• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*

    2014-03-25 09:11:26任曉莉楊玲劉敏
    關(guān)鍵詞:楊玲劉敏

    (任曉莉)**(楊玲)(劉敏)

    Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*

    REN Xiaoli(任曉莉)**, YANG Ling(楊玲)and LIU Min(劉敏)

    Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

    A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 m2·g?1, micropore volume of 0.176 cm2·g?1and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene-4′,6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.

    kinetic, thermodynamic, acid scarlet 3R, adsorbent, sludge, straw

    1 INTRODUCTION

    Sewage sludge is the inevitable by-products of wastewater purification. The world is currently undergoing a rapid increase in sludge production that is expected to continue for many years [1]. Sewage sludge is composed largely of the substances responsible for the offensive, pathogenic and toxic characteristics of untreated wastewater. Therefore, if proper treatment disposal is not implemented, this sludge will lead to serious environmental pollution. Various methods have been used to dispose or utilize municipal sewage sludge including incineration, land filling, land application, road surfacing, conversion to fertilizer, compression into building blocks, etc [2]. However, the environmental and legislative constraints, increasing sludge production, more limited disposal options and reducing availability of land call for more efficient and environmentally friendly approaches to its utilization [3-6]. It is well known that sewage sludge is carbonaceous in nature. Hence, it might be promising to prepare adsorbent from sewage sludge [7-9].

    Dye wastewater discharged from dyeing industries is highly colored and is toxic to aquatic life in the receiving water bodies. However, wastewater containing dyes is difficult to treat, since the dyes are recalcitrant organic molecules, resistant to aerobic digestion and are stable to light, heat and oxidizing agents. Adsorption technology is considered to be most effective and proven technology for applications in dye wastewater treatment. An alternative treatment for the discoloration of wastewaters from the textile industry is the usage of some non-conventional adsorbents (natural materials, bio-adsorbents and waste materials from industry and agriculture) with lower cost and high efficiency [10-16].

    In this work, excess sludge and straw were prepared into adsorbents by chemical activation. In order to improve the adsorption performance of the adsorbents and reduce heat energy and activating agent consumption, the immersion method was substituted with a mixing method that consisted of mixing dried sludge with solid ZnCl2. Sludge-derived absorbents were investigated for kinetic, equilibrium isotherm and thermodynamic studies of acid red 3R adsorption.

    2 MATERIALS AND METHODS

    2.1 Materials

    Dewatered surplus sludge (SS) was collected from the Northern Suburb Municipal Wastewater Treatment Plant of Taiyuan, China. Proximate analysis of the raw materials showed water content of 76%, an ash content of 47.1%, a volatile mass of 47.55%, and fixed carbon of 5.35% (dry basis).

    The molecular formula of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene-4′,6,8-trisulphonate (acid scarlet 3R) is C20H11N2Na3O10S3, molecular mass is 604.48, and the UV-VIS spectrophotometer UV-2100PC scanning spectrum indicated that the maximum absorption wavelength was 506 nm.

    2.2 Methods

    The study of adsorption kinetics and thermodynamics is essential in supplying the fundamental information required for the design and operation of adsorption equipment for wastewater treatment.

    2.2.1 Adsorption kinetics experimentation

    The dye solutions were taken in a 250 ml Erlenmeyer flask for conducting the tests. The varying initial concentration was 50 mg·L?1, 100 mg·L?1and 150 mg·L?1with the adsorbent dosage of 0.2 g. The mixturewas agitated in an orbital shaker at a constant speed of 120 r·min?1for 24 h at a temperature of 20 °C. At predefined time intervals the solutions of the specified flask were separated from the adsorbent materials. The residual concentration of acid scarlet 3R was determined by using a UV-VIS spectrophotometer at a wavelength of 506 nm. The adsorption capacity (qt, mg·g?1) at predefined moments was calculated by using Eq. (1):

    where qtis monolayer adsorption capacity of the adsorbent at time (mg·g?1), C0is initial dye concentration (mg·L?1), Ctis dye concentration at time (mg·L?1), m is adsorbent mass (g) and V is volume of the adsorbate solution (L).

