崔 建,李曉巖*
(東北林業(yè)大學(xué)生命科學(xué)學(xué)院,黑龍江 哈爾濱 150040)
花青素抗腫瘤作用機(jī)制研究進(jìn)展
崔 建,李曉巖*
(東北林業(yè)大學(xué)生命科學(xué)學(xué)院,黑龍江 哈爾濱 150040)
花青素是一類廣泛存在于植物中的水溶性色素,屬于黃酮類化合物,具有保肝,抗腫瘤等多種藥理活性?;ㄇ嗨氐目鼓[瘤機(jī)制主要有:抗突變,抗氧化,抗炎,誘導(dǎo)轉(zhuǎn)化,調(diào)節(jié)信號轉(zhuǎn)導(dǎo)通路抑制腫瘤細(xì)胞增殖,誘導(dǎo)細(xì)胞周期阻滯,促進(jìn)腫瘤細(xì)胞凋亡,誘導(dǎo)自噬,抗腫瘤侵襲及轉(zhuǎn)移,逆轉(zhuǎn)腫瘤細(xì)胞耐藥性及增加對化療的敏感性等。本文就花青素抗腫瘤分子機(jī)制的最新研究進(jìn)展進(jìn)行綜述。
花青素;抗腫瘤;信號傳導(dǎo);分子靶點
花青素是構(gòu)成花瓣和果實的主要色素之一,普遍存在于植物器官的細(xì)胞液中。它是一種天然食用色素,廣泛存在于蔬菜和水果中,如紫薯、藍(lán)莓、越橘、葡萄、黑樹莓等。
花青素是一類易溶于水的黃酮類化合物,其基本結(jié)構(gòu)是2-苯基苯并吡喃型陽離子(花色基元),在天然物中主要以與葡萄糖、半乳糖、鼠李糖等配體結(jié)合成花色苷的形式存在。根據(jù)B環(huán)上取代基的不同可把植物中常見的花青素分為6 種:天竺葵色素(pelargonidin)、矢車菊色素(cyanidin)、飛燕草色素(delphinidin)、芍藥色素(peonidin)、牽?;ㄉ兀╬etunidin)、錦葵花色素(malvidin)(結(jié)構(gòu)如圖1所示)。實驗研究表明,花青素B環(huán)上的鄰二苯酚結(jié)構(gòu)是花青素發(fā)揮抑制腫瘤生長與轉(zhuǎn)移作用的活性結(jié)構(gòu)[1-3]。由于花青素具有來源廣泛、細(xì)胞毒 性小、食用安全等特點,其抗腫瘤作用已成為近年來人們關(guān)注的熱點[4-6]。本文綜述了近10 年來花青素的抗腫瘤分子機(jī)制(圖2)。
圖1 花青素的結(jié)構(gòu)Fig.1 Structure of anthocyanins
圖2 花青素抗腫瘤作用機(jī)制Fig.2 Anti-tumor mechanisms of anthocyanins
在正常細(xì)胞演變?yōu)榘┘?xì)胞的過程中,體細(xì)胞多突變的發(fā)生會造成基因的不穩(wěn)定性,進(jìn)而導(dǎo)致癌癥的發(fā)生。Yoshimoto等[7]在以4 種不同的甘薯根作為實驗材料研究其抗突變作用時發(fā)現(xiàn):鼠傷寒沙門氏菌TA98在雜環(huán)誘變劑(3-氨基-1,4-二甲基-5H-吡啶并(4,3-b)吲哚,3-氨基-1-甲基-5H-吡啶并(4,3-b)吲哚,2-氨基-3-甲基咪唑(4,5-f)喹啉等)作用下發(fā)生回復(fù)突變,而加入4 種不同的甘薯根(其主要成分是矢車菊素糖苷(YGM-3)和芍藥花青素糖苷(Y G M-6))能抑制TA 9 8發(fā)生回復(fù)突變,且抑制效果呈劑量 依賴性。可見,矢車菊素糖苷(YGM-3)和芍藥花青素糖苷(YGM-6)具有抑制誘變劑誘導(dǎo)正常細(xì)胞發(fā)生回復(fù)突變的作用。自由基異常引起的氧化應(yīng)激會導(dǎo)致DNA損傷,會引起相關(guān)癌基因的突變,引發(fā)癌癥?;ㄇ嗨啬軌蜃饔糜诳寡趸到y(tǒng),清除自由基,避免氧化應(yīng)激引起正常細(xì)胞基因組損傷,降低由基因突變導(dǎo)致的細(xì)胞惡性轉(zhuǎn)化,預(yù)防腫瘤發(fā)生[4,8]。Yi Long等[8]研究發(fā)現(xiàn)其抗氧化作用是由B環(huán)上的3’,4’,5’羥基和C環(huán)上的3’羥基決定的。Shih等[4]發(fā)現(xiàn)花青素(矢車菊素,飛燕草色素,錦葵色素)能通過能通過Kelch樣ECH聯(lián)合蛋白1-核轉(zhuǎn)錄相關(guān)因子(NF-E2-related factor 2,Nrf2)途徑,作用于抗氧化反應(yīng)元件(antioxidant response element,ARE),通過調(diào)節(jié)二相抗氧化酶(谷胱甘肽還原酶,谷胱甘肽過氧化酶,谷胱甘肽轉(zhuǎn)移酶,醌氧化還原酶)的表達(dá),抑制半胱天冬酶-3(cysteinyl aspartate specific proteinase-3,Caspase-3)的活性,從而發(fā)揮其抗氧化保護(hù)能力。