• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of TSP based on self-organizing map

    2013-12-20 07:22:19SONGJinjuan宋錦娟BAIYanping白艷萍HUHongping胡紅萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟), BAI Yan-ping (白艷萍), HU Hong-ping (胡紅萍)

    (Department of Mathematics, North University of China, Taiyuan 030051, China)

    Study of TSP based on self-organizing map

    SONG Jin-juan (宋錦娟), BAI Yan-ping (白艷萍), HU Hong-ping (胡紅萍)

    (Department of Mathematics, North University of China, Taiyuan 030051, China)

    Self-organizing map (SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem (TSP). To improve Kohonen SOM, an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution. Therefore, a new improved self-organizing map (ISOM) algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation, and then the result of ISOM is compared with those of four SOM algorithms: AVL, KL, KG and MSTSP. Using ISOM, the average error of four traveling salesman problem instances is only 2.895 0%, which is greatly better than the other four algorithms: 8.51% (AVL), 6.147 5% (KL), 6.555% (KG) and 3.420 9% (MSTSP). Finally, ISOM is applied to two practical problems: the Chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province, and the two optimal touring routes are provided to the tourists.

    self-organizing maps (SOM); traveling salesman problem (TSP); neural network

    CLD number: O221.1 Document code: A

    Traveling salesman problem (TSP), as a classical combination optimization problem, can be defined as a given graph G=(V; A), where V is a set of n vertices and A is a set of arcs between vertices, and each arc is associated with a nonnegative distance. TSP is to determine a minimum distance of the closed ring passing through each vertex once and only once[1,2]. As a typical NP-complete problem, TSP has vast practical applications in our life, such as vehicle routing[1], power-distribution network[3]and printed-circuit-board manufacturing[4,5]and so on, therefore, it has attracted great research attention.

    In recent years, some heuristic intelligent algorithms have been developed and applied to TSP in order to achieve a near-to-optimal solution of the problem in a relatively short period of time. Using heuristic algorithms, such as exhaustive search method, tabu search algorithm (TSA)[6], simulated annealing (SA)[7], genetic algorithm[8], ant colony system[9]and neural networks, etc., TSP is easier to be solved successfully. Self-organizing map (SOM) neural network[10,11], as a kind of Kohonen-type network, has also been used to solve TSP. So in this paper, firstly, we explain SOM modification procedure for TSP, then we introduce two parameter modification formulae and initialization methods of SOM put forword by Kohonen, and finally, we analyze the defects of basic SOM and put forword an improved SOM (ISOM) algorithm.

    1 SOM modification procedure for TSP

    SOM put forword by Kohonen belongs to a special class of neural networks, where each neuron competes with the others to get activated. In order to provide the readers a intuitive and specific description of SOM network procedure for TSP, this paper utilizes the following figure (Fig.1) to explain the association between learning network[12]and a geometrical representation of TSP solution.

    Fig.1 Schematic diagram of two-layer neural network and associated geometrical representation

    In Fig.1, [ci1,ci2] repesents the coordinates of city cias an input vector, and weights vj1and vj2can be defined as the coordinates of node vjlocated in the output layer. The network is initialized with small random connection weights and then cities are sequentially added to the network in a random order. The nodes in the output layer compete with each other for a given city based on Euclidian distance and then the winner node J is selected by

    where xiand yjdenote the coordinates of city i and output node j, respectively, and ‖·‖2is Euclidian distance. From the above formula, we can summarize that the winner node is the node with the minimum Euclidian distance to the existing city.

    Once the winner node for a given city is found, the weight vectors of the winner node and its neighbouring nodes are modified in order to get closer to this city according to the following formula:

    where f(σ,d)=exp(-d2/σ2) is a neighborhood function: α and σ are learning rate and neighborhood function variance, respectively; d=min{‖j-J‖,M-‖j-J‖} is the cardinal distance measured along the closed ring between nodes j and J, where ‖·‖ represents absolute value and M is the number of the output nodes.

    When the network is stable, each city can find its corresponding winner node. Furthermore, all the winner nodes form a closed ring, and after modified, the closed ring represents a touring route covering the selected cities and it is approximately optimal solution to TSP.

    2 Improvement on Kohonen SOM

    In SOM network, there are two adaptive parameters: learning rate α and neighborhood function variance σ, which are vital to solving TSP especially in routing length and processing time to achieve a reasonable and optimal solution.

