韓曹政 唐晉生 李睿
摘 要: 利用高阻抗表面的同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,從而改善了天線增益,實現(xiàn)低剖面設(shè)計。仿真結(jié)果顯示,與傳統(tǒng)背腔式螺旋天線相比,增益穩(wěn)定性顯著提高。在3~12 GHz的工作頻段內(nèi),駐波比小于2,阻抗匹配良好,輻射方向圖保持穩(wěn)定。在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,實現(xiàn)了較好的圓極化性能。
關(guān)鍵詞:高阻抗表面; 阿基米德螺旋天線; 寬帶; 低剖面; 圓極化
中圖分類號: TN823+.31?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2014)05?0077?03
0 引 言
隨著通信技術(shù)的發(fā)展和寬帶無線電設(shè)備的出現(xiàn),超寬帶天線技術(shù)在遙測、宇航和衛(wèi)星通信等領(lǐng)域得到了廣泛的應(yīng)用。平面螺旋天線,由于其結(jié)構(gòu)滿足非頻變原理,因而它們在寬頻帶范圍內(nèi)具有良好的阻抗特性,增益特性以及圓極化等特點。而且平面螺旋天線為雙向輻射,為了實現(xiàn)單向輻射,通常在螺旋天線的一側(cè)加裝深度約為[λ4]的反射背腔,但這種方法會破壞原天線良好的圓極化性能,改變非頻變特性,增大天線輪廓。如果在反射腔內(nèi)填充適當(dāng)?shù)奈ú牧鲜蛊鋯蜗蜉椛?,這樣會導(dǎo)致天線輻射效率的降低。高阻抗表面(High Impedance Surface,HIS)由于在特定頻率范圍具有零相位反射的特點,因而可以將其代替?zhèn)鹘y(tǒng)的導(dǎo)體反射板來設(shè)計低剖面天線[1?4]。但由于高阻抗表面相對窄的同相反射帶寬,限制了其在寬帶系統(tǒng)中的應(yīng)用。為改善增益、降低剖面,本文在螺旋天線背腔的邊緣區(qū)域加載了高阻抗表面(HIS),仿真結(jié)果表明,天線在3~12 GHz的工作帶寬內(nèi)駐波比小于2,增益穩(wěn)定性明顯提升,主輻射方向軸比小于3 dB的頻帶寬度達(dá)到7.8 GHz。
1 傳統(tǒng)背腔式螺旋天線設(shè)計
2 加載高阻抗表面的螺旋天線設(shè)計
2.1 高阻抗表面簡介
高阻抗表面可分為有金屬過孔的蘑菇型和無過孔的共面高阻抗表面。當(dāng)平面波入射到高阻抗表面時,反射相位隨著頻率的增加,由180°~-180°連續(xù)變化,在諧振頻率處相位為0°。通常將反射相位在90°~-90°相應(yīng)的頻率范圍定義為高阻抗表面的同相帶寬,即在此頻帶內(nèi)可等效為人工磁導(dǎo)體(Artificial Magnetic Conductor, AMC),因而可被用于設(shè)計天線反射板。此外,高阻抗表面對于沿其表面?zhèn)鞑サ碾姶挪ㄒ渤尸F(xiàn)帶隙特性,應(yīng)用于印刷天線中能有效地抑制表面波在介質(zhì)基片中的傳播,從而對天線后向輻射的減小,天線陣單元間互耦的降低,以及效率和增益的提高有著明顯改善[7?10]。
2.2 高阻抗表面單元設(shè)計
考慮到加工和制作的方便,本文采用無過孔的共面高阻抗表面,即在背襯接地板的介質(zhì)表面上周期性印刷頻率選擇表面的金屬圖案,結(jié)構(gòu)如圖3所示,它可以在一定頻率范圍內(nèi)等效為人工磁導(dǎo)體(AMC)。高阻抗表面蝕刻在厚度[h=]3 mm,相對介電常數(shù)為4.4的介質(zhì)基片上,周期單元貼片邊長[W=]8 mm,單元間隙[g=]1 mm,由電磁仿真軟件Ansoft HFSS得反射相位曲線如圖4所示。
3 結(jié) 論
為了實現(xiàn)高增益、低剖面的目的,本文利用高阻抗表面同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,天線口徑為84 mm,加背腔后的整體高度僅有8 mm。仿真分析表明:改進(jìn)后的螺旋天線增益較為平坦,平均增益為7 dB,阻抗匹配良好,在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,且輻射方向圖穩(wěn)定,能有效抑制后向輻射,實現(xiàn)了較好的圓極化性能。
參考文獻(xiàn)
[1] BELL J M, ISKANDER M F. A low?profile Archimedean spiral antenna using an EBG ground plane [J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 223?226.
