• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    2015-04-17 06:38:30ShaoXiaLiPingZhangWeidang
    High Technology Letters 2015年3期

    Shao Xia (邵 霞), Li Ping, Zhang Weidang

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    Shao Xia (邵 霞)*, Li Ping**, Zhang Weidang②

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    In order to improve the bit error rate (BER) performance of turbo codes with short frame size at a wide range of signal to noise ratio (SNR), a new method by optimizing the bit energy is proposed. At first, a formula derived from the Union Bound is introduced. It describes the relations between the bit error rate distribution and the minimum weight distribution. And then, by mathematically optimizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degradations of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR.

    channel coding, bit error rate (BER), energy allocation, turbo code

    0 Introduction

    How to improve the bit error rate (BER) performance of turbo codes[1]is the most important task. There are many methods toward this destination. One of them is to reallocate the energy of the bit in the bit stream of the codeword. These schemes have previously been proposed in Refs[2-8]. In Ref.[2], the author assigned less and less power to the parity bits as the noise level increased to avoid the traditional negative “coding gain” associated with all error correcting codes at high noise levels. Ref.[3] showed that the fraction of the total power that should be allocated to a systematic bit was usually lower than that of the parity bit. But the amount of improvement depends on the choice of component codes, interleaver length and signal to noise ratio. Ref.[4] also pointed out that if different energies were assigned to two outputs of a turbo encoder, the information bit and parity bit, then the performance would be changed according to the ratio of the information bit energy to the parity bit energy. The optimum point of the ratio may not be 1. As the rate of the turbo code is changed, the optimum point would also be changed. In Ref.[5], it concluded that for turbo codes with short frames operating in very low signal-to-noise environments, more energy should be assigned to the systematic bits so that the performance was improved. At higher signal-to-noise ratios, allocating less energy to the systematic bits improved the performance. Ref.[6] studied the effect of asymmetric energy allocations to the output bits of turbo codes. It showed that the error floor was improved as more energy was given to the non-systematic bits. However, due to the degradation in the convergence threshold of the code, tradeoff between the error floor and the convergence threshold appeared. Ref.[7] studied theoretically and empirically channels coding for nonuniform i.i.d. sequences using turbo codes with unequal energy allocation. It was shown that both systematic codes and non-systematic codes with unequal energy allocation were improved on equal energy allocation schemes. Ref.[8] introduced a method of reducing the error floor in parallel concatenated codes. It also pointed out that simple approaches based on modifying just the energy of the systematic and coded bits seemed very attractive. From the references listed above we can see that nearly all of them allocate the energies between the systematic bits and parity bits, but the merits of different strategies are sometimes not very clear, with different authors arriving to contradicting conclusions[6]. This is because that there is no theoretical base for the energy allocation between the information bits and parity check bits. The fraction of the total energy depends on the choice of the component codes, interleaver length, puncturing pattern and the signal to noise ratio.

    In Ref.[9], the authors allocated the bits’ energies among the codewords that have different weights instead of between the systematic and parity bits. In this scheme more energy is assigned to the codewords that have minimum (and second minimum) weight and the simulation results showed that the “error floor” of turbo codes was improved with no practical degradation in the waterfall region.

    In this work, a new method is presented to decrease the bit error rate (BER) by optimizing the bit energy. It is based on a formula, which describes the relationships between the bit error rate distribution and the minimum weight distribution, derived from the union bound. Through mathematical optimization, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR. Then by adding an adjustable parameter, the BER performance at low and moderate SNR regions is also improved.

    The paper is organized as follows. A formula to estimate the BER distributions based on the union bound is introduced in Section 1. In Section 2, we firstly derive a formula to optimize the bit energy based on the BER distribution. Then we introduce an adjustable parameter to modify the energy distribution so that it can be used at low and moderate SNR regions. In Section 3, more detailed optimizing procedures are provided and various types of turbo codes are simulated to show the efficiency of the scheme. Section 5 is the conclusion.