    2.1 Parameter modification of ISOM

    The new parameter modification formulae proposed in this paper are presented as

    where k=0,1,2,…, is the number of iterations, T is a contant related to time, and we give the following initial values: kmax=200, T=10 000 and σ0=10. The modification of learing rate α and neighborhood function variance σ are illustrated in Fig.2 and Fig.3, respectively.

    Fig.2 Modified α in ISOM

    Fig.3 Modified σ in ISOM

    2.2 Initialization method of ISOM

    Firstly, we suggest that the number of selected output nodes be twice the number of cities (M=2n), and in the initialization stage, the neighbor length be limited to 40% of the output nodes (l=0.4M). Once a cycle is completed (that is when all n cities complete their inputs to the network), the neighboring length will decrease by 2%, which leads to a lower processing efficiency. Secondly, in order to prevent a node from being selected as the winner node for more than one city in each completed cycle of iterations, an inhibitory index is defined for each node, which puts the winner node aside from the competed, providing more opportunities for other nodes. And before each iteration, the sequence of n cities is always permutated randomly. Finally, it is suggested that the nodes initialization be on a rectangular frame located on the right of the n cities' centroid.

    3 Experimental results

    In order to verify the validity of ISOM algorithm, four examples obtained from general TSPLIB[13]are selected for experiments. Through experimental simulation, the improved algorithm are compared with Kohonen SOM. For each example, the experiment is conducted for 10 times, and then the best value, average value and relative error are calculated, respectively. The experimental results are shown in Table 1.

    Table 1 Experimental results' comparison of average values and relative errors of Kohonen SOM and ISOM

    The comparison of experimental results above shows that the average values obtained from the improved algorithm are greatly better, and the relative errors are much smaller than that of Kohonen SOM, so the improved algorithm introduced in this paper is an effective algorithm.

    The following Figs.4-7 are four experimental results with ISOM.

    Fig.4 Optimalroutinggraphofeil76Fig.5 OptimalroutinggraphofKroA200

    Fig.6 Optimalroutinggraphofrat195Fig.7 Optimalroutinggraphofpr136

    In order to further evaluate and verify the performance of ISOM, it is compared with other four basic heuristic methods, which are AVL (the procedure of Ange_niol, Vaubois and Le Texier[14]), KL-e global-KG[15]and MSTSP (modified SOM applied to the TSP[16]). The comparison results are shown in Table 2.

    It can be seen from Table 2 that, for each example of TSP, the experimental results of ISOM are greatly better than those of the other four algorithms. The average errors of four traveling salesman problem instances for five algorithms are: 8.51% (AVL), 6.147 5% (KL), 6.555 0% (KG), 3.420 9% (MSTSP) and 2.895 0% (ISOM), respectively.

    In order to deeply understand the convergence process in searching optimal solution, this paper takes st70 from TSPLIB as instance for conducting the experiments, and five figures are shown in the following: the initial condition of M nodes (Fig.8), intermediate iterations (Fig.9, Fig.10 and Fig.11) and final result (Fig.12), where “*” and “·” represent the cities and nodes located in output layer, respectively.

    Table 2 Comparison results of five algorithms

    Fig.8 InitialconditionofMnodesFig.9 Convergencein50th

    Fig.10 Convergencein100thFig.11 Convergencein150th

    Furthermore, Chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province are selected as instances for conducting the experiments. Table 4 and 5 show the names of chinese 100 cities and the coordinates[17]of 102 counties in Shanxi Province, respectively.

    The experimental results will provide the tourists with two greatly optimized paths for their traveling in China and even in Shanxi Province.

    Firstly, for Chinese 100 cities-TSP, the results obtained by the proposed ISOM are compared with those of other five kinds of SOM algorithms: SKH[17], CGHNN[18], F-W[19], NCSOM[19]and ASOM[19]. The comparison results are shown in Table 3.

    Then, for the above two practical instances: the chinese 100 cities-TSP and 102 counties-TSP in Shanxi Province, the results obtained by proposed ISOM algorithm are compared with that of ant colony system (ACS) not only in optimal pathing values but also in time, which is shown in Table 6.

