• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    2014-03-15 07:47:06HongPANMinshengBU
    Water Science and Engineering 2014年2期

    Hong PAN*, Min-sheng BU

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    Hong PAN*1, Min-sheng BU2

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals.

    pressure fluctuation; ensemble empirical mode decomposition; intrinsic mode function; correlation coefficient

    1 Introduction

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions (Shen et al. 2000; Yuan et al. 2009). Therefore, monitoring and analysis of pressure fluctuations are essential for ensuring the stable and safe operation of hydropower units. In order to perform further analysis, some conventional signal processing methods have been introduced to extract the features of pressure fluctuation signals, including fast Fourier transform (FFT), short-time Fourier transform (STFT), and wavelet transform (WT) (Al-Badour et al. 2011). However, these methods are not self-adaptive signal processingmethods by nature and are not suitable for non-stationary signals.

    In recent years, a new signal processing method, the empirical mode decomposition (EMD) method, has been proposed to analyze non-stationary signals (Huang et al. 1998; Flandrin et al. 2004; Feng and Chu 2005; Donghoh and Hee-Seok 2009). The EMD method can decompose the original signal into a number of intrinsic mode functions (IMFs) which represent the natural oscillatory mode embedded in the signal. Furthermore, the frequency components involved in each IMF not only relate to the sampling frequency, but also change with the original signal. Therefore, the EMD method is a self-adaptive signal processing method and has been widely used in the analysis of vibration signals. However, it has a shortcoming, which is the mode mixing problem. Mode mixing can be defined in two ways: a single IMF contains the oscillatory modes with different scales, or the same frequency resides in different IMFs. In order to solve the mode mixing problem, the ensemble empirical mode decomposition (EEMD) method was developed (Wu and Huang 2009; Lei et al. 2011; De Ridder et al. 2011). In this study, with an axial-flow pump as an example, the EEMD method was used to extract the time-frequency features of pressure fluctuation, and the results were compared with those of the EMD method.

    In section 2 of this paper, the EMD method is briefly reviewed. In section 3, the EEMD method and its comparison with the EMD method are described in order to show the advantages of EEMD in signal purification and shaft orbit reconstruction. In section 4, the EEMD method is used to analyze the pressure fluctuation captured from an axial-flow pump, and the results of EEMD and EMD are compared to show the advantages of EEMD in detecting the pressure fluctuation. Finally, the experimental results are summarized.

    2 EMD method

    The EMD method is based on the simple assumption that any complicated multi-component signal can be decomposed into different simple intrinsic modes of oscillations (Tanaka and Mandic 2007). Each mode should be independent of the others and satisfy the following conditions:

    (1) Across the whole data set, the number of extrema and the number of zero crossings must either be equal or differ at most by one.

    (2) At any point, the mean value of the upper envelope and lower envelope is zero.

    With these conditions, any signal s(t) can be decomposed through the following steps:

    (1) Identification of the local extrema and generation of the the upper and lower envelopes by interpolation of the local minima and maxima, respectively.

    (2) Calculation of the mean of the upper and lower envelopes, m1(t).

    (3) Calculation of the difference between s(t) and m1(t), that is:

    If h1(t) is an IMF, then h1(t) is the first IMF of s(t). Otherwise, h1(t) will betreated as a new s(t) and the process above will be repeated until h1(t) is an IMF. The sifting process can be described as

    where k is the number of iterations. The final h1k(t) is redefined as c1(t), which is the first IMF. In absolute terms, c1(t) is the high-frequency component of the signal.

    (4) Separation of c1(t) froms(t), and definition of the difference as

    here r1(t) should be treated as a new s(t). Repeating the process above, c2(t), c3(t), … ,cn(t) are obtained, where cn(t) is the nth IMF of s(t). Then, we have

    Step (4) can be stopped when rn(t) is a monotonic function.

    (5) Finally, formulation of the original signal as

    c1(t), c2(t), … ,cn(t) contain different frequency bands ranging from high to low, which are defined as IMF1,IMF2,…, IMFn , while rn(t) represents the central tendency of the signal.