    1 Union bound and the formulas of the BER distribution

    Let c=(c0, c1,…,cN-1) be a binary codeword, where N is the code length, cj=0 or 1 is called the j-th bit of the codeword. If a codeword is with ci=1, it is said that the i-th bit connects to this codeword, or this codeword connects to the i-th bit.

    For an Additive White Gaussian Noise (AWGN) channel, the BER is bounded by the union bound as[10]

    (1)

    where wiand diare the information weight and total Hamming weight, respectively, of the i-th codeword. k is the input length. Rcis the code rate. Ebis the bit energy of the codeword and N0is the noise power spectrum density.

    From Eq.(1), a formula to estimate the bit error rate for every position at higher SNR can be derived as[11,12]

    (2)

    where dmin(j) is the lowest weight of the codeword(s) that connects to the j-th bit and nmin(j) is its multiplicity, where j=0,1,…,N-1. We call the sequence (dmin(j), nmin(j), j=0,1,…,N-1) the distribution of minimum weight codewords.

    Eq.(2) shows that, generally, bit error rates pb(j) are not identical for different j. For example, if a bit in the codeword sequence connects to a lower weight codeword, it will have a weaker error protection so the bit error rate for this bit will be higher. The average bit error rate of the code is dominated by such bits that connect to the low weight codewords. Therefore, if the bits’ energy is changed so that more energy is allocated to the bits that connect to low weight codewords and less energy to the bits that connect to high weight codewords, the average bit error rate will be decreased.

    2 Optimizing the bit energy with an adjustable parameter

    In Eq.(2), constant bit energy Ebby Eb(j) is replaced that is the optimized bit energy for the j-th bit and pb(j) is replaced by pob(j) that is the new bit error rate for bit j relating to Eb(j), then Eq.(2) becomes

    (3)

    (4)

    Now the minimum value of average BER expressed by Eq.(4) will be found with the binding condition of energy conservation:

    (5)

    Using the Lagrange multiplier method, let λ be the multiplier, the formula of calculating the optimized bit energy Eb(j) can be derived and the result is

    (6)

    where

    (7)

    So Eb(j) expressed by Eq.(6) is the optimized energy for bit j. It is determined by the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Apparently, if dmin(j), as well as nmin(j), are constant, then Eb(j)=Eb. In this case, there is no need to modify the bit energy, such as the equal-weight codes that have perfect construction. But there are many codes, especially such as turbo codes, that don’t have such perfect construction. Their dmin(j)s usually expend to a wide range. In this case, there are much more spaces for the bit energy to be optimized and noticeable improvements can be achieved.

    To calculate optimized bit energy Eb(j), the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1) should be found. If the code length is not long, for example, it is no longer than thousands bits, the methods presented in Refs[13-15] and [16] are very efficient to calculate the minimum distance of turbo codes. Through modifications, they can be used to find the parameters of dmin(j) and nmin(j).

    (8)

    where ρ is the adjustable parameter.

    Without loss of generality, assuming Eb=1, Eq.(9) can be got:

    (9)

    (10)

    3 Optimization procedures and simulation results

    The followings give the optimization procedures and simulation results. There are four turbo codes used in this section. The generator matrix for the four codes is the same, which is g=(1, 10001/10011). But they have different code lengths, different interleavers and different puncturing patterns. Code 1 is a turbo code with a 8×8 block interleaver of size 64 and without puncturing. So the code rate is 1/3. Another turbo code, noted as code 2, is with a 32×32 block interleaver. The puncturing pattern for this code is p=(10; 01). So the code rate is 1/2. There are other two turbo codes. Both of them use random interleavers, but the sizes are 64 and 1024 separately. The turbo code of size 64, noted as code 3, is not punctured. The turbo code of size 1024, noted as code 4, is punctured with puncturing pattern p = (10; 01). For all the turbo codes, the decoding algorithm is BCJR, the number of iteration is 5 and the two encoder components are both terminated. Binary antipodal signalling is used with an AWGN channel model. The SNR is measured in terms of energy per information bit, Eb, over the single-sided noise power spectral density, N0.