    Fig.12 Final result

    Table 3 Comparison results of SKH, CGHNN, F-W, nCSOM, ASOM and ISOM

    Table 4 Names of Chinese 100 cities

    Table 5 Coordinates of 102 counties in Shanxi Province

    Table 6 Comparison results of ISOM and ACS

    From Figs.13 and 14 it can be easily found that the proposed ISOM algorithm provides the tourists with a very optimal path for their traveling in China all follows:

    46—38—83—81—61—48—19—57—96—36—90—87—40—95—79—88—85—65—45—98—63—56—72—77—14—30—2—82—1—47—15—60—28—31—80—26—32—5—70—13—71—92—12—59—8—3—78—33—75—62—91—4—27—50—53—7—73—66—54—25—34—67—76—17—55—52—49—35—86—94—6—99—29—69—18—68—84—20—24—97—51—42—21—22—100—10—93—9—89—39—11—58—41—23—64—44—43—37—74—16.

    An optimal path in Shanxi Province is:

    58—59—60—50—51—52—54—61—83—87—84—86—85—96—100—99—95—94—90—98—4—68—97—93—71—72—73—70—69—67—34—37—12—35—36—38—9—6—13—7—8—10—11—66—64—65—74—62—63—44—16—14—15—43—42—41—22—21—28—19—20—24—17—18—32—23—33—29—30—31—81—27—26—25—40—45—39—3—1—5—2—92—46—47—91—102—101—49—48—88—79—80—82—75—77—78—76—55—53—56—57—89.

    Fig.13 Optimal routing graph of Chinese 100 cities-TSP

    Fig.14 Optimal routing graph of Shanxi's 102 counties-TSP

    The experimental results indicate that the proposed ISOM not only provides two convenient traveling routes for the tourists, but also saves them a lot of money, manpower, material resources and time. Therefore, the proposed ISOM algorithm has certain theoretical value and practical significance.

    4 Discussion and conclusion

    This paper proposes a new kind of ISOM based on Kohonen SOM. From the experimental results above it can be easily found that the neighborhood modification procedure of SOM to TSP becomes more reasonable and effective by improving learning rate and neighborhood function variance, which leads to an optimal solution of TSP. However, the proposed ISOM is only applied to Euclidean TSP, and it will be an interesting research topic whether it can solve non-Euclidean TSP[20].

    The combination of SOM network and other heuristic intelligent algorithms such as genetic algorithm (GA), SA, TSA and ACS will be described in solving TSP.

    [1] Laporte G. The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research, 1992,59 (3): 345-358.

    [2] Leung K S, JIN Hui-dong, XU Zong-ben. An expanding self-organizing neural network for the traveling salesman problem. Neurocomputing, 2004, 62: 267-292

    [3] Onoyama T, Maekawa T, Kubota S, et al. Intelligent evolutional algorithm for distribution network optimization. In: Proceedings of IEEE International Conference on Control and Applications, 2002, 2: 802-807.

    [4] Takashi S, Kenji M, Fujimura K, et al. Optimization of surface component mounting on the printed circuit board using SOM-TSP method. IEIC Technical Report, 1999, 98(673): 289-296.

    [5] Fujimura K, Fujiwaki S, Kwaw O C, et al. Optimization of electronic chip-mounting machine using SOM-TSP method with 5 dimensional data. In: Proceedings of International Conference on Info-tech and Info-net, Beijing, China, 2001, 4: 26-31.

    [6] Fiechter L. A parallel tabu search algorithm for large traveling salesman problem. Discrete Applied Mathematics, 1994, 51 (3): 243-267.

    [7] Van Laarhoven P J M, Aarts E H L. Simulated annealing: theory and applications. Kluwer Academic Publishers, Norwell, USA, 1987.

    [8] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publisher, Boston, USA, 1989.

    [9] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 53-66.

    [10] Creput J C, Koukam A. A memetic neural network for the Euclidean traveling salesman problem. Neurocomputing, 2009, 72(4-6): 1250-1264.

    [11] Kohonen T. The self-organizing map. In: Proceedings of IEEE, 1990, 78 (9): 1464-1480.

    [12] Somhom S, Modares A, Enkawa T. A self-organising model for the travelling salesman problem. Journal of the Operational Research Society, 1997, 48 (9): 919-928.

    [13] TPSLIB. [2013-01-08]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [14] Angeniol B, la Croxi Vaubois C, Le Texier J Y. Self-organizing feature maps and the traveling salesman problem. Neural Networks, 1988, 1(4): 289-293.

    [15] Aras N, Oommen B J, Altinel I K. The Kohonen network incorporating explicit statistics and itsapplication to the traveling salesman problem. Neural Networks, 1999, 12 (9): 1273-1284.