[2] YANG F, RAHMAT?SAMII Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2691?2703.
[3] 徐琰,張謨杰.一種新穎的光子帶隙平面螺旋天線[J].電波科學(xué)學(xué)報,2005,20(6):699?702.
[4] YANG F, RAHMAT?SAMII Y. A low?profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface [J]. Microwave and Optical Technology Letters, 2001, 31(4): 264?267.
[5] 林昌祿,聶在平.天線工程手冊[M].北京:電子工業(yè)出版社,2002.
[6] 康行健.天線原理與設(shè)計[M].北京:國防工業(yè)出版社,1995.
[7] SIEVENPIPER D, ZHANG Li?jun, BROAS R F J, et al. High?impedance electromagnetics surfaces with a forbidden frequency band [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059?2074.
[8] YANG F, RAHMAT?SAMII Y. Microstrip antennas integrated with electromagnetic bandgap (EBG) structure: a low mutual coupling design for array applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2936?2946.
[9] ELSHEAKH D N, ELSADEK H A, ABDALLAH E A, et al. Ultrawide bandwidth umbrella?shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC) [J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1255?1258.
[10] PRAKASH P, ABEGAONKAR M P, BASU A, et al. Gain enhancement of a CPW?fed monopole antenna using polarization?insensitive AMC structure [J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1315?1318.
摘 要: 利用高阻抗表面的同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,從而改善了天線增益,實現(xiàn)低剖面設(shè)計。仿真結(jié)果顯示,與傳統(tǒng)背腔式螺旋天線相比,增益穩(wěn)定性顯著提高。在3~12 GHz的工作頻段內(nèi),駐波比小于2,阻抗匹配良好,輻射方向圖保持穩(wěn)定。在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,實現(xiàn)了較好的圓極化性能。
關(guān)鍵詞:高阻抗表面; 阿基米德螺旋天線; 寬帶; 低剖面; 圓極化
中圖分類號: TN823+.31?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2014)05?0077?03
0 引 言
隨著通信技術(shù)的發(fā)展和寬帶無線電設(shè)備的出現(xiàn),超寬帶天線技術(shù)在遙測、宇航和衛(wèi)星通信等領(lǐng)域得到了廣泛的應(yīng)用。平面螺旋天線,由于其結(jié)構(gòu)滿足非頻變原理,因而它們在寬頻帶范圍內(nèi)具有良好的阻抗特性,增益特性以及圓極化等特點。而且平面螺旋天線為雙向輻射,為了實現(xiàn)單向輻射,通常在螺旋天線的一側(cè)加裝深度約為[λ4]的反射背腔,但這種方法會破壞原天線良好的圓極化性能,改變非頻變特性,增大天線輪廓。如果在反射腔內(nèi)填充適當(dāng)?shù)奈ú牧鲜蛊鋯蜗蜉椛?,這樣會導(dǎo)致天線輻射效率的降低。高阻抗表面(High Impedance Surface,HIS)由于在特定頻率范圍具有零相位反射的特點,因而可以將其代替?zhèn)鹘y(tǒng)的導(dǎo)體反射板來設(shè)計低剖面天線[1?4]。但由于高阻抗表面相對窄的同相反射帶寬,限制了其在寬帶系統(tǒng)中的應(yīng)用。為改善增益、降低剖面,本文在螺旋天線背腔的邊緣區(qū)域加載了高阻抗表面(HIS),仿真結(jié)果表明,天線在3~12 GHz的工作帶寬內(nèi)駐波比小于2,增益穩(wěn)定性明顯提升,主輻射方向軸比小于3 dB的頻帶寬度達(dá)到7.8 GHz。
1 傳統(tǒng)背腔式螺旋天線設(shè)計
2 加載高阻抗表面的螺旋天線設(shè)計
2.1 高阻抗表面簡介
高阻抗表面可分為有金屬過孔的蘑菇型和無過孔的共面高阻抗表面。當(dāng)平面波入射到高阻抗表面時,反射相位隨著頻率的增加,由180°~-180°連續(xù)變化,在諧振頻率處相位為0°。通常將反射相位在90°~-90°相應(yīng)的頻率范圍定義為高阻抗表面的同相帶寬,即在此頻帶內(nèi)可等效為人工磁導(dǎo)體(Artificial Magnetic Conductor, AMC),因而可被用于設(shè)計天線反射板。此外,高阻抗表面對于沿其表面?zhèn)鞑サ碾姶挪ㄒ渤尸F(xiàn)帶隙特性,應(yīng)用于印刷天線中能有效地抑制表面波在介質(zhì)基片中的傳播,從而對天線后向輻射的減小,天線陣單元間互耦的降低,以及效率和增益的提高有著明顯改善[7?10]。