    Based on code 3, which has the code length of N=(64+4)×3=204, the practical procedures of optimization will be given and used to show the efficiency of the proposed scheme.

    Firstly, the minimum weight distribution (dmin(j), nmin(j) is searched, j=0,1,2,…,N-1) of the code by the method presented in Ref.[10] is searched. Fig.1 shows the distribution of the minimum weight (dmin(j), nmin(j), j=0,1,2,…,N-1) of code 3.

    Fig.1 The minimum weight distribution (dmin(j), nmin(j), j=0, 1, 2, …,N-1) of code 3 calculated by the method presented in Ref.[10]

    Secondly, the optimized bit energy distribution can be got by Eq.(6) with the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Fig.2 shows the bit energy distributions before and after energy optimization. Before energy optimization, the bit energy is the same for all bits in the codewords. The bit energy is assumed Eb=1. So curve 1 is a straight line with amplitude 1. After energy optimization, the distribution of bit energy is not even. Compared with Fig.1, apparently, more energy is allocated to the bits that connect to the lowest weight codeword and less energy is allocated to the bits connecting to high weight codewords.

    Fig.2 The bit energy distributions before and after energy optimization for code 3

    Fig.3 The BER distributions before and after energy optimization for code 3 at SNR=4dB

    Table 1 shows the values of BER at different SNRs without and with bit energy optimization separately. By examining Table 1 we find that at high SNR region, such as 4dB and 5dB, the average BERs are improved obviously. But at low and moderate SNR regions, there even some degradations appeared.

    Table 1 The average BER without and with energy optimization for code 3 at different SNRs

    Finally, by modifying the optimized bit energy with adjustable ρ expressed by Eq.(8), the lowest BER at a wide range of SNR is got.

    Table 2 shows the valid ranges of ρ constrained by Eq.(10) at some specific SNRs. The best values of ρ that produce the lowest BER at specific SNRs and the corresponding BERs are also displayed in the table. The best values of ρ are obtained by grid search within the valid ranges, starting from step size of 2, down to the finest step size of 0.25. From the table we can see that after modification with ρ, the BER performance is improved not only at high SNR region, but also at low and moderate SNR regions.

    Table 2 The valid ranges of ρ at different SNRs, the best values of ρ and the corresponding values of BER for code 3

    The BER improvements in the two figures are obvious. From the figures it can be seen that after energy optimizing, the BER curves corresponding to Eq.(6) are lower than the curves before energy optimizing at

    Fig.4 The simulation BER curves before and after optimizing for code 1 and code 2

    Fig.5 The simulation BER curves before and after optimizing for code 3 and code 4

    high SNR regions. For example, the improvements are more than 1 order of magnitude at 4.5dB for turbo code 3 and at 2.5dB for turbo code 4. In the two figures that, with modification of Eq.(8), the BER performance at low and moderate SNR regions is improved and all the curves corresponding to Eq.(8) have the best performance.

    So, by optimizing the bit energy distributions to the codeword sequences, the BER performance is improved noticeably. In fact, this scheme changes the weight of the codewords. For example, the minimum weight for code 3 is 7 before energy optimizing. After optimizing, this codeword’s weight is changed to 12 at 5dB. For code 2, the minimum weight is changed from 7 to 10 after optimizing at 4dB.

    4 Conclusion

    A new method to optimize the bit energy is presented in this work. By changing the bit energy allocation in an optimized way, the deviation of the BER distribution is decreased; the minimum weight of the codewords is increased; and the average BER is minimized over a wide range of SNR. However, this scheme is based on the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Finding the minimum weight distribution consume time very much especially when the code size is not short. Therefore the proposed scheme is suitable for turbo coded with short size. How to optimize the bit energy for the code with large size is further work.