    2.2.2 Adsorption thermodynamic experimentation

    The dye solutions were put in a 250 ml Erlenmeyer flask for conducting the tests. The initial concentration varied from 50 mg·L?1to 400 mg·L?1with an adsorbent dosage of 0.2 g. The experiments were carried out at 20 °C, 30 °C and 40 °C, respectively. The dye concentration retained in the adsorbent phase (qe, mg·g?1) was calculated by using Eq. (2):

    where C0is the initial dye concentration (mg·L?1), Ceis the equilibrium concentration of the dye (mg·L?1), m is the adsorbent mass (g), V is volume of the adsorbate solution (L) and qeis the adsorption capacity of the adsorbent at equilibrium (mg·g?1).

    3 PREPARATION OF ADSORBENT

    Dried sludge samples and straw were crushed to an average particle size of 75 μm and mixed with solid ZnCl2to a final concentration of 30% (g·g?1). The mixture was pyrolyzed in a stainless steel container (60 mm inside diametor) in a hypoxic environment at 400 °C for 120 min. The resulting sample was washed several times with 3 mol·L?1HCl and rinsed with deionized water until the pH of the washing effluent reached between 6 and 7. The product was then dried to constant mass in a drum drier at 105 °C.

    The physical characteristics of the adsorbents, including the specific surface area, pore volume distribution and pore diameter, were measured with a surface area analyzer (ASAP 2020 M, Micro-meritics Instrument Co., USA) by using the adsorption isotherms for gas adsorption (N2, 77 K) [17]. The specific surface area of the adsorbent was 829.49 m2which was calculated by using the Langmuir equation. Micropore volume (Vmi) was 0.176 cm3·g?1obtained by the t-plot method. Desorption average pore radius (2 V·A?1) was 5.0 nm calculated by the Barrette Joyner Halenda (BJH) method.

    4 RESULTS AND DISCUSSION

    4.1 Adsorption kinetics studies

    The influence of adsorption time on adsorption capacities of acid scarlet 3R were investigated with three dye concentration of 50 mg·L?1, 100 mg·L?1, and 150 mg·L?1at 25 °C and 4 g·L?1adsorbent dosage. The results are shown in Fig. 1.

    Figure 1 qt-t curve of acid scarlet 3R on low-cost adsorbent

    Figure 1 reveals that with the increase in concentration, the equilibrium adsorption capacity of acid scarlet 3R onto the adsorbent also increases. Furthermore, the lower the concentration, the shorter time it needs to reach the equilibrium.

    In order to comprehensively study adsorption kinetics characteristics of acid scarlet 3R onto the adsorbent and find the most suitable the kinetics model to describe the adsorption process, this paper chooses the pseudo first order kinetics equation, pseudo second kinetics equation, and particle diffusion equation to fit adsorption kinetics data, respectively. The suitability of three kinds of kinetics models was determined according to the linear correlation coefficient R of the fitting equation.

    The pseudo first order kinetics equation has been widely used to describe adsorption dynamics. The model assumes that the adsorption is a pseudo chemical reaction process and the limiting factor for adsorption is the resistance of mass transfer inside granules. Its expression is as follows:

    The boundary condition: t=0 and qt=0.

    Integrating Eq. (3) and applying the initial conditions, we have:

    where k1is the adsorption rate constant of pseudo first order (min?1).

    The pseudo second order kinetics equation has also been widely used to describe the adsorption dynamics. The model also assumes that adsorption is a pseudo chemical reaction process. However, unlike the pseudo first order kinetics equation, this modeldescribes the whole process of adsorption and assumes that the limiting factor for adsorption is the adsorption mechanism rather than the resistance of mass transfer inside granules. The model of pseudo second order kinetics is expressed as Eq. (5):

    The boundary condition is t=0 and qt=0.

    After definite integration by applying the initial conditions, Eq. (5) becomes:

    where k2is the adsorption rate constant of pseudo second order (g·mg?1·min?1).

    Intra-particle diffusion process is often the rate-controlling step in many adsorption processes. The possibility of intra-particle diffusion was explored by using Eq. (7):

    where kpis the adsorption rate constant of the intra-particle diffusion (mg·g?1·min?0.5). Fitting the adsorption kinetics data of acid scarlet 3R with the above motioned three kinetics models, the linear fitting curve and fitting equation can be obtained. The equation parameters can also be calculated by Eqs. (3)-(7) and the results are shown in Figs. 2 to 4 as well as Table 1.