此外,炎癥細(xì)胞是腫瘤發(fā)生的必不可少的參與者。研究表明,花青素能通過多種途徑抑制核因子活化B細(xì)胞κ輕鏈增強(qiáng)子(nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)的作用實現(xiàn)抗炎?;ㄇ嗨兀ㄊ杠嚲账?3-葡萄糖苷、飛燕草色素-3-葡萄糖苷、牽?;ㄉ?3-葡萄糖苷等)能通過作用磷脂酰肌醇-3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase,PKB)和絲裂原激活的蛋白激酶(mitogen-activated protein kinases,MAPKs)途徑抑制外界刺激(如脂多糖,干擾素-γ等)誘導(dǎo)的NF-κB的活化,抑制環(huán)氧合酶(cyclooxygenase 2,COX-2)和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的表達(dá)及它們的產(chǎn)物前列腺素E(prostagland in E,PGE2)和一氧化氮的產(chǎn)生[9-10]。Miyake等[11]發(fā)現(xiàn)富含花青素越橘提取物能阻止信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription,STAT3)激活,抑制NF-κB表達(dá)。
2.1 誘導(dǎo)分化
誘導(dǎo)分化是指惡性腫瘤在誘導(dǎo)分化劑的作用下重新分化向正常成熟方向逆轉(zhuǎn)的現(xiàn)象。惡性腫瘤中存在大量有絲分裂現(xiàn)象,而且分化程度較低,花青素能夠誘導(dǎo)腫瘤細(xì)胞向終端分化,阻斷腫瘤發(fā)生。Fimognari等[5]通過檢測細(xì)胞分化過程中的標(biāo)記性產(chǎn)物及激酶抑制劑等發(fā)現(xiàn)矢車菊素-3-O-葡萄糖苷(cyanidin-3-O-βglucopyranoside,Cy-g)能夠通過激活PI3K和蛋白激酶C(protein kinase C,PKC)劑量依賴性誘導(dǎo)人早幼粒急性白血病細(xì)胞系HL-60的分化。用Cy-g(質(zhì)量濃度為200 mg/mL)處理HL-60細(xì)胞,發(fā)現(xiàn)細(xì)胞表現(xiàn)出黏連性增加,酯酶活性增強(qiáng)等分化特征,且細(xì)胞內(nèi)癌基因c-Myc的表達(dá)下降;而用PI3K和PKC抑制劑處理細(xì)胞后,Cy-g誘導(dǎo)HL-60分化效果明顯降低。Serafino等[6]用高效液相色譜法,蛋白免疫印跡法發(fā)現(xiàn)矢車菊素-3-O-β-吡喃葡萄糖苷能夠通過上調(diào)環(huán)腺苷酸(cyclic adenosine monophosphate,cAMP)和酪氨酸酶活性來誘導(dǎo)黑色素瘤細(xì)胞TVM-A12的分化。
2.2 抑制細(xì)胞致瘤性轉(zhuǎn)化
細(xì)胞發(fā)生致瘤性轉(zhuǎn)化是腫瘤發(fā)生的重要原因之一。研究表明,一些致癌劑如對苯二甲酸(terephthalic acid,TPA),表皮生長因子(epidermal growth factor,EGF)會通過上游激活蛋白(Raf)-MAPK/ERK激酶(MEK)-胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)和PI3K/Akt途徑細(xì)胞致瘤轉(zhuǎn)化關(guān)鍵的活化蛋白轉(zhuǎn)錄因子(ectivator protein transcription factor-1,AP-1)和NF-κB來實現(xiàn)誘導(dǎo)各種細(xì)胞系的轉(zhuǎn)化。此外,炎癥發(fā)生與細(xì)胞致瘤轉(zhuǎn)化也有重要聯(lián)系,COX-2和PGE2高表達(dá)會增強(qiáng)致癌作用[1]?;ㄇ嗨乜梢宰饔糜谏嫌渭せ畹鞍祝≧as)-ERK和PI3K/Akt途徑,抑制AP-1的表達(dá)從而抑制細(xì)胞的致瘤性轉(zhuǎn)化。Hou等[1]發(fā)現(xiàn)飛燕草素、矢車菊素、牽牛色素能夠抑制TPA誘導(dǎo)的小鼠皮膚細(xì)胞JB6P+的轉(zhuǎn)化。Kang等[12]研究發(fā)現(xiàn),飛燕草素能以三磷酸腺苷(adenosine triphosphate,ATP)非競爭性方式與Raf1和MEK1結(jié)合,抑制TPA誘導(dǎo)的JB6P+細(xì)胞中AP-1和NF-κB的表達(dá),進(jìn) 而抑制COX-2表達(dá)和PEG2的產(chǎn)生。