    Thus, the EMD method provides a complete and orthogonal decomposition of the inspected signal without missing information or introducing any additional information. However, the major disadvantage of EMD is the mode mixing problem. This is a result of signal intermittency. To illustrate the mode mixing problem existing in EMD, a simulation signal is considered in this section. x(t) is a sine wave of 8 Hz attached by small impulses. EMD decomposed x(t) into three IMFs, and the performance of EMD is shown in Fig. 1. Mode mixing problems occurred in IMF1 and IMF2, and IMF1 simultaneously contained the sine wave and the impulse. IMF3 was the false component.

    Fig. 1 EMD of simulation signal x(t)

    3 EEMD method

    EEMD was developed to solve the mode mixing problem existing in EMD. It is a noise-added data analysis (NADA) method, which is a method based on the insight from studies of the statistical properties of white noise, showing that the decomposed different-scale components of the signal should be automatically projected onto the corresponding scales of white noise in the background when the added white noise is uniformly distributed across the whole time-frequency domain (Li and Ji 2009; Huang et al. 2011). Using EEMD, the white noise in each iteration is different, while the noise can be canceled out by extracting the ensemble mean of IMFs. Then, the final results are the ensemble mean of IMFs.

    The EEMD algorithm can be described as follows:

    (1) The number of the ensemble M and the ratio of the standard deviation of white noise to the standard deviation of the original signal Nstdare initialized, and the number of trials m is set to 1.

    (2) The mth trial for the signal added with the white noise is implemented.

    (a) The white noise is added to the original signal s(t), that is

    where nm(t) is the mth added white noise, and sm(t) is the noise-added signal of the mth trial.

    (b) The signal sm(t) is decomposed into l IMFs cim(i =1, 2,… , l; m =1, 2,… ,M) with the E MD method, where cimis the ith IMFs of the mth trial.

    (c) If m < M, then m = m + 1 and steps (a) and (b) are repeated until m = M, with different white noises each time.

    (3) The ensemble mean of M trials for the ith IMF, Ci, is calculated, that is

    (4) Ci(i =1, 2,…,l) is considered the final ith IMF.

    M was suggested to be 100 by Wu and Huang (2009), and Nstdranges from 0.01 to 0.4.

    To demonstrate the EEMD performance in overcoming the mode mixing problem, the simulation signal in Fig. 1 was decomposed again with the EEMD method, where M = 100 and Nstd= 0.01. The results are shown in Fig. 2. It can be concluded that the sine wave and impulse components of the original signal are clearly separated. IMF1 represents the impulse component and IMF2 represents the sine wave. Therefore, the EEMD method is capable of solving the mode mixing problem and extracting the more precise decomposition results.

    Fig. 2 EEMD of simulation signal x(t)

    4 Application of two methods to pressure fluctuation analysis

    The test facility is illustrated schematically in Fig. 3. The test bed consisted of two motors, two electric valves, four butterfly valves, a head tank, a draft tank, two supply pumps, and a test pump. Various impellers and diffusers could be installed in the test section to test their steady state performance. The instantaneous flow rate was measured with an electromagnetic flowmeter installed in the pipeline. The pressure fluctuations were measured with pressure transducers. The instantaneous torque and rotational speed were measured with a torque meter.

    Fig. 3 Schematic view of test system

    The experimental data of pressure fluctuations were captured from an axial-flow pump. The pressure transducers were installed in the vicinity of the impeller inlet, the impeller outlet, and the outlet conduit. The number of blades was three. The rotational speed of the electric motor was 1 250 r/min. The advanced data acquisition and analysis system EN900 supported by the ENVADA Company in Beijing was used to collect the signal. The sampling frequency was 256 times the rotational frequency, and 1 024 points were collected every time. Taking the pressure fluctuation signal in the vicinity of the impeller outlet as an example, the time domain waveform is shown in Fig. 4.

    Fig. 4 Time domain waveform of pressure fluctuation

    The EMD and EEMD methods were employed to decompose the pressure fluctuation signal into seven IMFs from high frequency to low frequency, as shown in Fig. 5 and Fig. 6. M = 100 and Nstd= 0.01 for the EEMD method.

    Fig. 5 Decomposition results of pressure fluctuation signal with EMD method

    Fig. 6 Decomposition results of pressure fluctuation signal with EEMD method

    The most sensitive IMFs can be chosen according to the correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal (Hu and Yang 2007). The correlation coefficients were calculated and are listed in Table 1. According to the results of Table 1, IMF5, IMF6, and IMF7, produced by the EMD method, are the most sensitive IMFs, while IMF4, IMF5, IMF6, and IMF7, produced by the EEMD method, are the most sensitive IMFs.