    [ 1] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo codes. In: Proceedings of the IEEE International Conference Communications, Geneva, Switzerland, 1993. 1064-1070

    [ 2] Hokfelt J, Maseng T. Optimizing the energy of different bitstreams of turbo codes. In: Proceedings of the Turbo Coding Seminar, Lund, Sweden, 1998. 59-63

    [ 3] Duman T M, Salehi M. On optimal power allocation for turbo codes. ISIT 1997, Ulm, Germany, June-July: 104

    [ 4] Choi Y, Lee P. Analysis of turbo codes with asymmetric modulation, Electron. Lett., 1999, 35, (1): 35-36

    [ 5] Salah M M, Raines R A, Temple M A, et al. Energy allocation strategies for Turbo codes with short frames. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2000), Las Vegas, USA, 2000. 27-29

    [ 6] Cabarcas F, Garcia-Frias J. Asymmetric energy allocation strategies to improve Turbo codes performance. In: Proceedings of the Vehicular Technology Conference (VTC 2001 Fall). 2001, (3):1839-1842

    [ 7] Shamir G I, Souza R D, Garcia-Frias J. Unequal energy allocation with Turbo Codes for nonuniform sources. In: Proceedings of the Turbo-Coding-2006, Munich, Germany, 2006. 1-6

    [ 8] Garcia-Frias J, Cabarcas F. Reducing the error floor in turbo codes by using non-binary constituent encoders. In: Proceedings of the Vehicular Technology Conference, Boston, USA, 2000. 1230-1237

    [ 9] Zhang W, Wang X. Optimal energy allocations for turbo codes based on distributions of low weight codewords, Electronics Letters, 2004,19(40): 1205-1206

    [10] S. Benedetto, G. Montorsi, Unveiling turbo codes: Some results on parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 1996,42(2): 1996. 409-428

    [11] Shao X, Zhang W D. Estimate the BER Distributions of Turbo Codes, Wireless and Microwave Technologies, 2012, 2:53-58

    [12] Zhang W D, Shao X, Torki M et al. Unequal error protection of JPEG2000 images using short block length turbo codes, Communications Letters, IEEE, 2011,15(6): 659-661

    [13] Roberto G, Paola P, Sergio B. Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications, IEEE Journal on Selected Areas in Commun, 2001,19(5): 800-812

    [14] Sandro S, Young-Jik K B, Harald E. A fast algorithm to estimate the distance spectrum of turbo codes. In: Proceedings of the 10th International Conference on Telecommunications (ICT 2003), Papeete, FR Polynesia, 2003. 90-95

    [15] Crozier S, Guinand P, Hunt A. Estimating the minimum distance of turbo codes using double and triple impulse methods, IEEE Communications Letters, 2005,(7): 631-633

    [16] Ould-Cheikh-Mouhamedou Y. Crozier S, Kabal P. Comparison of Distance Measurement Methods for Turbo codes. In: Proceedings of the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005. 36-39

    Shao Xia, born in 1970. She received her M.S. degree and B. S. degree from Zhengzhou University in 2007 and 1992 separately. Her research focuses on key techniques for telecommunication theory and engineering.

    10.3772/j.issn.1006-6748.2015.03.010

    ①Supported by the National High Technology Research and Development Programme of China (No. 2014AA01A705) and the National Natural Science Foundation of China (U1204607).

