柳春梅,呂鶴書(shū)
北京農(nóng)學(xué)院 農(nóng)業(yè)部都市農(nóng)業(yè)(北方)重點(diǎn)實(shí)驗(yàn)室,北京 102206
生氰糖苷(Cyanogentic glycosides)亦稱(chēng)氰苷,作為具有防御功能的次生代謝產(chǎn)物已在包括蕨類(lèi),裸子植物和被子植物在內(nèi)的2500 多種植物中被發(fā)現(xiàn),它們儲(chǔ)存于液泡中,當(dāng)植物組織遭到破壞,如食草動(dòng)物侵襲或病原體入侵,生氰糖苷與降解酶相接觸,釋放有毒物質(zhì)HCN 和酮(或醛)類(lèi)物質(zhì),提供植物一個(gè)立即的防御對(duì)抗。在對(duì)橡膠產(chǎn)膠量的研究中,發(fā)現(xiàn)植物中的生氰糖苷還具有轉(zhuǎn)運(yùn)、存儲(chǔ)氮元素的作用。在4 億多年植物和動(dòng)物共同進(jìn)化的過(guò)程中,動(dòng)物可以從外界獲取或是自身合成該類(lèi)化合物為己所用[1],因此在動(dòng)物界,主要在一些節(jié)肢動(dòng)物和昆蟲(chóng)中存在生氰糖苷,這類(lèi)物質(zhì)既可作為化學(xué)防御物質(zhì),也可作為性信息素,在擇偶和交配期起到重要作用[2-4]。本文對(duì)該類(lèi)物質(zhì)的結(jié)構(gòu)類(lèi)型、合成和降解途徑等方面進(jìn)行綜述,為深入研究該類(lèi)化合物在植物和動(dòng)物中的作用提供資料。
生氰糖苷是氰醇衍生物的羥基和D-葡萄糖縮合形成的糖苷(圖1),根據(jù)取代基不同主要分為脂肪族生氰苷和芳香族生氰苷。該類(lèi)化合物主要由三種脂肪族蛋白質(zhì)氨基酸(L-valine,L-isoleucine,Lleucine),兩種芳香族氨基酸(L-phenylalanine,Ltyrosine)以及一種脂肪族非蛋白質(zhì)氨基酸(2-(2'-Cyclopentenyl)-glycine)衍生而來(lái)[5],結(jié)構(gòu)綜述如下(圖2,3)
圖1 生氰糖苷的基本結(jié)構(gòu)式Fig.1 Basic chemical structure of cyanogentic glycosides
圖2 芳香族生氰糖苷的結(jié)構(gòu)式Fig.2 Chemical structures of aromatic cyanogenic glycoside
圖3 脂肪族生氰糖苷的結(jié)構(gòu)式Fig.3 Chemical structures of aliphatic cyanogenic glycoside
生氰糖苷生物合成過(guò)程中涉及3 大類(lèi)酶,分別屬于CYP79、CYP71 家族的兩種細(xì)胞色素CYP450(也稱(chēng)P450)及葡萄糖轉(zhuǎn)移酶UGT8581。CYP450 是一類(lèi)以還原態(tài)與CO 結(jié)合后在波長(zhǎng)450 nm 處有吸收峰的含血紅素的單鏈蛋白質(zhì)[43](圖4)。不同植物中合成生氰糖苷的部位有所差異,例如高粱CYP79A1 主要表達(dá)于幼苗;日本百脈根CYP79D3主要表達(dá)在葉子,而CYP79D4 在根組織上表達(dá)相對(duì)低,表明生氰糖苷的積累發(fā)生在頂端組織;在木薯中,生氰糖苷先在地上部分合成,隨后運(yùn)送到根部貯存,第一片展開(kāi)的葉子和葉柄具有最高的生氰苷生物合成活性。高粱、利馬豆、葡萄、苦杏仁、亞麻籽中的生氰苷類(lèi)物質(zhì)研究較多。在生氰苷中作用的第一個(gè)酶是細(xì)胞色素P450,其生物合成途徑是α-氨基酸羥基化形成N-羥基氨基酸,然后形成醛肟,進(jìn)一步形成腈。生氰糖苷生物合成的最后一步是由糖基轉(zhuǎn)移酶催化的半氰醇的糖基化反應(yīng)。
圖4 生氰糖苷生物合成途徑Fig.4 Biosynthetic pathway of cyanogenic glycoside
生氰糖苷本身不呈現(xiàn)毒性,在正常植物體內(nèi)生氰糖苷和(-葡萄糖苷酶并不會(huì)相遇,當(dāng)草食動(dòng)物或病原體損傷生氰植物組織時(shí),組織內(nèi)的β-葡萄糖苷酶(β-Glucosidase)與生氰糖苷相遇,對(duì)其進(jìn)行降解,隨后α-羥腈酶(α-Hydroxynitrile lyase)降解細(xì)胞內(nèi)的生氰類(lèi)化合物,生成并釋放出有毒的氰化氫以及葡萄糖和醛或酮,即產(chǎn)生化學(xué)防御反應(yīng)(圖5)。正常情況下,植物體內(nèi)產(chǎn)生的極少量HCN 可通過(guò)體內(nèi)不同的途徑進(jìn)行脫毒反應(yīng),轉(zhuǎn)化為無(wú)毒化合物(圖6)。
圖5 生氰苷降解途徑Fig.5 degradation pathway of cyanogenic glycoside
圖6 HCN 在體內(nèi)不同的脫毒反應(yīng)途徑Fig.6 Detoxification pathway of HCN in vivo