    Table 1 Correlation coefficients between IMFs produced by EMD and EEMD methods and original signal

    Spectrum analysis was then applied to the most sensitive IMFs and the results are shown in Fig. 7 and Fig. 8. With the EMD method, 62.5 Hz and 10.4 Hz were extracted clearly. As mentioned before, the rotational speed was 1 250 r/min, so the rotational frequency f0was 20.83 Hz. As shown in Fig. 7, the frequencies of IMF5, IMF6, and IMF7 were 3f0, 0.5f0, and 0.5f0, respectively. The frequency 3f0results from the influence of the number of impellers, which was three, while the frequency 0.5f0is the result of the irregular movements of turbulence. Ho wever, the rotationalfrequency f0cannot be extracted separately. In addition, IMF6 and IMF7 represent the same frequency component. In order to extract more precise decomposition results, EEMD was preformed. As shown in Fig. 8, the frequencies of IMF4, IMF5, IMF6, and IMF7 were 3f0, f0, 0.5f0, and 0.25f0, respectively. It can be concluded that not only the rotational frequency (f0) but also the new frequency (0 .25f0) can be identified clearly. The frequency 0.25f0is also the result of the irregular movements of turbulence. The movements become stronger when the flow is reduced to a certain degree. Therefore, the decomposition results of the pressure fluctuation based on the EEMD method are much better than those based on the EMD method.

    Fig. 7 Spectrum analysis of IMFs produced by EMD method

    Fig. 8 Spectrum analysis of IMFs produced by EEMD method

    From the experiment, it can be found that the EEMD method can effectively resolve the mode mixing problem existing in the EMD method and achieve more precise decomposition results than the EMD method. However, there are some problems that need to be resolved before EEMD operation, such as parameter settings and IMF post-processing. The values of the ensemble number and the ratio of the standard deviation of white noise to the standard deviation of the original signal have a large influence on the accuracy of EEMD. Until now, there has not been a specific principle to provide guidance for the choice of the parameters. Before wide application of EEMD can be achieved, there are a lot of problems that need to be studied further.

    5 Conclusions

    In this paper, the EEMD method is introduced and applied to analysis of the frequency characteristics of pressure fluctuations. In order to select the number of IMFs, the EMD method was used first. Then the signal was decomposed by the EEMD method with the number of IMFs determined by the EMD method. This approach avoids interference from other false components and is essential for selection of sensitive IMFs. It overcomes the mode mixing problems that occurs with the EMD method. Furthermore, EEMD provides a better decomposition performance for the lower frequency components. The experimental results indicate that the EEMD method is effective for multi-component signals. However, there are still some problems that need to be studied further to improve the stability and validity of the EEMD method.

    Al-Badour, F., and Sunar, M., and Cheded, L. 2011. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25, 2083-2101. [doi:10.1016/j.ymssp.2011.01.017]

    De Ridder, S., Neyt, X., Pattyn, N., and Migeotte, P. F. 2011. Comparison between EEMD, wavelet and FIR denoising: Influence on event detection in impedance cardiography. Proceedings of 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 806-809. Boston: Institute of Electrical and Electronics Engineers. [doi:10.1109/IEMBS.2011.6090184]

    Donghoh, K., and Hee-Seok, O. 2009. EMD: A package for empirical mode decomposition and Hilbert spectrum. The R Journal, 1(1), 40-46.

    Feng, Z. P., and Chu, F. L. 2005. Transient hydraulic pressure fluctuation signal analysis of hydroturbine based on Hilbert-huang transform. Proceedings of the CSEE, 25(10), 111-115. (in Chinese). [doi:0258-8013(2005)10-0111-05]

    Flandrin, P., Rilling, G., and Gon?alvès, P. 2004. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112-114. [doi:10.1109/LSP.2003.821662]

    Hu, J. S., and Yang, S. X. 2007. Study on the autocorrelation-based vibration signal EMD decomposition method in rotation machinery. Journal of Mechanical Strength, 29(3), 376-379. (in Chinese) [doi: 10.3321/j.issn:1001-9669.2007.03.005]