實驗檢測了MEK,ERK,核糖體蛋白S6激酶,促分裂原應(yīng)力激活蛋白激酶的磷酸化水平,發(fā)現(xiàn)飛燕草素通過Ras/Raf/ MEK/ERK途徑弱化TPA誘導(dǎo)細(xì)胞的致瘤性轉(zhuǎn)化作用。早期實驗表明,這與花青素能清除超氧自由基的抗氧化能力有關(guān)[1]。最近Song等[13]研究發(fā)現(xiàn)矢車菊素和矢車菊素-3-葡萄糖苷(cyanidin-3-glucoside,C-3-G)的1,1-二苯基-2-三硝基苯肼和2,2-聯(lián)氮-二(3-乙基-苯并噻唑-6-磺酸)二胺鹽清除能力相差不大,但是抑制致瘤性轉(zhuǎn)化能力有很大差別:矢車菊素具有強(qiáng)烈抑制轉(zhuǎn)化的能力,而C-3-G幾乎沒有抑制轉(zhuǎn)化的能力,這說明矢車菊素的抑制轉(zhuǎn)化作用與其抗氧化能力無關(guān)。此研究中還發(fā)現(xiàn),矢車菊素能以ATP競爭性方式直接與PI3K結(jié)合,通過PI3K/ Akt/p70S6激酶信號途徑抑制AP-1和NF-κB的表達(dá),抑制EGF誘導(dǎo)的JB6P+的致瘤性轉(zhuǎn)化。
2.3 抑制細(xì)胞增殖
癌細(xì)胞的一個顯著特點就是細(xì)胞周期調(diào)控異常,能夠持續(xù)分裂與增殖。研究發(fā)現(xiàn),花青素能夠選擇性抑制癌細(xì)胞的增殖,而對正常細(xì)胞的增殖影響較小[14]?;ㄇ嗨啬軌蛞种瓢┘?xì)胞生長和增殖主要表現(xiàn)在以下幾方面。
2.3.1 抑制酪氨酸蛋白激酶受體途徑阻斷信號傳導(dǎo)
2.3.1.1 肝細(xì)胞生長因子受體
Syed等[15]研究發(fā)現(xiàn),飛燕草色素能抑制肝細(xì)胞生長因子誘導(dǎo)的人正常乳腺細(xì)胞MCF-10A肝細(xì)胞生長因子受體的磷酸化和激活,阻斷Ras-ERK MAPK途徑和PI3K/ Akt信號途徑。
2.3.1.2 表皮生長因子受體
花青素能普遍抑制癌細(xì)胞中受體酪氨酸激酶(receptor tyrosine kinases,RTKs)自身磷酸化,且對癌基因ErbB3抑制最有效[16]。
2.3.1.3 抑制cAMP-PDE活性
花青素尤其是錦葵色素能夠有效抑制人結(jié)腸癌HT29細(xì)胞內(nèi)磷酸二酯酶(phosphodiesterase,PDE)的活性和cAMP的水解,進(jìn)而抑制MAPK信號途徑[2]。
2.3.2 調(diào)節(jié)癌基因及相關(guān)蛋白的表達(dá)
Malik[14]和Yun[17]等發(fā)現(xiàn)花青素上調(diào)結(jié)腸癌細(xì)胞內(nèi)p53活化DNA修復(fù)系統(tǒng)同時啟動p21和p27的轉(zhuǎn)錄,p21能與多種細(xì)胞周期蛋白-細(xì)胞周期蛋白依賴性激酶(cyclincyclin-dependent kinase,cyclin-CDK)結(jié)合并抑制其活性,誘導(dǎo)癌細(xì)胞周期停滯?;ㄇ嗨啬軌蛳抡{(diào)CDK-1、CDK-2表達(dá),抑制cyclin-B、-A、-E的表達(dá),促進(jìn)周期蛋白依賴性激酶抑制因子表達(dá),誘導(dǎo)癌細(xì)胞停滯在G0/G1期和G2/M期[14,17-18]。
2.3.3 其他信號途徑
Kausar等[19]發(fā)現(xiàn)飛燕草色素能作用于Wnt途徑和Notch途徑及其下游靶蛋白,抑制細(xì)胞生長增殖。
3.1 誘導(dǎo)腫瘤細(xì)胞凋亡
惡性轉(zhuǎn)化的細(xì)胞由于獲得了生長失控的特性,從而過度增殖形成腫瘤。從細(xì)胞凋亡角度來看,是腫瘤細(xì)胞的凋亡過程受到抑制,不能正常清除死亡細(xì)胞的結(jié)果。花青素能夠通過內(nèi)部線粒體途徑和外部死亡受體途徑誘導(dǎo)癌細(xì)胞的凋亡。
3.1.1 死亡受體途徑
Huang Huipei等[20]用p38抑制劑SB203580處理檢測p38、p53、蛋白Fas、Fasl的磷酸化水平,證實桑葚花青素能夠通過外在受體p38/Fas/Fasl/Caspase-8途徑誘導(dǎo)胃癌細(xì)胞凋亡。Chang等[21]研究發(fā)現(xiàn),飛燕草素能激活p38-Fasl和促細(xì)胞凋亡因子Bid蛋白途徑,以時間和劑量依賴的方式誘導(dǎo)HL-60細(xì)胞的凋亡。
3.1.2 線粒體信號途徑
線粒體介導(dǎo)細(xì)胞凋亡的途徑分為Caspase依賴途徑和非Caspase依賴途徑。
3.1.2.1 Caspase依賴途徑