目前已發(fā)現(xiàn)2000 多種植物,多種細(xì)菌、真菌以及鱗翅目昆蟲(chóng)體內(nèi)含有生氰糖苷類(lèi)物質(zhì),這類(lèi)物質(zhì)的結(jié)構(gòu)類(lèi)型變化較少,主要是脂肪族、芳香族取代的單糖或二糖類(lèi)的生氰糖苷。迄今為止,國(guó)內(nèi)外對(duì)生氰糖苷類(lèi)物質(zhì)的研究,多限于該類(lèi)物質(zhì)的分離和鑒定方面,對(duì)生氰糖苷的代謝途徑的研究?jī)H限于木薯、高粱、百脈根等少數(shù)植物。因此,對(duì)含氰植物體內(nèi)生氰糖苷的生物合成途徑以及抗蟲(chóng)抗病機(jī)理的深入研究,將為其作為基因資源增強(qiáng)農(nóng)作物抗病蟲(chóng)害能力具有重要意義,同時(shí)有助于人為地調(diào)控生成途徑中的基因,從而干擾其毒性物質(zhì)的產(chǎn)生,對(duì)提高含氰植物的食用安全性,同樣具有重要意義。
1 Mika Z,et al.Cyanogenic glucosides in the biological warfare between plants and insects:The Burnet moth-Birdsfoot trefoil model system.Phytochemistry,2011,72:1585-1592.
2 Bak S,et al.Cyanogenic glycosides;a case study for evolution and application of cytochromes P450.Phytochem Rev,2006,5:309-329.
3 Mφl(shuí)ler BL,et al.Biosynthesis of cyanogenic glucosides,cyanolipids and related compounds.In:Singh,B.K.(Ed.),Plant Amino Acids.M.Dekker,New York,1999.563-609.
4 Zagrobelny M,et al.Cyanogenic glucosides and plant-insect interactions.Phytochemistry,2004,65:293-306.
5 Zhang Y(張巖),et al.Research progress of cyanogentic glycosides in plant.Biotechnology Bulletin(生物技術(shù)通報(bào)),2009,4:12-15.
6 Yang CJ,et al.Two new cyanogenic glucosides from the leaves of Hydrangea macrophylla.Molecules,2012,17:5396-5403.
7 Jin QH,et al.Chemical constituents from the fruits of Prunus mume.Nat Prod Sci.2012,18:200-203.
8 Miller RE,et al.Reports on the distribution of aromatic cyanogenic glycosides in Australian tropical rainforest tree species of the Lauraceae and Sapindaceae.Phytochemistry,2013,92:146-152.
9 Tan HP,et al.Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of phyllagathis rotundifolia by LC-ESI-MS/MS.Phytochemical Analysis,2011,22:516-525.
10 Swenson WK,et al.Cyanogenesis in the Proteaceae.Phytochemistry,1989,28:821-823.
11 Schwarzmaier U,et al.The cyanogenesis of Bambusa vulgaris and B.guadua.Chemische Berichte,1976,109:379-389.
12 Otsuka H,et al.Glochidiolide,isoglochidiolide,acuminaminoside,and glochidacuminosides A-D from the leaves of Glochidion acuminatum Muell.Chemical & Pharmaceutical Bulletin,2004,52:591-596.
13 Fu P,et al.New flavonoid glycosides and cyanogenic glycosides from Dracocephalum peregrinum.Chemical & Pharmaceutical Bulletin,2009,57:207-210.
14 Miller R,et al.The rare cyanogen proteacin,and dhurrin,from foliage of Polyscias australiana,a tropical Araliaceae.Phytochemistry,2013,93:210-215.
15 Franks TK,et al.Cyanogenic glucosides in grapevine:polymorphism,identification and developmental patterns.Phytochemistry,2005,66:165-173.
16 Zhou WJ,et al.Chemical comparison of two dosage forms of hemp seed pills by UHPLC-Q-ToF-MS/MS and multivariate statistical techniques.J Pharm Biomed Anal,2013,84:59-68.