    Huang, J., Hu, X. G., and Geng, X. 2011. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electric Power SystemsResearch, 81(2), 400-407. [doi:10.1016/j.epsr.2010.10.029]

    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zeng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(3), 903-995. [doi:10.1098/rspa.1998.0193]

    Lei, Y. G., He, Z. J., and Zi, Y. Y. 2011. EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Systems with Applications, 38(6), 7334-7341. [doi:10.1016/j.eswa.2010.12.095]

    Li, L., and Ji, H. B. 2009. Signal feature extraction based on an improved EMD method. Measurement, 42(5), 796-803. [doi:10.1016/j.measurement.2009.01.001]

    Shen, D., Chu, F. T., and Chen, S. 2000. Diagnosis and identification of vibration accident for hydrogenerator unit. Journal of Hydrodynamics, 15(1), 129-133. (in Chinese)

    Tanaka, T., and Mandic, D. P. 2007. Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101-104. [doi:10.1109/LSP.2006.882107]

    Wu, Z. H., and Huang, N. E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1-41. [doi:10.1142/S1793536909000047]

    Yuan, S. Q., Ni, Y. Y., Pan, Z. Y., and Yuan, J. P. 2009. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps. Chinese Journal of Mechanical Engineering, 22(1), 64-70. [doi:10.3901/ CJME.2009.01.064]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51076041), the Fundamental Research Funds for the Central Universities (Grant No. 2010B25114), and the Natural Science Foundation of Hohai University (Grant No. 2009422111).

    *Corresponding author (e-mail: hongpan@hhu.edu.cn)