Lee[22]和Shin[23]等發(fā)現(xiàn)花青素作用于B淋巴細(xì)胞瘤(B-cell lymphoma,Bcl)家族和細(xì)胞凋亡抑制蛋白家族,激活Caspase依賴的級聯(lián)凋亡反應(yīng)。
3.1.2.2 非Caspase依賴途徑
Reddivari等[24]發(fā)現(xiàn)從馬鈴薯中提取的花青素成分能夠通過c-Jun氨基末端激酶(c-Jun amino-terminal kinase,JNK)途徑(不引起氧化應(yīng)激反應(yīng)),誘導(dǎo)線粒體釋放核酸內(nèi)切酶G和凋亡誘導(dǎo)因子蛋白,引發(fā)前列腺癌LNCaP和PC-3細(xì)胞系不依賴Caspase的凋亡。
3.2 與自噬抑制劑共作用
自噬是細(xì)胞內(nèi)的物質(zhì)成分利用溶酶體被降解過程,在癌癥的發(fā)生過程中起到雙重作用:一方面,自噬缺陷會促進(jìn)惡性轉(zhuǎn)化和癌癥發(fā)生;另一方面,自噬能限制腫瘤壞死和炎癥,減輕了腫瘤細(xì)胞內(nèi)的染色體損傷代謝性應(yīng)激反應(yīng)。研究發(fā)現(xiàn),花青素能夠誘導(dǎo)細(xì)胞以自噬相關(guān)蛋白5(autophagy related protein 5,Atg5)依賴的方式發(fā)生自噬[25]。Longo等[26]發(fā)現(xiàn)用花青素處理人肝癌細(xì)胞PLC/PRF/5后,引起下游Bcl-2家族和雷帕霉素靶蛋白的表達(dá)下調(diào),真核細(xì)胞翻譯起始因子2α表達(dá)上調(diào),最終導(dǎo)致自噬相關(guān)基因LC3-Ⅱ表達(dá)上調(diào),這些現(xiàn)象都表明花青素能誘導(dǎo)人肝癌細(xì)胞HCC細(xì)胞自噬的發(fā)生。用小干涉RNA(small interfering RNA,siRNA)干擾Atg5基因沉默或者用自噬抑制劑3-甲基腺嘌呤作用花青素處理過的肝癌細(xì)胞會引起凋亡蛋白Bax轉(zhuǎn)移到線粒體中,釋放細(xì)胞色素c,引起Caspase-3裂解,激發(fā)級聯(lián)凋亡反應(yīng)。Feng Rentian等[27]發(fā)現(xiàn)矢車菊素-3-蕓香糖苷和飛燕草素不能誘導(dǎo)HCC細(xì)胞的凋亡,只能引起細(xì)胞生長遲緩,出現(xiàn)細(xì)胞液泡化現(xiàn)象,這種現(xiàn)象可以被Ⅲ型PI3K抑制劑3-甲基腺嘌呤和阻斷溶酶體降解的質(zhì)子泵抑制劑抑制。在用3-MA和siRNA干擾自噬標(biāo)志產(chǎn)物L(fēng)C3后,用飛燕草素處理人肝癌SMMC7721細(xì)胞,發(fā)現(xiàn)飛燕草素能夠誘導(dǎo)SMMC7721細(xì)胞發(fā)生自噬,而且3-MA和飛燕草素共同作用SMMC7721細(xì)胞會導(dǎo)致細(xì)胞大量死亡。
3.3 抑制腫瘤細(xì)胞的轉(zhuǎn)移
在腫瘤轉(zhuǎn)移這個過程,腫瘤細(xì)胞的增殖和侵襲是最為重要的兩個部分。研究發(fā)現(xiàn),花青素能作用于血管內(nèi)皮生長因子及其受體(vascular endothelial growth factor/vascular endothelial growth factor receptor,VEGF/ VEGFR) 和細(xì)胞外基質(zhì)(extra cellular matrix,ECM)的降解來有效抑制腫瘤的侵襲,因抑制腫瘤細(xì)胞增殖的機(jī)制在上面已經(jīng)闡述過,在此不再贅述。
3.3.1 抑制腫瘤血管的形成
腫瘤的血管生成是惡性腫瘤生長和轉(zhuǎn)移的限制性條件,其過程受到多種細(xì)胞因子的調(diào)控,其中最重要的正向調(diào)控因子是血管內(nèi)皮生長因子(VEGF)。因此抑制促血管發(fā)生的受體——VEGFR可以有效抑制腫瘤的轉(zhuǎn)移。研究表明,花青素能夠廣泛抑制RTK,對VEGFR-3抑制作用尤為明顯[18,28]。Oak等[29]研究發(fā)現(xiàn),飛燕草色素和矢車菊色素能通過阻斷p38-MAPK和JNK途徑強(qiáng)烈抑制血小板源性生長因子(platelet derived growth factor,PDGFAB)誘導(dǎo)血管平滑肌細(xì)胞內(nèi)VEGF的表達(dá)。Lamy等[30]發(fā)現(xiàn)飛燕草色素能夠抑制血管的生成不僅與抑制VEGF有關(guān),還和其抑制PDGFR-β的作用有關(guān)。飛燕草色素能以時間和劑量依賴性抑制PDGF誘導(dǎo)的肺動脈平滑肌細(xì)胞中PDGFR-β的磷酸化,抑制VEGF。