    Figure 2 Pseudo first order kinetics fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    Figure 3 Pseudo second order kinetics fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    Figure 4 Diffusion equation fitting curve of acid scarlet 3R on low-cost adsorbent■ 50 mg·L?1, Exp.; ● 100 mg·L?1, Exp.; ▲ 150 mg·L?1, Exp.;50 mg·L?1, model;100 mg·L?1, model;150 mg·L?1, model

    From Figs. 2 to 4 and Table 1, the best model to generate a good fit to the experimental data is the pseudo-second-order model (R2>0.99). It shows that acid scarlet 3R adsorption mechanism on the sludgestraw adsorbent includes all the adsorption process, such as external liquid film diffusion, surface adsorption, and intra-particle diffusion. In addition, the maximum adsorption capacity obtained by experiment is close to that calculated by model, which further verified the validity of the above mentioned conclusion.

    According to the linear regression correlation coefficient R2values (R2: 0.91-0.93), the intra-particle diffusion model shows limited applicability for theadsorption process. The fitting lines of qtvs. t0.5do not pass through the origin (C≠0), indicating that the presence of intra-particle diffusion process is one of the rate-controlling steps, besides many other processes controlling the rate of adsorption, such as surface adsorption and liquid film diffusion control, all of which are more likely to be operating simultaneously. These findings are in agreement with those obtained by other workers [16, 18].

    Table 1 Fitting kinetics parameters of acid scarlet 3R

    4.2 Adsorption thermodynamics studies

    The adsorption of acid scarlet 3R onto the adsorbent was investigated at 20 °C, 30 °C and 40 °C, respectively. The concentration of acid scarlet 3R varied from 50 mg·L?1to 400 mg·L?1. Primary discussion for the adsorption mechanism of acid scarlet 3R was progressed.

    The commonly used adsorption isotherm equations are the Langmuir isothermal adsorption equation and Freundlich isothermal adsorption equation.

    The Langmuir isothermal adsorption equation assumes that the adsorption is a chemical process, one adsorption site only adsorbs one molecule adsorbate, that is to say, the adsorption is assumed to occur at a specific uniformity site on the surface of the adsorbent. Langmuir isothermal adsorption equation is mainly used to describe the single molecular layer adsorption. Its linear expression is as follows:

    where Ceis the equilibrium concentration (mg·L?1), b is the Langmuir constant (L·mg?1) and Qmis the saturated absorption capacity (mg·g?1).

    Freundlich isothermal adsorption equation is an empirical formula, which describes equilibrium on heterogeneous surfaces and hence does not assume monolayer capacity. The linear expression is as follows:

    where KFis the Freundlich constants, 1/n is the index of concentration, KFand 1/n are indicators of the adsorption capacity and adsorption intensity. 1/n values between 0.1 and 0.5 represent good adsorption potential of the adsorbent.

    The adsorption experiments of acid scarlet 3R were conducted at 20 °C, 30 °C and 40 °C, respectively. The experimental data were fitted using Eqs. (8) and (9) respectively. The fitting isotherm equations are shown in Figs. 5 and 6.

    From Figs. 5 and 6, the experimental data are better fitted to the Langmuir isotherm than Freundlich isotherm. It indicates that the adsorption of acid scarlet 3R belongs to the monolayer adsorption and mainly occurs in micropores.

    The parameters of the fitting isotherm equation are shown in Tables 2 and 3.

    Figure 5 Fitting curve of Freundlich isotherm equation of acid scarlet 3R on low-cost adsorbent■ 20 °C, Exp.; ● 30 °C, Exp.; ▲ 40 °C, Exp.;?20 °C, model;?30 °C, model; ? 40 °C, model

    Figure 6 Fitting curve of Freundlich isotherm equation of acid scarlet 3R on low-cost adsorbent■ 20 °C, Exp.; ● 30 °C, Exp.; ▲ 40 °C, Exp.;20 °C, model;30 °C, model;40 °C, model

    Table 2 Fitting parameters of Langmuir isotherm equation

    Table 3 Fitting parameters of Freundlich isotherm equation

    From Tables 2 and 3, it can be seen that Langmuir equation parameters Qmincrease in accordance with the increase of temperature, which implies that the adsorption of acid scarlet 3R onto the adsorbent is an endothermic process where a higher temperature is more conducive to adsorption. The concentration index of the Freundlich model 1/n is between 0.1 and 0.5. Thus, it is easier to adsorb acid scarlet 3R from wastewater.