2.2 高阻抗表面單元設(shè)計
考慮到加工和制作的方便,本文采用無過孔的共面高阻抗表面,即在背襯接地板的介質(zhì)表面上周期性印刷頻率選擇表面的金屬圖案,結(jié)構(gòu)如圖3所示,它可以在一定頻率范圍內(nèi)等效為人工磁導(dǎo)體(AMC)。高阻抗表面蝕刻在厚度[h=]3 mm,相對介電常數(shù)為4.4的介質(zhì)基片上,周期單元貼片邊長[W=]8 mm,單元間隙[g=]1 mm,由電磁仿真軟件Ansoft HFSS得反射相位曲線如圖4所示。
3 結(jié) 論
為了實現(xiàn)高增益、低剖面的目的,本文利用高阻抗表面同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,天線口徑為84 mm,加背腔后的整體高度僅有8 mm。仿真分析表明:改進(jìn)后的螺旋天線增益較為平坦,平均增益為7 dB,阻抗匹配良好,在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,且輻射方向圖穩(wěn)定,能有效抑制后向輻射,實現(xiàn)了較好的圓極化性能。
參考文獻(xiàn)
[1] BELL J M, ISKANDER M F. A low?profile Archimedean spiral antenna using an EBG ground plane [J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 223?226.
[2] YANG F, RAHMAT?SAMII Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2691?2703.
[3] 徐琰,張謨杰.一種新穎的光子帶隙平面螺旋天線[J].電波科學(xué)學(xué)報,2005,20(6):699?702.
[4] YANG F, RAHMAT?SAMII Y. A low?profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface [J]. Microwave and Optical Technology Letters, 2001, 31(4): 264?267.
[5] 林昌祿,聶在平.天線工程手冊[M].北京:電子工業(yè)出版社,2002.
[6] 康行健.天線原理與設(shè)計[M].北京:國防工業(yè)出版社,1995.
[7] SIEVENPIPER D, ZHANG Li?jun, BROAS R F J, et al. High?impedance electromagnetics surfaces with a forbidden frequency band [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059?2074.
[8] YANG F, RAHMAT?SAMII Y. Microstrip antennas integrated with electromagnetic bandgap (EBG) structure: a low mutual coupling design for array applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2936?2946.
[9] ELSHEAKH D N, ELSADEK H A, ABDALLAH E A, et al. Ultrawide bandwidth umbrella?shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC) [J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1255?1258.
[10] PRAKASH P, ABEGAONKAR M P, BASU A, et al. Gain enhancement of a CPW?fed monopole antenna using polarization?insensitive AMC structure [J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1315?1318.
摘 要: 利用高阻抗表面的同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,從而改善了天線增益,實現(xiàn)低剖面設(shè)計。仿真結(jié)果顯示,與傳統(tǒng)背腔式螺旋天線相比,增益穩(wěn)定性顯著提高。在3~12 GHz的工作頻段內(nèi),駐波比小于2,阻抗匹配良好,輻射方向圖保持穩(wěn)定。在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,實現(xiàn)了較好的圓極化性能。
關(guān)鍵詞:高阻抗表面; 阿基米德螺旋天線; 寬帶; 低剖面; 圓極化
中圖分類號: TN823+.31?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2014)05?0077?03
0 引 言