誘導(dǎo)的人類臍靜脈內(nèi)皮細(xì)胞HUVEC的微血管的形成。低氧環(huán)境是實體瘤普遍具有的病理生理特征,低氧容易誘導(dǎo)腫瘤血管的生成,而這一過程主要由低氧誘導(dǎo)因子(hypoxia inducible factor-1α,HIF-1α)介導(dǎo)的VEGF信號途徑完成。Huang Lili等[31]發(fā)現(xiàn)抑制HIF-1α的蛋白水平會導(dǎo)致包括VEGF在內(nèi)的HIF-1α的靶基因的轉(zhuǎn)錄活性下降。Wang Lishu等[32]發(fā)現(xiàn)冷凍干燥的黑莓花青素能夠降低N-甲基芐基亞硝胺誘導(dǎo)的F344大鼠食道瘤細(xì)胞內(nèi)HIF-1α和VEGF的表達(dá),抑制食道瘤血管的生成。
3.3.2 抑制腫瘤的侵襲與轉(zhuǎn)移
侵襲和轉(zhuǎn)移是癌癥威脅患者健康乃至生命的主要原因。Xu Mei等[3]發(fā)現(xiàn)矢車菊素通過阻斷ErbB2/原癌基因cSrc/黏著斑激酶 (focal adhesion kinase,F(xiàn)AK)途徑,可以有效抑制ErbB2高表達(dá)的乳腺癌細(xì)胞(BT474、MDA-MB231、MCF-7)的侵襲和轉(zhuǎn)移。Syed等[16]發(fā)現(xiàn)飛燕草色素能夠降低肝細(xì)胞生長因子介導(dǎo)的MCF-10A細(xì)胞系內(nèi)PKCα的膜轉(zhuǎn)位和STAT3的磷酸化水平,抑制NF-κB/ p65的核轉(zhuǎn)位,從而抑制該細(xì)胞的侵襲。侵襲轉(zhuǎn)移過程涉及黏附、降解、運(yùn)動3 個主要過程?;ㄇ嗨啬軌蜃饔糜谀[瘤細(xì)胞的一些黏附分子和蛋白水解酶來抑制細(xì)胞的黏附和降解過程。
3.3.2.1 黏附
Chen Chunye等[33]研究發(fā)現(xiàn)飛燕草色素通過活性氧(reactive oxygen species,ROS)/p38-MAPK/NF-κB途徑,劑量依賴性降低氧化低密度脂蛋白誘導(dǎo)的細(xì)胞黏附分子-1和P-選擇素的表達(dá),從而抑制單核細(xì)胞對內(nèi)皮細(xì)胞的黏附。
3.3.2.2 降解
尿激酶型纖溶酶原激活劑(uridylyl phosphate adenosine,uPA)和基質(zhì)金屬蛋白酶(matrix metallo preteinases,MMPs)是細(xì)胞外基質(zhì)降解的兩個關(guān)鍵組分,它們可以促進(jìn)腫瘤組織侵襲,增加遷移能力?;ㄇ嗨匕邢蜃饔糜趗PA和MMPs,從而起到抑制腫瘤轉(zhuǎn)移的作用。
1)尿激酶型纖溶酶原激活劑(uPA)
Lamy等[34]發(fā)現(xiàn)飛燕草素能夠通過干擾惡性膠質(zhì)瘤U-87細(xì)胞內(nèi)uPA-纖溶酶激活因子抑制劑復(fù)合物的清除,影響uPA 受體和低密度脂蛋白受體相關(guān)蛋白的表達(dá)及纖溶酶的產(chǎn)生,發(fā)揮其抑制U-87細(xì)胞侵襲的能力。Chen Peini等[35]發(fā)現(xiàn)黑米花青素能夠通過抑制肝癌細(xì)胞AP-1和NF-κB的表達(dá)來抑制uPA的表達(dá),從而發(fā)揮抑制癌細(xì)胞侵襲和轉(zhuǎn)移的功能。Ho等[36]發(fā)現(xiàn)芍藥色素能通過抑制ERK1/2的磷酸化,從而降低肺癌細(xì)胞內(nèi)uPA的表達(dá),發(fā)揮其抑制癌細(xì)胞侵襲的作用。
2)ECM消化酶(MMPs)
Lim等[37]發(fā)現(xiàn)飛燕草色素能以還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶為靶點,抑制MAPK激酶-JNK1/2、MKK3/6-p38和MEK-ERK1/2的磷酸化,從而抑制紫外線B輻射誘導(dǎo)的人表皮纖維母細(xì)胞內(nèi)MMP-1的表達(dá)。Shin[38]和Huang Huipei[39]等發(fā)現(xiàn)矢車菊素及天竺葵色素等通過抑制癌細(xì)胞內(nèi)PI3K/Akt途徑來抑制MMP-2、MMP-9的表達(dá),從而發(fā)揮其抑制癌細(xì)胞侵襲的作用。研究還發(fā)現(xiàn),紫葛花青素能通過抑制癌細(xì)胞中NF-κB的激活來抑制MMP-2、MMP-9的表達(dá)[40]。此外,研究發(fā)現(xiàn),花青素(飛燕草素-3-葡萄糖苷、矢車菊素-3-葡萄糖苷、錦葵色素-3-葡萄糖苷等)能夠通過激活人結(jié)腸癌細(xì)胞HCT-116內(nèi)p38-MAPK途徑,抑制緊密連接蛋白Claudin-1和Claudin-3的表達(dá),進(jìn)一步抑制HCT-116的侵襲[38]。
