品久久| 午夜激情久久久久久久| 51国产日韩欧美| 国产精品不卡视频一区二区| 精品熟女少妇av免费看| 精品久久久久久久久亚洲| 免费观看性生交大片5| 久久久久久久国产电影| 国产精品一区二区三区四区免费观看| 天天操日日干夜夜撸| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 亚洲av成人精品一区久久| 熟女av电影| 亚洲美女视频黄频| 一级毛片我不卡| av黄色大香蕉| 国产成人freesex在线| a级毛片在线看网站| 国产日韩一区二区三区精品不卡 | 老女人水多毛片| 在线播放无遮挡| 天堂中文最新版在线下载| 国产精品国产三级国产av玫瑰| 中文乱码字字幕精品一区二区三区| 国产又色又爽无遮挡免| 在线观看免费日韩欧美大片 | 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 黄色视频在线播放观看不卡| 少妇裸体淫交视频免费看高清| 18禁在线播放成人免费| 亚洲人成网站在线播| 精品酒店卫生间| 亚洲美女视频黄频| 51国产日韩欧美| 国产高清不卡午夜福利| 成人18禁高潮啪啪吃奶动态图 | 天美传媒精品一区二区| 欧美 日韩 精品 国产| 成人免费观看视频高清| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 桃花免费在线播放| 久久精品夜色国产| 精品人妻熟女毛片av久久网站| 只有这里有精品99| 亚州av有码| 国产成人a∨麻豆精品| 国产爽快片一区二区三区| 大陆偷拍与自拍| 日韩av免费高清视频| 少妇 在线观看| 看免费成人av毛片| 国产精品无大码| 好男人视频免费观看在线| 亚洲精品乱码久久久v下载方式| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 热re99久久国产66热| 亚洲精品一区蜜桃| 寂寞人妻少妇视频99o| 一边亲一边摸免费视频| a 毛片基地| 伊人久久精品亚洲午夜| 日韩伦理黄色片| 热99国产精品久久久久久7| 国产av一区二区精品久久| 最新中文字幕久久久久| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 女性被躁到高潮视频| 天堂中文最新版在线下载| 91精品国产国语对白视频| a级一级毛片免费在线观看| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| tube8黄色片| 香蕉精品网在线| 日韩欧美精品免费久久| 午夜影院在线不卡| 在线观看免费日韩欧美大片 | 亚洲伊人久久精品综合| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看 | 国产精品嫩草影院av在线观看| 国产精品蜜桃在线观看| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| 日日摸夜夜添夜夜爱| 乱人伦中国视频| 91久久精品电影网| 日韩强制内射视频| 国产一级毛片在线| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 三级国产精品片| 免费av不卡在线播放| 欧美另类一区| 美女视频免费永久观看网站| 国产伦在线观看视频一区| 99久久精品热视频| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 视频区图区小说| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 精华霜和精华液先用哪个| 久久97久久精品| 蜜桃在线观看..| 色吧在线观看| 如何舔出高潮| 国产永久视频网站| 狂野欧美激情性bbbbbb| 只有这里有精品99| 特大巨黑吊av在线直播| 精品一区二区免费观看| 国产日韩欧美在线精品| 国产精品免费大片| 在线播放无遮挡| 偷拍熟女少妇极品色| 在线精品无人区一区二区三| 卡戴珊不雅视频在线播放| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 国产成人精品久久久久久| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 欧美日韩av久久| 亚洲精品视频女| 久久99热6这里只有精品| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 午夜福利网站1000一区二区三区| av卡一久久| 少妇被粗大的猛进出69影院 | 久久99热6这里只有精品| 看十八女毛片水多多多| 各种免费的搞黄视频| 久久精品国产亚洲网站| 岛国毛片在线播放| 99九九线精品视频在线观看视频| 少妇的逼水好多| 九色成人免费人妻av| 少妇精品久久久久久久| 搡女人真爽免费视频火全软件| 成人二区视频| 日韩人妻高清精品专区| 高清视频免费观看一区二区| 色吧在线观看| 人妻系列 视频| 少妇高潮的动态图| 嫩草影院新地址| av视频免费观看在线观看| 人人妻人人澡人人看| 美女内射精品一级片tv| 中文资源天堂在线| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 一二三四中文在线观看免费高清| 99国产精品免费福利视频| a级毛片免费高清观看在线播放| 三上悠亚av全集在线观看 | 高清视频免费观看一区二区| 我的女老师完整版在线观看| 另类精品久久| 国产视频内射| 成人亚洲欧美一区二区av| 国产成人91sexporn| 精华霜和精华液先用哪个| 一级毛片我不卡| 99国产精品免费福利视频| 免费av中文字幕在线| 91成人精品电影| 哪个播放器可以免费观看大片| 