    Wang et al. [18] have studied adsorption kinetics of methylene blue, crystal violet and basic fuchsine onto dried waste sludge. The experimental data were analyzed by using several kinetic equations. The results showed that the adsorption of respective dye could be best described by pseudo second order equation. The diffusion process inside granules played an important role in adsorption and Langmuir isotherm was found to be more suitable than Freundlich isotherm for correlation of equilibrium data. Similar results were shown by Phanikumar [13], Yong [14], Yue [16], Zhang [19] and Gupta [20] in the removal of dyes. The above mentioned results were basically consistent with the conclusion of this study.

    4.3 Adsorption effects of sludge-straw adsorbent

    The adsorption effects of acid scarlet 3R onto the sludge-straw adsorbent were investigated. A comparative study with a commercial coal-based activated carbon (the iodine value of 950 mg·g?1) was conducted. The experimental conditions were as follows: pH of 3, adsorption time of 2 h, adsorption temperature of 26 °C and initial concentration of 250 mg·L?1. Fig. 7 shows the decolorization rate of acid scarlet 3R onto sludge-straw adsorbent and commercial activated carbon at different dosages.

    Figure 7 Decolorization rate of acid scarlet 3R at different dosage

    Both sludge-straw adsorbent and commercial activated carbon have good performance for acid scarlet 3R adsorption. Although the adsorption capacity of acid scarlet 3R onto sludge-straw adsorbent is inferior to that of commercial activated carbon at the same dosage, the decolorization rate of acid scarlet 3R onto sludge-straw adsorbent increases to 94.77% close to that of commercial activated carbon when the dosage is up to 1.4 g·L?1. Commercial activated carbon was prepared from high quality coal and expensive for dye removal in wastewater, while sludge-straw adsorbent was prepared from solid waste and relatively cheap compared with commercial activated carbon. The potential lower cost of the sludge-straw adsorbent might make it more attractive for practical applications.

    5 CONCLUSIONS

    The studies indicated that the adsorbent developed from sludge and straw was potential to act as an active carbon for the removal of the acid scarlet 3R from colored wastewater. The kinetics and thermodynamic experimentation were investigated, finding that the adsorption was best suited to the pseudo second order kinetics equation with higher correlation coefficients R and the thermodynamic data were also correlated better with the Langmuir model than the Freundlich isotherm model.

    REFERENCES

    1 Méndez, A., Gascó, G., Freitas, M.M.A., Siebielec, G., Stuczynski, T., Figueiredoa, J.L., “Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges”, Chem. Eng. J., 108, 169-177 (2005).

    2 Hwang, H.R., Choi, W.J., Kim, T.J., Kim, J.S., Oh, K.J., “The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent”, J. Anal. Appl. Pyrol., 83, 220-226 (2008).

    3 Martin, M.J., Serra, E., Ros, A., Balaguer, M.D., Rigola, M., “Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment”, Carbon, 42, 1389-1394 (2004).

    4 Fang, P., Cen, C.P., Chen, D.S., Tang, Z.X., “Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0adsorption in simulated flue gas”, Chin. J. Chem. Eng., 18 (2), 231-238 (2010).

    5 Otero, M., Rozada, F., Calvo, L.F., García, A.I., Morán, A., “Elimination of organic water pollutants using adsorbents obtained from sewage sludge”, Dyes and Pigm., 57, 55-65 (2003).

    6 Xu, G.R., Zhang, W.T., Li, G.B., “Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment”, Water Res., 39, 5175-5185 (2005).

    7 Pan, Z.H., Tian, J.Y., Xu, G.R., Li, J.J., Li, G.B., “Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment”, Water Res., 45, 819-827 (2011).

    8 Ren, X.L., Liang, B.H., Liu, M., Xu, X.Y., Cui, M.H., “Effects of pyrolysis temper ature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide”, Bioresour. Technol., 125, 300-304 (2012).

    9 Anfruns, A., María, M.J., Montes-Morán, M.A., “Removal of odourous VOCs using sludge-based adsorbents”, Chem. Eng. J., 166, 1022-1031 (2011).