化療是通過干擾腫瘤細(xì)胞復(fù)制DNA的能力而抑制其增生或誘導(dǎo)其凋亡來達(dá)到療效,而腫瘤細(xì)胞的多藥耐藥性(multidrug resistance)是導(dǎo)致化療失敗的常見原因。引起腫瘤細(xì)胞多藥耐藥性的經(jīng)典途徑是由ATP結(jié)合盒式蛋白(ATP-binding cassette,ABC)跨膜蛋白超家族引起的,主要包括P-糖蛋白(P-glycoprotein,P-gp),多藥耐藥相關(guān)蛋白,乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP)引起的。ABC超家族在藥理學(xué)屏障中高度表達(dá)。因此,以這些蛋白為靶點逆轉(zhuǎn)多藥耐藥性可以輔助化療從而達(dá)到治療癌癥的目的。實驗表明,花青素具有小分子結(jié)構(gòu),能夠透過血腦屏障[41]。進(jìn)一步研究發(fā)現(xiàn),氯化矢車菊素能夠抑制過度表達(dá)P-gp的人表皮癌細(xì)胞KB-C2中P-gp的表達(dá)[42]。Dreiseitel等[43]發(fā)現(xiàn)花青素對BCRP具有高親和力,所測花青素中,7 種(錦葵色素、牽?;ㄉ?、錦葵色素-3-半乳糖苷、錦葵花苷、矢車菊素-3-半乳糖苷、芍藥素-3-葡萄糖苷、矢車菊素-3-葡萄糖苷)表現(xiàn)為BCRP的潛在底物,12 種(矢車菊素、芍藥花色素、矢車菊素-3,5-二葡萄糖苷、錦葵色素、天竺葵色素、飛燕草色素、牽?;ㄉ?、飛燕草素-3-葡萄糖苷、矢車菊素-3-蕓香糖苷、錦葵色素-3-葡萄糖苷、天竺葵色素-3,5-二葡萄糖苷、錦葵色素-3-半乳糖苷)表現(xiàn)出BCRP抑制劑特性。還有3 種(錦葵色素、錦葵色素-3-半乳糖苷、牽?;ㄉ兀┍憩F(xiàn)出雙重生物活性。Esselen等[44]在體外實驗中發(fā)現(xiàn)黑米花青素能夠抑制結(jié)腸癌HT29細(xì)胞內(nèi)的拓?fù)洚悩?gòu)酶的活性以及拓?fù)洚悩?gòu)酶-DNA復(fù)合物的形成。這些結(jié)果表明,花青素可能具有改變藥物代謝動力學(xué),逆轉(zhuǎn)多藥耐藥性的作用。
花青素B環(huán)上的取代基不同,抗癌作用不同,B環(huán)上有鄰二苯酚結(jié)構(gòu)的花青素顯示出最強(qiáng)的抗腫瘤活性[1,8]。大量研究表明,花青素抗癌的主要機(jī)制是以RTKs(EGFR、PDGFR、VEGF/VEGFR等)為靶點,作用于Ras-MAPK和PI3K/Akt信號級聯(lián)途徑,進(jìn)而抑制腫瘤的生長與轉(zhuǎn)移。在起始階段:花青素作用于PI3K/Akt和NF-κB途徑,抑制COX-2和iNOS的表達(dá),實現(xiàn)抗炎作用和通過Nrf2/ARE信號系統(tǒng),通過調(diào)節(jié)二相抗氧化酶的表達(dá)實現(xiàn)抗氧化,最終實現(xiàn)預(yù)防癌變的作用;在形成階段:花青素靶向MAPK途徑和AP-1因子,抑制細(xì)胞的致瘤性轉(zhuǎn)化,還能抑制RTK活性及其信號級聯(lián)通路調(diào)節(jié)癌基因表達(dá),引起細(xì)胞周期阻滯,修復(fù)DNA,防止癌癥的發(fā)生;在發(fā)展階段:花青素能通過ROS和JNK/p38-MAPK介導(dǎo)的Caspase活化誘導(dǎo)腫瘤細(xì)胞凋亡,另外花青素還靶向VEGF信號通路和ECM的降解實現(xiàn)抑制腫瘤的轉(zhuǎn)移。此外,花青素還能逆轉(zhuǎn)腫瘤細(xì)胞的多藥抗藥性,提高化療敏感性。
現(xiàn)有的大量實驗數(shù)據(jù)表明,花青素可以干擾多種信號通路,具有抗癌活性。然而必須指出的是這些實驗大多都是體外實驗,而且在人流行病學(xué)研究中并沒有顯示花青素的攝取與罹患癌癥風(fēng)險率的必要聯(lián)系[45]。不過,建立的動物模型以及體外實驗具有指示性,表明了花青素潛在的預(yù)防和治療性抗癌作用。因此需要更多的臨床實驗證明花青素可以應(yīng)用于人體的抗癌活性。此外,實驗顯示花青素的人體利用度低于體外起作用的花青素濃度[46],所以如何提高花青素的體內(nèi)生物利用度以及穩(wěn)定性也是進(jìn)一步需要研究的問題。
[1] HOU D X, KAI K, LI J J, et al. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms[J]. Carcinogenesis, 2004, 25(1): 29-36.