    [16] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172 (1): 603-623.

    [17] Latitude and longitude query of Chinese cities. [2013-01-11]. http://www.ximizi.com/jingweidu.php.

    [18] Wang L. The neural network and combinatorial optimization. Doctor Thesis. Academy of Sciences, Beijing, 2000.

    [19] WU Ling-yun. The application for Neural networks in combinatorial optimization and DNA sequencing. Doctor Thesis. Department of Mathematics, Academy of Sciences, Beijing, 2002: 46-50.

    [20] Faigl J. On the performance of self-organizing maps for the non-Euclidean traveling salesman problem in the polygonal domain. Information Sciences, 2011, 181 (19): 4214-4229.

    date: 2013-07-28

    China Science Foundation (No.61275120)

    SONG Jin-juan (123976518@qq.com)

    1674-8042(2013)04-0353-08

    10.3969/j.issn.1674-8042.2013.04.012

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點輪播上的應(yīng)用
    中國新通信(2022年3期)2022-04-11 22:20:58
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    大又大粗又爽又黄少妇毛片口| 国产老妇伦熟女老妇高清| 人人妻人人澡欧美一区二区| 午夜福利网站1000一区二区三区| 欧美xxⅹ黑人| 成人毛片a级毛片在线播放| 久久久久精品久久久久真实原创| 两个人视频免费观看高清| 一级黄片播放器| 午夜精品一区二区三区免费看| 国产白丝娇喘喷水9色精品| 国产黄色免费在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产真实伦视频高清在线观看| 国产黄色免费在线视频| 日产精品乱码卡一卡2卡三| 婷婷色综合大香蕉| 最新中文字幕久久久久| 男女边摸边吃奶| 人妻制服诱惑在线中文字幕| 国产欧美日韩精品一区二区| 欧美高清性xxxxhd video| 午夜激情福利司机影院| 亚洲va在线va天堂va国产| 中国国产av一级| 国产精品人妻久久久影院| 97人妻精品一区二区三区麻豆| 精品熟女少妇av免费看| 国产精品99久久久久久久久| 亚洲在线观看片| 亚洲精品456在线播放app| 成年人午夜在线观看视频 | 国产精品一区二区三区四区久久| 3wmmmm亚洲av在线观看| 久久精品夜夜夜夜夜久久蜜豆| av免费观看日本| 3wmmmm亚洲av在线观看| 午夜福利在线在线| 亚洲精品自拍成人| 日本与韩国留学比较| 婷婷色麻豆天堂久久| 国产 一区精品| 久久精品国产自在天天线| 一边亲一边摸免费视频| 嫩草影院新地址| 91精品一卡2卡3卡4卡| 十八禁网站网址无遮挡 | 一级黄片播放器| 一区二区三区乱码不卡18| 精品国产三级普通话版| 我要看日韩黄色一级片| 亚洲精品国产av成人精品| 狂野欧美白嫩少妇大欣赏| 在线免费十八禁| 欧美精品一区二区大全| av福利片在线观看| 国产一级毛片七仙女欲春2| 久久99蜜桃精品久久| 亚洲美女视频黄频| 国产精品国产三级专区第一集| 日本-黄色视频高清免费观看| 网址你懂的国产日韩在线| 不卡视频在线观看欧美| 欧美变态另类bdsm刘玥| 国产免费又黄又爽又色| 久久久a久久爽久久v久久| 成年av动漫网址| 超碰97精品在线观看| 秋霞在线观看毛片| 好男人在线观看高清免费视频| 美女内射精品一级片tv| 欧美一区二区亚洲| 国产黄a三级三级三级人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 乱系列少妇在线播放| 国产精品熟女久久久久浪| 最近中文字幕高清免费大全6| 日韩欧美三级三区| 久久热精品热| 大话2 男鬼变身卡| 中文天堂在线官网| 草草在线视频免费看| 天堂√8在线中文| 乱人视频在线观看| 91精品伊人久久大香线蕉| 成人性生交大片免费视频hd| 午夜精品国产一区二区电影 | 成人漫画全彩无遮挡| 久久精品久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 日韩欧美精品免费久久| 水蜜桃什么品种好| 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 又黄又爽又刺激的免费视频.