    10 Shukla, A., Zhang, Y.H., Dubey, P., Shyam, S.S., “The role of sawdust in the removal of unwanted materials from water”, J. Hazard. Mater., 95 (1/2), 137-152 (2002).

    11 Forgacs, E., Cserhati, T., Oros, G., “Removal of synthetic dyes from wastewaters: A review”, Environ. Int., 30 (7), 953-971 (2004).

    12 Crini, G., “Non-conventional low-cost adsorbents for dye removal: A review”, Bioresour. Technol., 97 (9), 1061-1085 (2006).

    13 Geethakarthi, A., Phanikumar, B.R., “Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies”, J. Environ. Sci. Tech., 8 (3), 561-570 (2011).

    14 Fan, H., Yang, J.S., Gao, T.G., Yong, H.L., “Removal of low-moleculor basic dye (azure blue) from aqueous solutions by anative biomass of a newly isolated adsorption sp.: Kinetics equilibrium and biosorption simulation”, J. Taiwan Ins. Chem. Eng., 43, 382-392 (2012).

    15 Nandi, B.K., Goswami, A., Purkait, M.K., “Adsorption characteristics of brilliant green dye on kaolin”, J. Hazard. Mater., 161 (1), 387-395 (2009).

    16 Xie, J.K., Yue, Q.Y., Gao, B.Y., Li, Q., “Adsorption kinetics and thermodynamics of anionic dyes onto sewage sludge derived activated carbon”, Int. J. Environment and Pollution, 45 (1-3), 123-144 (2011).

    17 Chiang, H.M., Chen, T.C., Pan, S.D., Chiang, H.L., “Adsorption characteristics of orange II and chrysophenine on sludge adsorbent and activated carbon fibers”, J. Hazard. Mater., 161 (2/3), 1384-1390 (2009).

    18 Wang, X.S., Lin, H.Q., “Adsorption of basic dyes by dried waste sludge: Kinetic, equilibrium and desorption studies”, Desalin. and Water Treat., 29, 10-19 (2011).

    19 Zhang, L.N., Chen, Q.Y., Ke, Y.J., “Investigation on preparation and decolorization for dye waste water of activated carbon from sludge”, Saf. Environ. Eng., 16, 44-47 (2009).

    20 Gupta, V.K., Jain, R., Siddiqui, M.N., Saleh, T.A., Agarwal, S., Malati, S., Pathak, D., “Equilibrium and thermodynamic studies on the adsorption of the dye Rhodamine-B onto mustard cake and activated carbon”, J. Chem. Eng. Data, 55, 5225-5229 (2010).

    Received 2013-06-24, accepted 2013-10-09.

    * Supported by the Shanxi Science and Technology Agency Research Project (20100321085) and the Scientific Research Foundation of the Shanxi Education Department (20111029).