    ②To whom correspondence should be addressed. E-mail: zhangweidang@zzu.edu.cn Received on June 23, 2014***

    黑人巨大精品欧美一区二区蜜桃 | 久久99一区二区三区| 欧美精品一区二区免费开放| 国产日韩一区二区三区精品不卡| 麻豆精品久久久久久蜜桃| 老熟女久久久| 欧美最新免费一区二区三区| 国产成人91sexporn| 亚洲 欧美一区二区三区| 国产精品99久久99久久久不卡 | 国产女主播在线喷水免费视频网站| 欧美日韩成人在线一区二区| 国产精品一区二区在线不卡| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 在线观看美女被高潮喷水网站| 婷婷色综合www| 99久久人妻综合| 国产在线免费精品| 日本wwww免费看| 9色porny在线观看| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看 | 搡女人真爽免费视频火全软件| 欧美日韩视频高清一区二区三区二| 狂野欧美激情性bbbbbb| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 亚洲欧洲日产国产| 秋霞在线观看毛片| 伦精品一区二区三区| 国产精品国产三级专区第一集| 97在线视频观看| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 99国产精品免费福利视频| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 亚洲欧美日韩另类电影网站| kizo精华| 观看av在线不卡| 亚洲情色 制服丝袜| 一级黄片播放器| 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 午夜福利视频精品| 国产日韩欧美亚洲二区| 国产免费一级a男人的天堂| 精品久久蜜臀av无| 国产精品99久久99久久久不卡 | 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 国产精品免费大片| 日韩一区二区三区影片| 女人久久www免费人成看片| 欧美人与性动交α欧美精品济南到 | 在线看a的网站| 黑人高潮一二区| 高清欧美精品videossex| 在线观看人妻少妇| 免费观看av网站的网址| 一边亲一边摸免费视频| 韩国av在线不卡| 中国美白少妇内射xxxbb| 这个男人来自地球电影免费观看 | 欧美精品国产亚洲| 99热全是精品| 看免费成人av毛片| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 国产一级毛片在线| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 久久精品国产综合久久久 | 少妇的丰满在线观看| 精品少妇内射三级| 亚洲欧美色中文字幕在线| 最近最新中文字幕大全免费视频 | 欧美激情国产日韩精品一区| 观看av在线不卡| 久久国产亚洲av麻豆专区| 自线自在国产av| 免费av不卡在线播放| 亚洲伊人久久精品综合| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 蜜臀久久99精品久久宅男| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 免费观看av网站的网址| 国产片内射在线| 一边摸一边做爽爽视频免费| 五月开心婷婷网| 免费播放大片免费观看视频在线观看| 丰满少妇做爰视频| 免费人成在线观看视频色| 这个男人来自地球电影免费观看 | 亚洲精品色激情综合| 99久久综合免费| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 丰满饥渴人妻一区二区三| 亚洲成av片中文字幕在线观看 | xxx大片免费视频| 曰老女人黄片| 欧美+日韩+精品| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 国产色婷婷99| 日韩av在线免费看完整版不卡| 久久午夜综合久久蜜桃| 乱人伦中国视频| 精品熟女少妇av免费看| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| videosex国产| av又黄又爽大尺度在线免费看| 人妻少妇偷人精品九色| 国产不卡av网站在线观看| 大香蕉久久成人网| 嫩草影院入口| 另类亚洲欧美激情| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 日韩一本色道免费dvd| 亚洲欧洲精品一区二区精品久久久 | 一二三四在线观看免费中文在 | 国产精品免费大片| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频 | 久久久久久久久久久免费av| 