| 欧美变态另类bdsm刘玥| 色综合色国产| h日本视频在线播放| 精品不卡国产一区二区三区| 亚洲电影在线观看av| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 一边亲一边摸免费视频| 国产av不卡久久| 国产亚洲91精品色在线| 国产av不卡久久| 亚洲内射少妇av| 床上黄色一级片| av又黄又爽大尺度在线免费看| 日韩三级伦理在线观看| 国产男人的电影天堂91| 国产国拍精品亚洲av在线观看| 国产男人的电影天堂91| 日韩av免费高清视频| 九色成人免费人妻av| 国产男人的电影天堂91| 精品久久久久久久久av| 日韩大片免费观看网站| 七月丁香在线播放| 亚洲国产av新网站| 国产精品久久久久久精品电影| 日本wwww免费看| 高清日韩中文字幕在线| 97超视频在线观看视频| 麻豆国产97在线/欧美| 在线观看美女被高潮喷水网站| 18禁在线无遮挡免费观看视频| 搡老妇女老女人老熟妇| 亚洲精品久久午夜乱码| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 欧美zozozo另类| 欧美成人a在线观看| 午夜福利视频精品| 亚洲婷婷狠狠爱综合网| av国产久精品久网站免费入址| 一级毛片我不卡| 男人和女人高潮做爰伦理| 熟女人妻精品中文字幕| 国产精品国产三级国产专区5o| 免费在线观看成人毛片| 99久国产av精品| 色尼玛亚洲综合影院| 国产综合懂色| 久久久久久久亚洲中文字幕| 国产大屁股一区二区在线视频| 精品久久久噜噜| 欧美人与善性xxx| 天堂中文最新版在线下载 | 亚洲精品国产av蜜桃| 国产精品麻豆人妻色哟哟久久 | 久久6这里有精品| 欧美xxxx性猛交bbbb| 国产亚洲av片在线观看秒播厂 | 久久久成人免费电影| 精品欧美国产一区二区三| 亚洲国产日韩欧美精品在线观看| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 国产欧美日韩精品一区二区| 18+在线观看网站| 99re6热这里在线精品视频| 插逼视频在线观看| 黄片无遮挡物在线观看| freevideosex欧美| 日本与韩国留学比较| 日日啪夜夜撸| 婷婷六月久久综合丁香| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 天美传媒精品一区二区| 六月丁香七月| 久久久色成人| 韩国高清视频一区二区三区| 欧美 日韩 精品 国产| 精品久久久久久久久久久久久| 精品久久久噜噜| 在线播放无遮挡| 免费大片黄手机在线观看| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 男女啪啪激烈高潮av片| 精华霜和精华液先用哪个| 久久久成人免费电影| 国产成人精品婷婷| 中国国产av一级| 国产成人a∨麻豆精品| 老司机影院成人| 亚洲精品第二区| 别揉我奶头 嗯啊视频| 欧美激情久久久久久爽电影| 久久热精品热| 日韩三级伦理在线观看| 国产av国产精品国产| 97精品久久久久久久久久精品| 夜夜爽夜夜爽视频| 欧美日韩一区二区视频在线观看视频在线 | 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 一个人免费在线观看电影| 内地一区二区视频在线| 成年版毛片免费区| 国产亚洲5aaaaa淫片| 777米奇影视久久| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 国产乱人视频| 亚洲欧洲日产国产| 色播亚洲综合网| 亚洲成人久久爱视频| 女的被弄到高潮叫床怎么办| 免费少妇av软件| 不卡视频在线观看欧美| 永久网站在线| 国产午夜精品久久久久久一区二区三区| 99热网站在线观看| 国国产精品蜜臀av免费| 女人十人毛片免费观看3o分钟| 国产精品嫩草影院av在线观看| 免费看日本二区| 黄色欧美视频在线观看| 国内精品一区二区在线观看| 国产高潮美女av| 久久精品国产自在天天线| 床上黄色一级片| 色播亚洲综合网| 久久精品夜色国产| 内地一区二区视频在线| 80岁老熟妇乱子伦牲交| 国产白丝娇喘喷水9色精品| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 成人特级av手机在线观看| 日韩欧美精品免费久久| 国产亚洲av片在线观看秒播厂 | 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 日本一二三区视频观看| 内地一区二区视频在线| 成年版毛片免费区| 亚洲美女视频黄频| 欧美成人一区二区免费高清观看| 久久草成人影院| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 亚洲av中文av极速乱| 97热精品久久久久久| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 女的被弄到高潮叫床怎么办| 神马国产精品三级电影在线观看| 简卡轻食公司| 久久鲁丝午夜福利片| 国产一区二区亚洲精品在线观看| 国产一区有黄有色的免费视频 | 久久久色成人| 精品国产一区二区三区久久久樱花 | 精品国产露脸久久av麻豆 | 欧美潮喷喷水| 在线免费观看的www视频| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 插阴视频在线观看视频| 久久久久国产网址| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看| 麻豆国产97在线/欧美| 国产乱人偷精品视频| 