17 Lee JY,et al.Quantification of amygdalin in nonbitter,semibitter,and bitter almonds(Prunus dulcis)by UHPLC-(ESI)QqQ MS/MS.J Agric Food Chem,2013,61:7754-7759.
18 Turczan JW,et al.Cyanogenetic glycosides.The 220 MHz nuclear magnetic resonance studies of amygdalin and some related compounds.J-Association of Official Analytical Chemists,1978,61:192-207.
19 Miller RE,et al.A galloylated cyanogenic glycoside from the Australian endemic rainforest tree Elaeocarpus sericopetalus(Elaeocarpaceae).Phytochemistry,2006,67:1365-1371.
20 Chassagne D,et al.A cyanogenic glycoside from Passiflora edulis fruits.Phytochemistry,1998,49:757-759.
21 Nagumo S,et al.Cyanogenic glycosides and 4-hydroxycoumarin glycosides from Gerbera jamesonii hybrid.Chemical &Pharmaceutical Bulletin,1985,33:4803-4806.
22 Derbre S,et al.Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers:application to the screening of a small natural compounds library.Analytical and Bioanalytical Chemistry,2010,398:1747-1758.
23 Aritomi M,et al.Chemical studies on the constituents of edible plants.Part 4.Cyanogenic glycosides in leaves of Perilla frutescens var.acuta.Phytochemistry,1985,24:2438-2439.
24 Miller RE,et al.Cyanogenic glycosides from the rare Australian endemic rainforest tree Clerodendrum grayi(xLamiaceae).Phytochemistry,2006,67:43-51.
25 Selmar D,et al.Dhurrin-6'-glucoside,a cyanogenic diglucoside from Sorghum bicolor.Phytochemistry,1996,43:569-572.
26 Wang GC,et al.Five new phenolic glycosides from Hedyotis scandens.Bioorgan & Med Chem Lett,2013,23:1379-1382.
27 Webber BL,et al.Constitutive polymorphic cyanogenesis in the Australian rainforest tree,Ryparosa kurrangii(Achariaceae).Phytochemistry,2007,68:2068-2074.
28 Jaroszewski JW,et al.Cyanohydrin glycosides of Passiflora:distribution pattern,a saturated cyclopentane derivative from P.guatemalensis,and formation of pseudocyanogenic αhydroxyamides as isolation.Phytochemistry,2002,59:501-512.
29 Olafsdottir ES,et al.Structure determination of natural epoxycyclopentanes by x-ray crystallography and NMR spectroscopy.J Org Chemistry,1991,56:2650-2655.
30 Jensen SR,et al.Gynocardin in Ceratiosicyos laevis(achariaceae).Phytochemistry,1986,25:2349-2350.
31 Bayoumi SAL,et al.Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.Phytochemistry,2010,71:598-604.
32 Webber BL,et al.Constitutive polymorphic cyanogenesis in the Australian rainforest tree,Ryparosa kurrangii(Achariaceae).Phytochemistry,2007,68:2068-2074.
33 Alberte RS,et al.Anti-inflammatory and anti-allergy extracts from nettle.Dan.US 20100009927 A1 20100114,2010.
34 Seigler DS,et al.New cyanogenic glycoside from Cardiospermum hirsutum.Phytochemistry,1974,13:2330-2332.
35 Maslin BR,et al.Cyanogenesis in Australian species of Acacia.Phytochemistry,1988,27:421-428.
36 Bjarnholt N,et al.Diversification of an ancient theme:Hydroxynitrile glucosides.Phytochemistry,2008,69:1507-1516.
37 Cai WH,et al.Supinaionosides A and B:megastigmane glucosides and supinanitrilosides A-F:hydroxynitrile glucosides from the whole plants of Euphorbia supina RAFINESQUE.Chemical & Pharmaceutical Bulletin,2009,57:840-845.
38 Kim DK,et al.A new cyanogenic glycoside from Sorbaria sorbifolia var.stellipila.Chem Pharm Bull,2000,48:1766-1767.
39 Nakamura S,et al.Bioactive constituents from Chinese natural medicines.XXVI.Chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis.Chem Pharm Bull,2007,55:1505-1511.
40 Nahrstedt A,et al.Characterization of cyanogenic glucoside and b-glucosidases in Triglochin maritima seedlings.Phytochemistry,1979,18:1137-1141.
41 Sharples D,et al.Major cyanogenic glycoside in Thalictrum aquilegifolium.Phytochemistry,1972,11:3069-3071.
42 Jaroszewski JW,et al.Biosynthesis of cyanohydrin glucosides from unnatural nitriles in intact tissue of Passiflora morifolia and Turnera tifolia.Phytochemistry,1996,42:649-654.
43 Mika Z,et al.Cyanogenesis in plants and arthropods.Phyto-chemistry,2008,69:1457-1468.