亚洲精品成人av观看孕妇| 日韩一本色道免费dvd| 女性被躁到高潮视频| 国产成人精品福利久久| 久久ye,这里只有精品| 又爽又黄a免费视频| 日韩av在线免费看完整版不卡| 精品少妇内射三级| a级片在线免费高清观看视频| 免费不卡的大黄色大毛片视频在线观看| 九九爱精品视频在线观看| 亚洲天堂av无毛| 日本黄色片子视频| 最新的欧美精品一区二区| 国产精品一区www在线观看| 日本免费在线观看一区| 亚洲国产最新在线播放| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看 | 99热这里只有是精品在线观看| av福利片在线观看| 精品久久国产蜜桃| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 久久人妻熟女aⅴ| 免费观看的影片在线观看| 永久网站在线| 国产在视频线精品| 亚洲成色77777| 亚洲精品久久午夜乱码| 久久久久久久久久成人| 亚洲国产精品一区三区| 国产伦在线观看视频一区| 亚洲情色 制服丝袜| 十八禁网站网址无遮挡 | 日韩欧美一区视频在线观看 | 精品少妇黑人巨大在线播放| 中国国产av一级| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 另类亚洲欧美激情| av天堂久久9| 国产伦理片在线播放av一区| 欧美日韩视频高清一区二区三区二| 亚洲无线观看免费| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| √禁漫天堂资源中文www| 国产色婷婷99| 99久久精品热视频| 亚洲人成网站在线播| 精华霜和精华液先用哪个| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 国产男女内射视频| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 免费观看av网站的网址| a级毛片免费高清观看在线播放| 能在线免费看毛片的网站| 成人亚洲欧美一区二区av| 一本久久精品| 老司机影院毛片| av天堂久久9| 精品人妻熟女毛片av久久网站| 亚洲精品国产成人久久av| 日韩欧美一区视频在线观看 | 国产91av在线免费观看| 少妇人妻 视频| 亚洲图色成人| 精品国产一区二区久久| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| av天堂中文字幕网| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| 亚洲欧美日韩另类电影网站| 日韩制服骚丝袜av| 日本欧美视频一区| 久久6这里有精品| 欧美精品一区二区大全| 久久久久久久国产电影| 欧美另类一区| 亚洲,欧美,日韩| 大香蕉97超碰在线| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频 | 97超碰精品成人国产| 欧美日韩国产mv在线观看视频| 蜜臀久久99精品久久宅男| 高清毛片免费看| 亚洲精品国产成人久久av| 久久久久久久久久人人人人人人| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 国产日韩欧美视频二区| 国产亚洲5aaaaa淫片| 久久精品夜色国产| 久久久亚洲精品成人影院| 色婷婷av一区二区三区视频| 天美传媒精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站| a级毛片免费高清观看在线播放| 亚洲精品一二三| 欧美性感艳星| 亚洲欧美日韩东京热| 热re99久久国产66热| 人体艺术视频欧美日本| 在现免费观看毛片| 99精国产麻豆久久婷婷| 成人毛片a级毛片在线播放| 91精品国产国语对白视频| 亚洲av二区三区四区| 热re99久久国产66热| 免费观看在线日韩| 狂野欧美白嫩少妇大欣赏| 日本av免费视频播放| 十八禁高潮呻吟视频 | 亚洲色图综合在线观看| 精品国产露脸久久av麻豆| 中文乱码字字幕精品一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲av不卡在线观看| 国产欧美另类精品又又久久亚洲欧美| av专区在线播放| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 久热久热在线精品观看| 日本wwww免费看| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 久久久久久久国产电影| 日日撸夜夜添| 日韩欧美一区视频在线观看 | 少妇 在线观看| 久久狼人影院| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 男人狂女人下面高潮的视频| 免费播放大片免费观看视频在线观看| 99热这里只有精品一区| 成人国产av品久久久| 国产精品国产三级专区第一集| 免费看日本二区| 国产精品国产三级国产av玫瑰| 成人午夜精彩视频在线观看| 午夜免费鲁丝| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性bbbbbb| 亚洲天堂av无毛| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 国产精品99久久久久久久久| 丰满少妇做爰视频| 蜜臀久久99精品久久宅男| 老熟女久久久| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| 男女边吃奶边做爰视频| 国产成人freesex在线| 精品国产国语对白av| 高清黄色对白视频在线免费看 |