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区 | 97在线视频观看| 亚洲天堂国产精品一区在线| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 国产午夜精品久久久久久一区二区三区| 久久久久网色| 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 国内精品一区二区在线观看| 18禁在线播放成人免费| 国产又色又爽无遮挡免| 九色成人免费人妻av| 又爽又黄a免费视频| 亚洲欧美日韩无卡精品| 美女高潮的动态| 久久久久久九九精品二区国产| 精品久久久精品久久久| 国产男女超爽视频在线观看| av卡一久久| 99re6热这里在线精品视频| 久久久久久久午夜电影| 国产欧美日韩精品一区二区| 高清av免费在线| 午夜久久久久精精品| 日本色播在线视频| 亚洲精品456在线播放app| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 夫妻性生交免费视频一级片| 色播亚洲综合网| 欧美激情国产日韩精品一区| 97在线视频观看| 国产成人精品一,二区| 亚洲国产av新网站| 别揉我奶头 嗯啊视频| 国产av在哪里看| 在线免费十八禁| 亚洲电影在线观看av| 69人妻影院| 97超碰精品成人国产| 精品久久久久久久久av| av专区在线播放| av免费在线看不卡| 精品人妻一区二区三区麻豆| 国产不卡一卡二| 欧美丝袜亚洲另类| 国产亚洲5aaaaa淫片| 熟女人妻精品中文字幕| 国产成人精品福利久久| 视频中文字幕在线观看| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 91精品一卡2卡3卡4卡| 九色成人免费人妻av| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 天堂影院成人在线观看| 色吧在线观看| 国产精品麻豆人妻色哟哟久久 | 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 看黄色毛片网站| 一级a做视频免费观看| 夜夜爽夜夜爽视频| 午夜激情久久久久久久| 夜夜爽夜夜爽视频| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 免费电影在线观看免费观看| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 国产一区有黄有色的免费视频 | 午夜精品国产一区二区电影 | 久久久久久久久久黄片| 成人美女网站在线观看视频| 高清av免费在线| 国产色婷婷99| 色哟哟·www| 久久精品熟女亚洲av麻豆精品 | 高清毛片免费看| eeuss影院久久| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕| 国产视频内射| 深夜a级毛片| 麻豆精品久久久久久蜜桃| 在线观看av片永久免费下载| 国产成人aa在线观看| 午夜福利高清视频| 韩国av在线不卡| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 美女高潮的动态| 国产黄频视频在线观看| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 极品教师在线视频| 国产不卡一卡二| 亚洲人成网站在线播| 免费播放大片免费观看视频在线观看| 亚洲不卡免费看| 热99在线观看视频| 日日啪夜夜爽| 亚洲18禁久久av| 免费观看精品视频网站| 久久精品综合一区二区三区| 18+在线观看网站| 舔av片在线| av在线亚洲专区| 欧美一区二区亚洲| 岛国毛片在线播放| 丰满少妇做爰视频| 插逼视频在线观看| 成年人午夜在线观看视频 | 午夜免费激情av| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| 永久网站在线| 国产麻豆成人av免费视频| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 日本与韩国留学比较| 国产单亲对白刺激| 婷婷六月久久综合丁香| av在线老鸭窝| 国产一区二区亚洲精品在线观看| 91狼人影院| 免费观看性生交大片5| 国产毛片a区久久久久| 免费观看无遮挡的男女| 国产精品不卡视频一区二区| 777米奇影视久久| 极品教师在线视频| 永久免费av网站大全| 天天躁日日操中文字幕| 男女那种视频在线观看| 日本与韩国留学比较| 久久久久精品性色| 熟女电影av网| 一区二区三区四区激情视频| 免费av观看视频| 亚洲乱码一区二区免费版| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 日韩不卡一区二区三区视频在线| 成人性生交大片免费视频hd| 亚洲成色77777| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 国产精品一区二区在线观看99 | 久久99热6这里只有精品| 永久网站在线| av卡一久久| 欧美激情国产日韩精品一区| 一级片'在线观看视频| 嘟嘟电影网在线观看| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 国产v大片淫在线免费观看| 免费av不卡在线播放| 国产亚洲最大av| 午夜久久久久精精品| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 欧美日韩综合久久久久久| 嫩草影院新地址| 小蜜桃在线观看免费完整版高清| 免费不卡的大黄色大毛片视频在线观看 | 可以在线观看毛片的网站| 亚洲成人精品中文字幕电影| 久久99热这里只频精品6学生| 又黄又爽又刺激的免费视频.