[2] MARKO D, PUPPEL N, TJADEN Z, et al. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation[J]. Molecular Nutrition & Food Research, 2004, 48(4): 318-325.
[3] XU Mei, BOWER K A, WANG Siying, et al. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2[J]. Molecular Cancer, 2010, 9(1): 285.
[4] SHIH P H, YEH C T, YEN G C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis[J]. Journal of Agricultural and Food Chemistry, 2007, 55(23): 9427-9435.
[5] FIMOGNARI C, BERTI F, NüSSE M, et al. Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-O-beta-glucopyranoside[J]. Biochemical Pharmacology, 2004, 67: 2047-2056.
[6] SERAFINO A, SINIBALDI-VALLEBONA P, LAZZARINO G, et al. Differentiation of human melanoma cells induced by cyanidin-3-O-βglucopyranoside[J]. The FASEB Journal, 2004, 18(15): 1940-1942.
[7] YOSHIMOTO M, OKUNO S, YOSHINAGA M, et al. Antimutagenicity of sweet potato (Ipomoea batatas) roots[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(3): 537-541.
[8] YI Long, CHEN Chunye, JIN Xin, et al. Structural requirements of anthocyanins in relation to inhibition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity[J]. FEBS Letters, 2010, 584(3): 583-590.
[9] JEONG J W, LEE W S, SHIN S C, et al. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways[J]. International Journal of Molecular Sciences, 2013, 14(1): 1502-1515.
[10] HASEEB A, CHEN D, HAQQI T M. Delphinidin inhibits IL-1βinduced activation of NF-κB by modulating the phosphorylation of IRAK-1(Ser376) in human articular chondrocytes[J]. Rheumatology, 2013, 52(6): 998-1008.
[11] MIYAKE S, TAKAHASHI N, SASAKI M, et al. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism[J]. Laboratory Investigation, 2012, 92(1): 102-109.
[12] KANG N J, LEE K W, KWON J Y, et al. Delphinidin attenuates neoplastic transformation in JB6 Cl41 mouse epidermal cells by blocking Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling[J]. Cancer Prevention Research, 2008, 1(7): 522-531.
[13] SONG N R, YANG H, PARK J, et al. Cyanidin suppresses neoplastic cell transformation by directly targeting phosphatidylinositol 3-kinase[J]. Food Chemistry, 2012, 133(3): 658-664.
[14] MALIK M, ZHAO Cuiwei, SCHOENE N, et al. Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells[J]. Nutrition and Cancer, 2003, 46(2): 186-196.
[15] SYED D N, AFAQ F, SARFARAZ S, et al. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation[J]. Toxicology and Applied Pharmacology, 2008, 231(1): 52-60.
[16] TELLER N, THIELE W, MARCZYLO T H, et al. Suppression of the kinase activity of receptor tyrosine kinases by anthocyaninrich mixtures extracted from bilberries and grapes[J]. Journal ofAgricultural and Food Chemistry, 2009, 57(8): 3094-3101.
[17] YUN J M, AFAQ F, KHAN N, et al. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells[J]. Molecular Carcinogenesis, 2009, 48(3): 260-270.
[18] CHEN Peini, CHU Shuchen, CHIOU H L, et al. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo[J]. Nutrition Cancer, 2005, 53(2): 232-243.
[19] KAUSAR H, JEYABALAN J, AQIL F, et al. Berry anthocyanidins synergistically suppress growth and invasive potential of human nonsmall-cell lung cancer cells[J]. Cancer Letter, 2012, 325(1): 54-62.
[20] HUANG Huipei, CHANG Y C, WU C H, et al. Anthocyanin-rich mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun[J]. Food Chemistry, 2011, 129(4): 1703-1709.
[21] CHANG Y C, HUANG Huipei, HSU J D, et al. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells[J]. Toxicology and Applied Pharmacology, 2005, 205(3): 201-212.
[22] LEE S H, PARK S M, PARK S M, et al. Induction of apoptosis in human leukemia U937 cells by anthocyanins through down-regulation of Bcl-2 and activation of caspases[J]. International Journal of Oncology, 2009, 34(4): 1077-1083.
[23] SHIN D Y, LEE W S, LU Jingnan, et al. Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK[J]. International Journal of Oncology, 2009, 35(6): 1499-1504.
[24] REDDIVARI L, VANAMALA J, CHINTHARLAPALLI S, et al. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspaseindependent pathways[J]. Carcinogenesis, 2007, 28(10): 2227-2235.
[25] TSUYUKI S, FUKUI S, WATANABE A, et al. Delphinidin induces autolysosome as well as autophagosome formation and delphinidininduced autophagy exerts a cell protective role[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26(11): 445-453.
[26] LONGO L, PLATINI F, SCARDINO A, et al. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma[J]. Molecular Cancer Therapeutics, 2008, 7(8): 2476-2485.
[27] FENG Rentian, WANG S Y, SHI Yinghong, et al. Delphinidin induces necrosis in hepatocellular carcinoma cells in the presence of 3-methyladenine, an autophagy inhibitor[J]. Journal of Agricultural and Food Chem istry, 2010, 58(7): 3957-3964.