    ** To whom correspondence should be addressed. E-mail: xlren66@126.com

    猜你喜歡
    楊玲劉敏
    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement
    分娩球聯(lián)合自由體位在初產(chǎn)婦助產(chǎn)護理中的應(yīng)用價值分析
    血型也會改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    結(jié)婚后的動心
    37°女人(2016年3期)2016-09-26 03:09:29
    結(jié)婚后的動心
    幸福家庭(2016年6期)2016-05-14 13:35:04
    結(jié)婚后的動心
    37°女人(2016年3期)2016-03-11 16:28:49
    都是愛
    詩選刊(2015年4期)2015-10-26 08:45:21
    第一次勞動體驗
    深夜精品福利| 久久香蕉精品热| 欧洲精品卡2卡3卡4卡5卡区| 国产日本99.免费观看| 欧美国产日韩亚洲一区| 亚洲无线观看免费| 日本与韩国留学比较| АⅤ资源中文在线天堂| 国产欧美日韩一区二区精品| 日本一本二区三区精品| 搞女人的毛片| 亚洲色图av天堂| 无限看片的www在线观看| 在线十欧美十亚洲十日本专区| 最新美女视频免费是黄的| 久久久久精品国产欧美久久久| 老司机午夜十八禁免费视频| 国产v大片淫在线免费观看| 中文在线观看免费www的网站| 天堂网av新在线| 久久久久免费精品人妻一区二区| 国产伦在线观看视频一区| 亚洲精品一卡2卡三卡4卡5卡| 国内精品一区二区在线观看| 午夜两性在线视频| 成人av一区二区三区在线看| 国产成人a区在线观看| 日韩欧美免费精品| 婷婷精品国产亚洲av在线| 国产色婷婷99| 欧美国产日韩亚洲一区| 精品一区二区三区av网在线观看| 亚洲天堂国产精品一区在线| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 在线观看66精品国产| 精品电影一区二区在线| 美女免费视频网站| 97超视频在线观看视频| 国产三级黄色录像| 最近最新中文字幕大全免费视频| 亚洲精华国产精华精| 亚洲人成电影免费在线| 午夜福利成人在线免费观看| 在线播放国产精品三级| 两性午夜刺激爽爽歪歪视频在线观看| 国产av在哪里看| 亚洲狠狠婷婷综合久久图片| 久久精品国产99精品国产亚洲性色| a级一级毛片免费在线观看| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 99热6这里只有精品| 天堂av国产一区二区熟女人妻| 亚洲国产高清在线一区二区三| 欧美bdsm另类| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 全区人妻精品视频| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 亚洲国产精品999在线| 超碰av人人做人人爽久久 | 最新美女视频免费是黄的| 在线天堂最新版资源| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| e午夜精品久久久久久久| 色综合婷婷激情| 女人高潮潮喷娇喘18禁视频| 免费人成视频x8x8入口观看| 国产精品一区二区免费欧美| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| 欧美区成人在线视频| 欧美午夜高清在线| 日韩亚洲欧美综合| 国产成+人综合+亚洲专区| 亚洲精品日韩av片在线观看 | 国产成人av激情在线播放| 欧美日韩黄片免| 亚洲av成人av| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产日韩欧美精品在线观看 | 亚洲国产精品久久男人天堂| 午夜福利在线观看免费完整高清在 | 国产伦人伦偷精品视频| 51国产日韩欧美| 欧美中文日本在线观看视频| 国产在线精品亚洲第一网站| 国产精品乱码一区二三区的特点| 婷婷丁香在线五月| 日本在线视频免费播放| 日日摸夜夜添夜夜添小说| 日本成人三级电影网站| 国产成人系列免费观看| 欧美黑人欧美精品刺激| 精品久久久久久久毛片微露脸| 亚洲国产精品成人综合色| 亚洲人成网站在线播| 成年版毛片免费区| 欧美黑人欧美精品刺激| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国产精华一区二区三区| 91在线观看av| 久久99热这里只有精品18| 国产成人影院久久av| 国产色婷婷99| 欧美又色又爽又黄视频| 老鸭窝网址在线观看| 日韩欧美国产在线观看| 又粗又爽又猛毛片免费看| 亚洲狠狠婷婷综合久久图片| 亚洲不卡免费看| 亚洲成人免费电影在线观看| 亚洲性夜色夜夜综合| 亚洲av不卡在线观看| 一级黄色大片毛片| 淫秽高清视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品人妻一区二区三区麻豆 | 亚洲一区二区三区不卡视频| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 免费av毛片视频| 丁香欧美五月| 久久精品夜夜夜夜夜久久蜜豆| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 国产三级黄色录像| 天天添夜夜摸| 国产91精品成人一区二区三区| 免费电影在线观看免费观看| 欧美xxxx黑人xx丫x性爽| 