    Received Dec. 16, 2012; accepted Mar. 1, 2013

    九九在线视频观看精品| 亚洲精品在线美女| av国产免费在线观看| 麻豆国产97在线/欧美| 这个男人来自地球电影免费观看| 亚洲天堂国产精品一区在线| 在线a可以看的网站| 亚洲国产精品sss在线观看| 成年女人永久免费观看视频| 一进一出抽搐动态| 啦啦啦韩国在线观看视频| 99视频精品全部免费 在线 | 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| avwww免费| 黄频高清免费视频| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 最好的美女福利视频网| 免费大片18禁| 欧美成人免费av一区二区三区| 久久精品国产综合久久久| 国产高清视频在线播放一区| 久久久久久久午夜电影| 老司机午夜十八禁免费视频| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 成年女人永久免费观看视频| 国产成人aa在线观看| 久久久久久久久免费视频了| 一进一出抽搐gif免费好疼| 男女床上黄色一级片免费看| 国产淫片久久久久久久久 | 午夜福利视频1000在线观看| 国产久久久一区二区三区| 国产毛片a区久久久久| 99国产极品粉嫩在线观看| 长腿黑丝高跟| 麻豆成人午夜福利视频| 怎么达到女性高潮| 国产一区二区三区视频了| 色吧在线观看| 十八禁人妻一区二区| 一卡2卡三卡四卡精品乱码亚洲| 免费看光身美女| 亚洲美女黄片视频| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕| 手机成人av网站| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 国产成人欧美在线观看| 亚洲色图av天堂| 亚洲国产看品久久| 国产成人精品无人区| 91麻豆av在线| 小说图片视频综合网站| 天堂√8在线中文| 久久久色成人| 国产激情偷乱视频一区二区| 免费看a级黄色片| 最近视频中文字幕2019在线8| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| 国产高清有码在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 国产精品九九99| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯| www.熟女人妻精品国产| 我的老师免费观看完整版| 波多野结衣高清作品| 国产精华一区二区三区| 国产激情偷乱视频一区二区| 巨乳人妻的诱惑在线观看| 国产高清有码在线观看视频| 成人18禁在线播放| 1000部很黄的大片| 性色av乱码一区二区三区2| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 久久久成人免费电影| 亚洲国产欧美一区二区综合| 亚洲成a人片在线一区二区| 色尼玛亚洲综合影院| 亚洲在线观看片| 久久久久免费精品人妻一区二区| 日韩欧美国产一区二区入口| 日本免费a在线| 免费看日本二区| 手机成人av网站| 91麻豆精品激情在线观看国产| 高清毛片免费观看视频网站| 脱女人内裤的视频| 999久久久国产精品视频| 国产精品爽爽va在线观看网站| 很黄的视频免费| 国产亚洲精品综合一区在线观看| 亚洲欧美日韩无卡精品| 变态另类丝袜制服| 偷拍熟女少妇极品色| 久99久视频精品免费| 欧洲精品卡2卡3卡4卡5卡区| 欧美不卡视频在线免费观看| 国产精品av视频在线免费观看| 性色avwww在线观看| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 欧美国产日韩亚洲一区| 九九在线视频观看精品| 亚洲av电影在线进入| 很黄的视频免费| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 久久中文字幕一级| www国产在线视频色| 日韩精品中文字幕看吧| 深夜精品福利| 久久久国产成人精品二区| 国产亚洲精品一区二区www| 欧美av亚洲av综合av国产av| 久久性视频一级片| 亚洲国产精品成人综合色| 亚洲黑人精品在线| 国产成人aa在线观看| 99精品在免费线老司机午夜| 亚洲专区字幕在线| 日韩欧美国产一区二区入口| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华精| 欧美中文综合在线视频| 免费在线观看视频国产中文字幕亚洲| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| www.999成人在线观看| 精品欧美国产一区二区三| 亚洲欧洲精品一区二区精品久久久| 中文资源天堂在线| 午夜福利在线观看免费完整高清在 | 精品久久久久久成人av| 国产亚洲精品综合一区在线观看| 欧美日本视频| 欧美不卡视频在线免费观看| 日韩欧美 国产精品| 三级国产精品欧美在线观看 | 人妻久久中文字幕网| 精品久久久久久久久久免费视频| 夜夜躁狠狠躁天天躁| 亚洲人成网站在线播放欧美日韩| 亚洲乱码一区二区免费版| 床上黄色一级片| 国产麻豆成人av免费视频| 国产熟女xx| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 国产1区2区3区精品| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 18美女黄网站色大片免费观看| 精品国产乱子伦一区二区三区| 国产av在哪里看| 亚洲国产欧美一区二区综合| 亚洲av成人一区二区三| 国产伦精品一区二区三区视频9 | 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 色av中文字幕| 午夜福利高清视频| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 99re在线观看精品视频| 99在线视频只有这里精品首页| 国产午夜精品论理片| 亚洲美女视频黄频| 久久久久性生活片| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 国产激情久久老熟女| 小说图片视频综合网站| 免费av毛片视频| 国产 一区 欧美 日韩| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 99视频精品全部免费 在线 | 国产精品日韩av在线免费观看| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 婷婷丁香在线五月| 无人区码免费观看不卡| 国产aⅴ精品一区二区三区波| 日本一本二区三区精品| 成年女人看的毛片在线观看| 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 哪里可以看免费的av片| 18美女黄网站色大片免费观看| 欧美3d第一页| 亚洲国产欧美网| 国产真人三级小视频在线观看| 午夜福利视频1000在线观看| 一级毛片高清免费大全| 久久精品人妻少妇| 久久天堂一区二区三区四区| 亚洲国产高清在线一区二区三| 亚洲国产精品999在线| 中文字幕人妻丝袜一区二区| 亚洲国产精品成人综合色| 黄色片一级片一级黄色片| www.