国产成人精品婷婷| 国产精品蜜桃在线观看| 亚洲人成77777在线视频| 在线观看三级黄色| 秋霞在线观看毛片| 99视频精品全部免费 在线| 亚洲综合色网址| 51国产日韩欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费播放大片免费观看视频在线观看| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 欧美另类一区| 91成人精品电影| 22中文网久久字幕| 18禁在线无遮挡免费观看视频| 国产xxxxx性猛交| 亚洲av国产av综合av卡| 成人无遮挡网站| 男人添女人高潮全过程视频| 香蕉国产在线看| 久久韩国三级中文字幕| 青春草视频在线免费观看| 国产精品成人在线| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 久久精品久久久久久噜噜老黄| 亚洲四区av| 欧美激情 高清一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲四区av| 亚洲精品一二三| 精品国产乱码久久久久久小说| av电影中文网址| 另类亚洲欧美激情| 日韩大片免费观看网站| 国产日韩欧美视频二区| 全区人妻精品视频| 色视频在线一区二区三区| 男女午夜视频在线观看 | 国产爽快片一区二区三区| 全区人妻精品视频| av国产精品久久久久影院| 国产日韩欧美亚洲二区| 亚洲天堂av无毛| 一级毛片我不卡| 一区二区日韩欧美中文字幕 | 99热全是精品| 色网站视频免费| 91久久精品国产一区二区三区| 国产一级毛片在线| 国产精品 国内视频| 亚洲色图综合在线观看| 91成人精品电影| 超色免费av| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 亚洲综合精品二区| 久久久久精品人妻al黑| 我的女老师完整版在线观看| 欧美3d第一页| 人成视频在线观看免费观看| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 草草在线视频免费看| 国产精品一区www在线观看| 国产在线视频一区二区| 男女边吃奶边做爰视频| 久久久国产欧美日韩av| 少妇被粗大猛烈的视频| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 自线自在国产av| 日韩一本色道免费dvd| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| 99热全是精品| 午夜福利网站1000一区二区三区| 亚洲高清免费不卡视频| 久久久久久久久久成人| 国产激情久久老熟女| 女的被弄到高潮叫床怎么办| 男女边摸边吃奶| 午夜福利视频精品| 亚洲在久久综合| 亚洲av福利一区| 天堂俺去俺来也www色官网| 亚洲成人av在线免费| av天堂久久9| 亚洲少妇的诱惑av| 最黄视频免费看| 欧美日韩av久久| 国产精品一区二区在线观看99| 成人影院久久| 亚洲精品久久成人aⅴ小说| 欧美日韩精品成人综合77777| 国产精品嫩草影院av在线观看| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 亚洲国产精品国产精品| 成人黄色视频免费在线看| 五月天丁香电影| 99re6热这里在线精品视频| 各种免费的搞黄视频| 国产一级毛片在线| 伊人亚洲综合成人网| 卡戴珊不雅视频在线播放| 少妇被粗大的猛进出69影院 | 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 国产色婷婷99| 少妇的丰满在线观看| 女的被弄到高潮叫床怎么办| 久久99蜜桃精品久久| 国产精品久久久久成人av| 九草在线视频观看| 亚洲情色 制服丝袜| 一级爰片在线观看| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 人妻一区二区av| 国产亚洲欧美精品永久| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 人成视频在线观看免费观看| 99九九在线精品视频| 亚洲,欧美,日韩| 九色成人免费人妻av| 18禁观看日本| 黄片无遮挡物在线观看| 一边摸一边做爽爽视频免费| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 岛国毛片在线播放| 青青草视频在线视频观看| 亚洲精品久久成人aⅴ小说| 日日撸夜夜添| 日韩制服丝袜自拍偷拍| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| 国产精品一国产av| 欧美成人午夜精品| 纵有疾风起免费观看全集完整版| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 国精品久久久久久国模美| 午夜视频国产福利| 亚洲内射少妇av| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 最近2019中文字幕mv第一页| 22中文网久久字幕| 国产精品99久久99久久久不卡 | 亚洲人成77777在线视频| 亚洲精品久久午夜乱码| 亚洲性久久影院| www.