不卡一级毛片| 精品一区二区三区av网在线观看| 精品一区二区三区av网在线观看| 日日夜夜操网爽| 一个人看视频在线观看www免费 | 搡女人真爽免费视频火全软件 | 成人特级黄色片久久久久久久| 特级一级黄色大片| 一区二区三区国产精品乱码| 亚洲一区二区三区不卡视频| 老司机深夜福利视频在线观看| 久久精品亚洲精品国产色婷小说| 老司机深夜福利视频在线观看| 亚洲国产日韩欧美精品在线观看 | 国产精品三级大全| 狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 亚洲人成电影免费在线| 国产69精品久久久久777片| 最近最新中文字幕大全电影3| netflix在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 精品国产美女av久久久久小说| 香蕉丝袜av| 99久久精品国产亚洲精品| 波多野结衣巨乳人妻| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 国产精品 国内视频| 亚洲欧美精品综合久久99| 欧美乱色亚洲激情| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 国产成人av激情在线播放| 动漫黄色视频在线观看| 97超视频在线观看视频| 1024手机看黄色片| 又黄又爽又免费观看的视频| 国产三级黄色录像| 一本精品99久久精品77| 亚洲成人中文字幕在线播放| a在线观看视频网站| 一区二区三区国产精品乱码| 丰满人妻一区二区三区视频av | 国产精品一区二区三区四区免费观看 | 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 亚洲av美国av| 亚洲久久久久久中文字幕| 精品国产超薄肉色丝袜足j| 舔av片在线| 国产精品永久免费网站| 老汉色∧v一级毛片| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 日韩欧美国产一区二区入口| 禁无遮挡网站| 国产免费男女视频| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 日韩高清综合在线| 亚洲中文日韩欧美视频| 久久中文看片网| aaaaa片日本免费| 婷婷精品国产亚洲av| 19禁男女啪啪无遮挡网站| 久久草成人影院| 久久精品夜夜夜夜夜久久蜜豆| 中国美女看黄片| 中文字幕高清在线视频| 亚洲av美国av| 狂野欧美激情性xxxx| 一区二区三区激情视频| 亚洲av熟女| 窝窝影院91人妻| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 韩国av一区二区三区四区| 国产私拍福利视频在线观看| e午夜精品久久久久久久| 国产精品久久久久久久电影 | 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 日本在线视频免费播放| 欧美在线黄色| aaaaa片日本免费| 国产精品久久久久久久电影 | 在线观看66精品国产| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 国内少妇人妻偷人精品xxx网站| 叶爱在线成人免费视频播放| 天堂网av新在线| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 99视频精品全部免费 在线| 亚洲狠狠婷婷综合久久图片| 窝窝影院91人妻| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 久久香蕉精品热| 性色av乱码一区二区三区2| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| svipshipincom国产片| 婷婷精品国产亚洲av在线| 黄片大片在线免费观看| 国产精品一区二区三区四区免费观看 | e午夜精品久久久久久久| 亚洲 欧美 日韩 在线 免费| 国产精品久久视频播放| 国产精品一区二区三区四区免费观看 | 色尼玛亚洲综合影院| 午夜福利在线在线| 午夜精品久久久久久毛片777| 免费看光身美女| 99精品欧美一区二区三区四区| 在线观看午夜福利视频| 欧美国产日韩亚洲一区| 精品久久久久久成人av| 一本综合久久免费| 国产av在哪里看| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| av福利片在线观看| 老汉色av国产亚洲站长工具| 成人av在线播放网站| 最新在线观看一区二区三区| 深爱激情五月婷婷| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 国产精品98久久久久久宅男小说| 精品国产亚洲在线| 久久这里只有精品中国| 亚洲av电影在线进入| 国内少妇人妻偷人精品xxx网站| 一区二区三区激情视频| 久久欧美精品欧美久久欧美| 久久婷婷人人爽人人干人人爱| 高清日韩中文字幕在线| 日本一二三区视频观看| 国产探花在线观看一区二区| 午夜福利在线在线| 丝袜美腿在线中文| 久久这里只有精品中国| a级毛片a级免费在线| 免费在线观看成人毛片| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 亚洲国产色片| 每晚都被弄得嗷嗷叫到高潮| 男人和女人高潮做爰伦理| 成年版毛片免费区| 日韩av在线大香蕉| 中文资源天堂在线| 国产一区二区三区在线臀色熟女| 国产探花在线观看一区二区| 久久精品影院6| 最近最新中文字幕大全电影3| 美女大奶头视频| 很黄的视频免费| 