熟女人妻精品国产| 人人妻人人看人人澡| 在线a可以看的网站| 亚洲国产精品sss在线观看| 欧美一区二区国产精品久久精品| 十八禁人妻一区二区| 色av中文字幕| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 精品熟女少妇八av免费久了| 国内精品久久久久精免费| 又粗又爽又猛毛片免费看| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 特大巨黑吊av在线直播| 亚洲美女黄片视频| 免费在线观看成人毛片| 日本免费一区二区三区高清不卡| 国产成人精品久久二区二区91| 精品国内亚洲2022精品成人| 婷婷六月久久综合丁香| 男人的好看免费观看在线视频| 怎么达到女性高潮| 在线免费观看的www视频| 美女高潮的动态| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 99热精品在线国产| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 免费无遮挡裸体视频| 久久午夜亚洲精品久久| 国产精品女同一区二区软件 | 亚洲精华国产精华精| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 国产亚洲精品av在线| 热99在线观看视频| 国产精品自产拍在线观看55亚洲| 后天国语完整版免费观看| 人妻久久中文字幕网| 欧美精品啪啪一区二区三区| 久久欧美精品欧美久久欧美| 亚洲中文av在线| 真人一进一出gif抽搐免费| www国产在线视频色| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 国产激情欧美一区二区| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 国内毛片毛片毛片毛片毛片| 亚洲av成人一区二区三| 成人特级av手机在线观看| 国产综合懂色| 午夜免费观看网址| 在线播放国产精品三级| 久久99热这里只有精品18| www国产在线视频色| 亚洲av成人不卡在线观看播放网| 欧美乱妇无乱码| 国产精品一区二区三区四区免费观看 | 欧美zozozo另类| 在线国产一区二区在线| 国产精品久久久久久精品电影| 午夜福利视频1000在线观看| 老鸭窝网址在线观看| 极品教师在线免费播放| 母亲3免费完整高清在线观看| 性欧美人与动物交配| 免费在线观看视频国产中文字幕亚洲| 欧美在线黄色| 欧美xxxx黑人xx丫x性爽| 精品国内亚洲2022精品成人| 午夜影院日韩av| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| 亚洲五月婷婷丁香| 国产精品99久久久久久久久| 宅男免费午夜| 在线看三级毛片| 99视频精品全部免费 在线 | 色精品久久人妻99蜜桃| 国内精品久久久久精免费| 亚洲美女黄片视频| 亚洲成av人片免费观看| 日韩欧美在线乱码| 黄色女人牲交| 在线看三级毛片| 亚洲 欧美 日韩 在线 免费| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| 男女下面进入的视频免费午夜| 嫩草影院入口| 91在线观看av| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 高清毛片免费观看视频网站| 国产精品野战在线观看| 2021天堂中文幕一二区在线观| 国产精品 国内视频| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 国产三级在线视频| 中亚洲国语对白在线视频| 国产高清三级在线| 久久香蕉精品热| 亚洲av免费在线观看| 欧美日韩一级在线毛片| 国产激情偷乱视频一区二区| 精品人妻1区二区| 老汉色av国产亚洲站长工具| 精品一区二区三区四区五区乱码| 久久久久久久久中文| 日韩欧美精品v在线| 国产精品久久久久久人妻精品电影| 亚洲av片天天在线观看| 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 国产精品女同一区二区软件 | 99国产精品一区二区蜜桃av| 亚洲欧美精品综合一区二区三区| 免费人成视频x8x8入口观看| 免费av不卡在线播放| 成人午夜高清在线视频| 成人国产综合亚洲| 中国美女看黄片| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 亚洲18禁久久av| 午夜福利成人在线免费观看| 成人国产综合亚洲| 国产亚洲精品一区二区www| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 动漫黄色视频在线观看| 久久中文字幕一级| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 婷婷六月久久综合丁香| 欧美3d第一页| 1000部很黄的大片| 美女cb高潮喷水在线观看 | 亚洲av日韩精品久久久久久密| 99久久综合精品五月天人人| 亚洲成人久久性| 91久久精品国产一区二区成人 | 熟女人妻精品中文字幕| 99视频精品全部免费 在线 | 亚洲自偷自拍图片 自拍| 国产av不卡久久| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 桃红色精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 亚洲成人久久性| 免费看十八禁软件| 免费看光身美女| 国产一区二区激情短视频| 久久久久国产一级毛片高清牌| 在线观看免费视频日本深夜| 欧美性猛交╳xxx乱大交人| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 久久久色成人| 国产精品一区二区精品视频观看| 国产精品精品国产色婷婷| 