| 国产极品天堂在线| 精品久久久久久久末码| 亚洲图色成人| 波野结衣二区三区在线| 高清日韩中文字幕在线| 人妻系列 视频| 精品国产一区二区三区久久久樱花 | 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 成年女人看的毛片在线观看| 国产精品久久视频播放| av在线亚洲专区| 青春草亚洲视频在线观看| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 丰满少妇做爰视频| 日韩国内少妇激情av| 欧美精品国产亚洲| 极品教师在线视频| 我的老师免费观看完整版| 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品 | 久久久精品94久久精品| 免费黄网站久久成人精品| ponron亚洲| 美女内射精品一级片tv| 国产又色又爽无遮挡免| 国产 亚洲一区二区三区 | 欧美xxxx性猛交bbbb| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| 真实男女啪啪啪动态图| 国产三级在线视频| 一本一本综合久久| 国产毛片a区久久久久| a级毛片免费高清观看在线播放| 99久久人妻综合| 久久99蜜桃精品久久| 老司机影院成人| 成年版毛片免费区| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| 国产乱人视频| 婷婷色综合www| 国产探花极品一区二区| 久久久久久久午夜电影| av黄色大香蕉| 精品久久久久久久久亚洲| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 亚洲av电影在线观看一区二区三区 | 久久综合国产亚洲精品| 国产在视频线在精品| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 日本黄大片高清| 99热6这里只有精品| 国产不卡一卡二| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 国产毛片a区久久久久| av国产久精品久网站免费入址| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 99热网站在线观看| 看黄色毛片网站| av卡一久久| 日韩欧美 国产精品| 欧美成人精品欧美一级黄| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 美女cb高潮喷水在线观看| 国产黄频视频在线观看| 丝袜喷水一区| 视频中文字幕在线观看| 永久网站在线| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 一个人看视频在线观看www免费| 99久久精品国产国产毛片| 国产午夜精品久久久久久一区二区三区| 欧美 日韩 精品 国产| 久久精品夜夜夜夜夜久久蜜豆| 欧美 日韩 精品 国产| 中文欧美无线码| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 国产单亲对白刺激| 国产不卡一卡二| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 久久99热6这里只有精品| 亚洲av国产av综合av卡| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区黑人 | 中文字幕av在线有码专区| av又黄又爽大尺度在线免费看| 乱码一卡2卡4卡精品| 99久久精品热视频| 高清毛片免费看| 搡女人真爽免费视频火全软件| 精品99又大又爽又粗少妇毛片| 日韩中字成人| 女的被弄到高潮叫床怎么办| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 人妻少妇偷人精品九色| 三级国产精品欧美在线观看| 一本一本综合久久| 国产免费福利视频在线观看| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 免费观看的影片在线观看| 永久网站在线| 五月天丁香电影| 午夜福利网站1000一区二区三区| 老司机影院成人| 欧美精品一区二区大全| 在线免费十八禁| 久久热精品热| 免费黄色在线免费观看| 男人舔奶头视频| 国产亚洲一区二区精品| 日韩中字成人| 在线观看人妻少妇| 九色成人免费人妻av| 国产激情偷乱视频一区二区| 舔av片在线| 精品少妇黑人巨大在线播放| 中文字幕av在线有码专区| 青春草亚洲视频在线观看| 特级一级黄色大片| 美女内射精品一级片tv| 麻豆久久精品国产亚洲av| 国产视频内射| 搡女人真爽免费视频火全软件| 免费少妇av软件| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 免费观看无遮挡的男女| 全区人妻精品视频| 一级黄片播放器| av又黄又爽大尺度在线免费看| 白带黄色成豆腐渣| 久久99热6这里只有精品| 2018国产大陆天天弄谢| 久久久久久久久久人人人人人人| 亚洲精品中文字幕在线视频 | 久久久久久久大尺度免费视频| 精品一区在线观看国产|