熟女人妻精品国产 | 精品第一国产精品| 热99久久久久精品小说推荐| 国产视频首页在线观看| 国产爽快片一区二区三区| 色94色欧美一区二区| 黑人高潮一二区| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| a级毛片在线看网站| 久久人人爽av亚洲精品天堂| 免费黄网站久久成人精品| 精品国产一区二区三区久久久樱花| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| 国产男女超爽视频在线观看| 九色成人免费人妻av| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 久久人妻熟女aⅴ| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 午夜日本视频在线| 一区二区三区四区激情视频| 热re99久久精品国产66热6| 亚洲人成77777在线视频| 久久97久久精品| 久久久久久久久久成人| 天堂8中文在线网| 少妇被粗大的猛进出69影院 | 男人舔女人的私密视频| 久久久久精品久久久久真实原创| 如何舔出高潮| 日韩伦理黄色片| 成人二区视频| 看非洲黑人一级黄片| 丝袜在线中文字幕| 看非洲黑人一级黄片| 如何舔出高潮| 少妇人妻 视频| 久久久久久久国产电影| 日本wwww免费看| 高清毛片免费看| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 免费播放大片免费观看视频在线观看| 亚洲图色成人| 十分钟在线观看高清视频www| 乱人伦中国视频| 草草在线视频免费看| 日韩制服丝袜自拍偷拍| 桃花免费在线播放| 丝袜喷水一区| 五月玫瑰六月丁香| 精品视频人人做人人爽| 欧美bdsm另类| 侵犯人妻中文字幕一二三四区| 国产精品.久久久| 大片电影免费在线观看免费| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 国产日韩一区二区三区精品不卡| 欧美97在线视频| 国产极品粉嫩免费观看在线| a 毛片基地| 久久国产精品大桥未久av| 多毛熟女@视频| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| xxxhd国产人妻xxx| 久久久久国产网址| 一本色道久久久久久精品综合| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看 | 久久久a久久爽久久v久久| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 人妻 亚洲 视频| 精品一区二区三区视频在线| 欧美精品一区二区大全| a 毛片基地| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 超色免费av| 成人二区视频| 看非洲黑人一级黄片| 免费黄网站久久成人精品| 国产一区二区在线观看av| 国产亚洲精品第一综合不卡 | 日韩电影二区| 激情五月婷婷亚洲| 亚洲精品美女久久久久99蜜臀 | 国产免费一级a男人的天堂| 曰老女人黄片| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 两性夫妻黄色片 | 大香蕉久久成人网| 久久久久久久国产电影| 桃花免费在线播放| h视频一区二区三区| 男女高潮啪啪啪动态图| 国产探花极品一区二区| 久久韩国三级中文字幕| 精品熟女少妇av免费看| 51国产日韩欧美| 国产精品偷伦视频观看了| 黄色 视频免费看| 人人妻人人澡人人看| 男女午夜视频在线观看 | 欧美+日韩+精品| 国精品久久久久久国模美| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| a级毛片在线看网站| 黄网站色视频无遮挡免费观看| 亚洲美女黄色视频免费看| 黄色 视频免费看| 国产精品秋霞免费鲁丝片| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| 午夜免费观看性视频| 成人影院久久| av有码第一页| 亚洲av免费高清在线观看| 母亲3免费完整高清在线观看 | 日韩制服丝袜自拍偷拍| 精品午夜福利在线看| 亚洲丝袜综合中文字幕| 综合色丁香网| 亚洲av电影在线进入| 日本欧美国产在线视频| 男女边摸边吃奶| 亚洲精品中文字幕在线视频| 亚洲国产精品专区欧美| 丝袜喷水一区| 久久ye,这里只有精品| 欧美+日韩+精品| 嫩草影院入口| 欧美精品一区二区大全| 成人二区视频| 我的女老师完整版在线观看| 国产av一区二区精品久久| 亚洲av电影在线观看一区二区三区| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 在线观看三级黄色| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| av.