一本精品99久久精品77| av国产免费在线观看| 可以在线观看的亚洲视频| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 日本一本二区三区精品| 男人舔女人下体高潮全视频| bbb黄色大片| 精品不卡国产一区二区三区| 免费观看人在逋| 丁香六月欧美| 97超视频在线观看视频| 国产成人欧美在线观看| 国产爱豆传媒在线观看| 两个人视频免费观看高清| 波多野结衣巨乳人妻| 99热只有精品国产| 人妻久久中文字幕网| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 白带黄色成豆腐渣| 天天添夜夜摸| 毛片女人毛片| 亚洲成av人片在线播放无| 久久久久久久久久黄片| 午夜福利成人在线免费观看| 国产乱人视频| 亚洲精品久久国产高清桃花| 亚洲国产精品合色在线| 国产精品av久久久久免费| 日韩大尺度精品在线看网址| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 久久久久九九精品影院| 曰老女人黄片| 精品国产乱码久久久久久男人| 一级毛片高清免费大全| 亚洲国产欧洲综合997久久,| svipshipincom国产片| 午夜福利18| 久久久国产成人免费| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 天堂√8在线中文| 国产又黄又爽又无遮挡在线| 少妇丰满av| 熟女少妇亚洲综合色aaa.| 日本与韩国留学比较| 国产真实乱freesex| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 无限看片的www在线观看| av在线天堂中文字幕| 可以在线观看毛片的网站| 热99在线观看视频| 熟女少妇亚洲综合色aaa.| 美女大奶头视频| 亚洲欧美激情综合另类| 午夜福利高清视频| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 99国产精品一区二区三区| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 欧美极品一区二区三区四区| 在线视频色国产色| 成人鲁丝片一二三区免费| 国产av在哪里看| 免费在线观看亚洲国产| 欧美又色又爽又黄视频| 后天国语完整版免费观看| 999久久久精品免费观看国产| 日韩高清综合在线| 免费无遮挡裸体视频| 欧美在线一区亚洲| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 国产探花在线观看一区二区| 1024香蕉在线观看| 伦理电影免费视频| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 少妇人妻一区二区三区视频| 国产成人欧美在线观看| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 免费看a级黄色片| 最新在线观看一区二区三区| 日本五十路高清| 亚洲成人久久爱视频| 老熟妇仑乱视频hdxx| 成人性生交大片免费视频hd| 两个人的视频大全免费| av女优亚洲男人天堂 | 黄频高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 国产激情欧美一区二区| 哪里可以看免费的av片| 国内久久婷婷六月综合欲色啪| 少妇丰满av| 国产激情久久老熟女| 少妇丰满av| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久 | av天堂中文字幕网| 日本免费a在线| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看| 亚洲av免费在线观看| 国产成人啪精品午夜网站| 日本五十路高清| 国产淫片久久久久久久久 | 国产真人三级小视频在线观看| 午夜精品久久久久久毛片777| 国产精品国产高清国产av| 综合色av麻豆| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 性欧美人与动物交配| 两个人的视频大全免费| 午夜免费激情av| 久久精品国产综合久久久| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 深夜精品福利| 亚洲av成人精品一区久久| 一二三四社区在线视频社区8| 观看免费一级毛片| 久久精品影院6| 日日摸夜夜添夜夜添小说| 国产精品爽爽va在线观看网站| 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 亚洲 欧美 日韩 在线 免费| 后天国语完整版免费观看| 日韩免费av在线播放| 非洲黑人性xxxx精品又粗又长| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 天天躁狠狠躁夜夜躁狠狠躁| 一卡2卡三卡四卡精品乱码亚洲| 日本 av在线| 国产单亲对白刺激| 精品久久久久久,| 久久久久国产一级毛片高清牌| 亚洲美女视频黄频| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 蜜桃久久精品国产亚洲av| 久久精品国产清高在天天线| 蜜桃久久精品国产亚洲av| 亚洲,欧美精品.| 国产1区2区3区精品| 亚洲九九香蕉| 老司机在亚洲福利影院| 国模一区二区三区四区视频 | а√天堂www在线а√下载| 国产乱人伦免费视频| 午夜免费激情av| 91字幕亚洲| 欧美3d第一页| 热99在线观看视频| 国产在线精品亚洲第一网站| 国产三级黄色录像| 熟妇人妻久久中文字幕3abv| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 操出白浆在线播放| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 男女床上黄色一级片免费看| 国产成人精品久久二区二区免费| 国产精品精品国产色婷婷| 曰老女人黄片| 两性夫妻黄色片| 久久久久久九九精品二区国产| 99热6这里只有精品| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 噜噜噜噜噜久久久久久91| 老熟妇乱子伦视频在线观看| 美女cb高潮喷水在线观看 | 国产成人av教育| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 久久久久久九九精品二区国产| 成人鲁丝片一二三区免费| 久久精品aⅴ一区二区三区四区| 亚洲av成人精品一区久久| 哪里可以看免费的av片|