隨著通信技術(shù)的發(fā)展和寬帶無線電設(shè)備的出現(xiàn),超寬帶天線技術(shù)在遙測、宇航和衛(wèi)星通信等領(lǐng)域得到了廣泛的應(yīng)用。平面螺旋天線,由于其結(jié)構(gòu)滿足非頻變原理,因而它們在寬頻帶范圍內(nèi)具有良好的阻抗特性,增益特性以及圓極化等特點。而且平面螺旋天線為雙向輻射,為了實現(xiàn)單向輻射,通常在螺旋天線的一側(cè)加裝深度約為[λ4]的反射背腔,但這種方法會破壞原天線良好的圓極化性能,改變非頻變特性,增大天線輪廓。如果在反射腔內(nèi)填充適當(dāng)?shù)奈ú牧鲜蛊鋯蜗蜉椛洌@樣會導(dǎo)致天線輻射效率的降低。高阻抗表面(High Impedance Surface,HIS)由于在特定頻率范圍具有零相位反射的特點,因而可以將其代替?zhèn)鹘y(tǒng)的導(dǎo)體反射板來設(shè)計低剖面天線[1?4]。但由于高阻抗表面相對窄的同相反射帶寬,限制了其在寬帶系統(tǒng)中的應(yīng)用。為改善增益、降低剖面,本文在螺旋天線背腔的邊緣區(qū)域加載了高阻抗表面(HIS),仿真結(jié)果表明,天線在3~12 GHz的工作帶寬內(nèi)駐波比小于2,增益穩(wěn)定性明顯提升,主輻射方向軸比小于3 dB的頻帶寬度達(dá)到7.8 GHz。
1 傳統(tǒng)背腔式螺旋天線設(shè)計
2 加載高阻抗表面的螺旋天線設(shè)計
2.1 高阻抗表面簡介
高阻抗表面可分為有金屬過孔的蘑菇型和無過孔的共面高阻抗表面。當(dāng)平面波入射到高阻抗表面時,反射相位隨著頻率的增加,由180°~-180°連續(xù)變化,在諧振頻率處相位為0°。通常將反射相位在90°~-90°相應(yīng)的頻率范圍定義為高阻抗表面的同相帶寬,即在此頻帶內(nèi)可等效為人工磁導(dǎo)體(Artificial Magnetic Conductor, AMC),因而可被用于設(shè)計天線反射板。此外,高阻抗表面對于沿其表面?zhèn)鞑サ碾姶挪ㄒ渤尸F(xiàn)帶隙特性,應(yīng)用于印刷天線中能有效地抑制表面波在介質(zhì)基片中的傳播,從而對天線后向輻射的減小,天線陣單元間互耦的降低,以及效率和增益的提高有著明顯改善[7?10]。
2.2 高阻抗表面單元設(shè)計
考慮到加工和制作的方便,本文采用無過孔的共面高阻抗表面,即在背襯接地板的介質(zhì)表面上周期性印刷頻率選擇表面的金屬圖案,結(jié)構(gòu)如圖3所示,它可以在一定頻率范圍內(nèi)等效為人工磁導(dǎo)體(AMC)。高阻抗表面蝕刻在厚度[h=]3 mm,相對介電常數(shù)為4.4的介質(zhì)基片上,周期單元貼片邊長[W=]8 mm,單元間隙[g=]1 mm,由電磁仿真軟件Ansoft HFSS得反射相位曲線如圖4所示。
3 結(jié) 論
為了實現(xiàn)高增益、低剖面的目的,本文利用高阻抗表面同相反射特性,將其加載到阿基米德螺旋天線背腔的邊緣區(qū)域,天線口徑為84 mm,加背腔后的整體高度僅有8 mm。仿真分析表明:改進(jìn)后的螺旋天線增益較為平坦,平均增益為7 dB,阻抗匹配良好,在約7.8 GHz的頻帶寬度內(nèi)軸比小于3 dB,且輻射方向圖穩(wěn)定,能有效抑制后向輻射,實現(xiàn)了較好的圓極化性能。
參考文獻(xiàn)
[1] BELL J M, ISKANDER M F. A low?profile Archimedean spiral antenna using an EBG ground plane [J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 223?226.
[2] YANG F, RAHMAT?SAMII Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2691?2703.
[3] 徐琰,張謨杰.一種新穎的光子帶隙平面螺旋天線[J].電波科學(xué)學(xué)報,2005,20(6):699?702.
[4] YANG F, RAHMAT?SAMII Y. A low?profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface [J]. Microwave and Optical Technology Letters, 2001, 31(4): 264?267.
[5] 林昌祿,聶在平.天線工程手冊[M].北京:電子工業(yè)出版社,2002.
[6] 康行健.天線原理與設(shè)計[M].北京:國防工業(yè)出版社,1995.
[7] SIEVENPIPER D, ZHANG Li?jun, BROAS R F J, et al. High?impedance electromagnetics surfaces with a forbidden frequency band [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059?2074.
[8] YANG F, RAHMAT?SAMII Y. Microstrip antennas integrated with electromagnetic bandgap (EBG) structure: a low mutual coupling design for array applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2936?2946.
[9] ELSHEAKH D N, ELSADEK H A, ABDALLAH E A, et al. Ultrawide bandwidth umbrella?shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC) [J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1255?1258.
[10] PRAKASH P, ABEGAONKAR M P, BASU A, et al. Gain enhancement of a CPW?fed monopole antenna using polarization?insensitive AMC structure [J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1315?1318.