[28] TELLER N, THIELE W, BOETTLER U, et al. Delphinidin inhibits a broad spectrum of receptor tyrosine kinases of the ErbB and VEGFR family[J]. Molecular Nutrition & Food Research, 2009, 53(9): 1075-1083.
[29] OAK M H, BEDOUI J E, MADERIRA S V F, et al. Delphinidin and cyanidin inhibit PDGFAB-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK[J]. British Journal of Pharmacology, 2006, 149(3): 283-290.
[30] LAMY S, BEAULIEU é, LABBé D, et al. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling[J]. Carcinogenesis, 2008, 29(5): 1033-1041.
[31] HUANG Lili, ZHANG Zefu, ZHANG Shen, et al. Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway[J]. International Journal of Molecular Medicine, 2011, 27(3): 407-415.
[32] WANG Lishu, HECHT S S, CARMELLA S G, et al. Anthocyanins in black raspberries prevent esophageal tumors in rats[J]. Cancer Prevention Research, 2009, 2(1): 84-93.
[33] CHEN Chunye, YI Long, JIN Xin, et al. Inhibitory effect of delphinidin on monocyte-endothelial cell adhesion induced by oxidized low-density lipoprotein via ROS/p38MAPK/NF-κB pathway[J]. Cell Biochemistry and Biophysics, 2011, 61(2): 337-348.
[34] LAMY S, LAFLEUR R, BéDARD V, et al. Anthocyanidins inhibit migration of glioblastoma cells: structure-activity relationship and involvement of the plasminolytic system[J]. Journal of Cellular Biochemistry, 2007, 100(1): 100-111.
[35] CHEN Peini, KUO W H, CHIANG C L, et al. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression[J]. Chemico-Biological Interactions, 2006, 163(3): 218-229.
[36] HO M L, CHEN Peini, CHU Shunchen, et al. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway[J]. Nutrition and Cancer, 2010, 62(4): 505-516.
[37] LIM T G, JUNG S K, KIM J, et al. NADPH oxidase is a novel target of delphinidin for the inhibition of UVB-induced MMP-1 expression in human dermal fibroblasts[J]. Experimental Dermatology, 2013, 22(6): 428-430.
[38] SHIN D Y, LU Jingnan, KIM G Y, et al. Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells[J]. Oncology Reports, 2011, 25(2): 567-572.
[39] HUANG Huipei, SHIH Y W, CHANG Y C, et al. Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway[J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9286-9293.
[40] YUN J W, LEE W S, KIM M J, et al. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their antiinvasive activity on HT-29 human colon cancer cells[J]. Food and Chemical Toxicology, 2010, 48(3): 903-909.
[41] ANDRES-LACUEVA C, SHUKITT-HALE B, GALLI R L, et al. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory[J]. Nutritional Neuroscience, 2005, 8(2): 111-120.
[42] KITAGAWA S. Inhibitory effects of polyphenols on p-glycoprotein-mediated transport[J]. Biological and Pharmaceutical Bulletin, 2006, 29(1): 1-6.
[43] DREISEITEL A, OOSTERHUIS B, VUKMAN K V, et al. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1[J] . Biological and Pharmaceutical Bulletin, 2009, 158(8): 1942-1950.
[44] ESSELEN M, BOETTLER U, TELLER N, et al. Anthocyaninrich blackberry extract suppresses the DNA-damaging properties of topoisomerase I and II poisons in colon carcinoma cells[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 6966-6973.
[45] WANG Lishu, STONER G D. Anthocyanins and their role in cancer prevention[J]. Cancer Letter, 2008, 269(2): 281-290.
[46] COOKE D, STEWARD W P, GESCHER A J, et al. Anthocyans from fruits and vegetables-does bright colour signal cancer chemopreventive activity?[J]. European Journal of Cancer, 2005, 41(13): 1931-1940.
Progress on Anti-tumor Mechanisms of Anthocyanins
CUI Jian, LI Xiao-yan*
(College of Life Sciences, Northeast Forestry University, Harbin 150040, China)
Anthocyanins are a class of water soluble flavonoids and show some pharmacological activities such as hepatoprotective activity and anti-tumor activity. The potential anti-tumor mechanism mainly include anti-mutagenesis, antioxidant, anti-inflammatory, induction of differentiation, inhibiting proliferation by modulating signal transduction pathways, inducing cell cycle arrest and stimulating apoptosis of tumor cells, inducing autophagy, anti-invasion and metastasis, reversing drug resistance of tumor cells as well as increasing sensitivity to chemotherapy. In this review, the latest progresses on the anti-tumor activities of anthocyanins and the underlying molecular mechanisms are summarized.
anthocyanins; anti-tumor; signal transduction; molecular target
TS209
A
1002-6630(2014)13-0310-06
10.7506/spkx1002-6630-201413060
2014-02-24
中國博士后科學(xué)基金項目(2013M541328)
崔建(1993—),女,本科生,主要從事天然抗腫瘤活性產(chǎn)物的研發(fā)。E-mail:yiluxiangbei2012@live.com
*通信作者:李曉巖(1982—),女,講師,博士,主要從事花青素保健品的開發(fā)。E-mail:xyli821187@163.com