在线天堂| 久久精品夜色国产| 午夜av观看不卡| 日韩制服丝袜自拍偷拍| 久久久国产一区二区| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 男女下面插进去视频免费观看 | 国产高清不卡午夜福利| 99久国产av精品国产电影| 精品人妻偷拍中文字幕| 婷婷成人精品国产| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 国产精品一二三区在线看| 免费播放大片免费观看视频在线观看| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 国产一区二区激情短视频 | 成年女人在线观看亚洲视频| 日本av手机在线免费观看| 国产精品一区二区在线观看99| 久久久久网色| 午夜av观看不卡| 国产亚洲av片在线观看秒播厂| 久久久精品94久久精品| 日韩熟女老妇一区二区性免费视频| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 伊人久久国产一区二区| 一级毛片电影观看| 久久久久久久久久久免费av| 丝袜脚勾引网站| 婷婷色综合大香蕉| 欧美精品高潮呻吟av久久| 中国国产av一级| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 久久久久久久亚洲中文字幕| 毛片一级片免费看久久久久| 永久网站在线| 欧美成人午夜精品| 美女国产视频在线观看| 18+在线观看网站| 久久久久久久精品精品| 国产免费福利视频在线观看| 激情视频va一区二区三区| 日本wwww免费看| 午夜免费观看性视频| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 韩国高清视频一区二区三区| 色婷婷av一区二区三区视频| 日韩在线高清观看一区二区三区| 热re99久久国产66热| 国产精品 国内视频| 亚洲精品国产av蜜桃| 久久久国产一区二区| 亚洲精品美女久久av网站| 国产精品熟女久久久久浪| 国产一区二区三区av在线| 亚洲国产毛片av蜜桃av| 视频中文字幕在线观看| 中文字幕人妻丝袜制服| 亚洲av综合色区一区| 成人国语在线视频| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 欧美精品一区二区免费开放| 在线观看一区二区三区激情| xxxhd国产人妻xxx| 纵有疾风起免费观看全集完整版| 飞空精品影院首页| 日韩av免费高清视频| 亚洲精品美女久久av网站| 在线 av 中文字幕| 99热国产这里只有精品6| 免费人成在线观看视频色| 久久99热这里只频精品6学生| 亚洲国产精品一区二区三区在线| 18禁动态无遮挡网站| 少妇的逼好多水| 成年人免费黄色播放视频| 9热在线视频观看99| 成人国产麻豆网| 亚洲人成网站在线观看播放| 欧美日韩国产mv在线观看视频| 蜜臀久久99精品久久宅男| 乱码一卡2卡4卡精品| 9色porny在线观看| 日本-黄色视频高清免费观看| 亚洲精品中文字幕在线视频| 亚洲综合色网址| 大香蕉久久网| 久久久久国产精品人妻一区二区| 色婷婷av一区二区三区视频| 人妻一区二区av| 国产精品熟女久久久久浪| 最黄视频免费看| 久久久精品免费免费高清| 99九九在线精品视频| 国产精品偷伦视频观看了| 国产成人精品一,二区| 日本av手机在线免费观看| 大话2 男鬼变身卡| 三上悠亚av全集在线观看| 丰满乱子伦码专区| 熟女电影av网| 激情视频va一区二区三区| 亚洲av福利一区| 国产精品.久久久| 一级黄片播放器| 免费不卡的大黄色大毛片视频在线观看| 不卡视频在线观看欧美| 在线 av 中文字幕| 久久这里只有精品19| a级片在线免费高清观看视频| 久久国内精品自在自线图片| 婷婷色综合大香蕉| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频 | av在线老鸭窝| 国精品久久久久久国模美| 亚洲精品乱码久久久久久按摩| 国产在线一区二区三区精| 免费大片18禁| 天天操日日干夜夜撸| 久久精品国产鲁丝片午夜精品| 9色porny在线观看| 男女下面插进去视频免费观看 | 黑人猛操日本美女一级片| 国产av码专区亚洲av| 欧美 日韩 精品 国产| 国国产精品蜜臀av免费| 久久久久久久久久人人人人人人| 超碰97精品在线观看| 午夜久久久在线观看| 欧美最新免费一区二区三区| 亚洲成人一二三区av| 精品久久国产蜜桃| 久久国产精品大桥未久av| 亚洲精品456在线播放app| 男女边吃奶边做爰视频| 全区人妻精品视频| 中文字幕亚洲精品专区| 久久久久人妻精品一区果冻| 高清黄色对白视频在线免费看| 乱人伦中国视频| 日本爱情动作片www.在线观看|