老熟妇仑乱视频hdxx| www.www免费av| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 成人一区二区视频在线观看| 一二三四社区在线视频社区8| 午夜福利成人在线免费观看| 国产一区二区在线观看日韩 | 国产激情偷乱视频一区二区| 国产三级黄色录像| 国产激情偷乱视频一区二区| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 天堂√8在线中文| 久久人妻av系列| 色综合亚洲欧美另类图片| 亚洲人成网站在线播| 五月伊人婷婷丁香| 老司机福利观看| 美女大奶头视频| 日本黄色片子视频| 国产成人系列免费观看| 精品午夜福利视频在线观看一区| 午夜免费成人在线视频| 99热6这里只有精品| 久久久久久九九精品二区国产| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 亚洲av熟女| 国产探花极品一区二区| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 精品免费久久久久久久清纯| 成人国产综合亚洲| 91久久精品国产一区二区成人 | 99在线人妻在线中文字幕| 九色国产91popny在线| 一进一出好大好爽视频| 黑人欧美特级aaaaaa片| 99精品欧美一区二区三区四区| 日本三级黄在线观看| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品成人久久久久久| 欧美中文日本在线观看视频| 男人舔奶头视频| 日韩高清综合在线| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 久久精品国产自在天天线| 最新中文字幕久久久久| 国产国拍精品亚洲av在线观看 | 1024手机看黄色片| 免费看光身美女| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 欧美乱码精品一区二区三区| 日本 av在线| 欧美乱妇无乱码| 国产精品亚洲美女久久久| 极品教师在线免费播放| 久久精品国产亚洲av涩爱 | 成人鲁丝片一二三区免费| 亚洲乱码一区二区免费版| 最新在线观看一区二区三区| 亚洲成人中文字幕在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看 | 99在线视频只有这里精品首页| 日本成人三级电影网站| 久久午夜亚洲精品久久| 精品电影一区二区在线| e午夜精品久久久久久久| 国产野战对白在线观看| 色综合欧美亚洲国产小说| av国产免费在线观看| 亚洲avbb在线观看| 国产精品一及| 午夜精品一区二区三区免费看| 亚洲,欧美精品.| 淫妇啪啪啪对白视频| 国产高清视频在线观看网站| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 亚洲av中文字字幕乱码综合| 舔av片在线| 内射极品少妇av片p| 欧美激情在线99| 波野结衣二区三区在线 | 中文资源天堂在线| 亚洲av熟女| 黄色成人免费大全| 真人一进一出gif抽搐免费| 国产爱豆传媒在线观看| 国产视频内射| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| www日本黄色视频网| 特大巨黑吊av在线直播| 国产三级在线视频| 欧美一区二区亚洲| 高清日韩中文字幕在线| 少妇人妻精品综合一区二区 | 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 十八禁人妻一区二区| 内射极品少妇av片p| 成年女人永久免费观看视频| 国产精品一区二区免费欧美| 热99在线观看视频| 又爽又黄无遮挡网站| 成人国产一区最新在线观看| 成年人黄色毛片网站| 免费av不卡在线播放| 国产极品精品免费视频能看的| 色精品久久人妻99蜜桃| 日本黄大片高清| bbb黄色大片| 国产午夜精品久久久久久一区二区三区 | 国产亚洲欧美在线一区二区| 欧美乱码精品一区二区三区| 色播亚洲综合网| 国语自产精品视频在线第100页| 69av精品久久久久久| 国产亚洲精品久久久久久毛片| 一本久久中文字幕| 国产精品综合久久久久久久免费| bbb黄色大片| 久久人人精品亚洲av| 亚洲avbb在线观看| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 免费在线观看影片大全网站| 露出奶头的视频| 日日夜夜操网爽| 亚洲精品美女久久久久99蜜臀| 丰满人妻熟妇乱又伦精品不卡| 免费看a级黄色片| 国产美女午夜福利| 欧美三级亚洲精品| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 欧美性猛交╳xxx乱大交人| 日日夜夜操网爽| 亚洲av成人av| 国产又黄又爽又无遮挡在线| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 国产高潮美女av| 男插女下体视频免费在线播放| 91九色精品人成在线观看| 有码 亚洲区| 中文字幕久久专区| 欧美黑人欧美精品刺激| av黄色大香蕉| 久久99热这里只有精品18| 法律面前人人平等表现在哪些方面| av中文乱码字幕在线| 女警被强在线播放| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 国产精品久久久久久久电影 | 国产成人a区在线观看| 久久亚洲精品不卡| 老司机福利观看| 国产一区在线观看成人免费| 女人被狂操c到高潮| 精品人妻1区二区| 国产日本99.免费观看| 精品人妻1区二区| 桃色一区二区三区在线观看| 男女午夜视频在线观看| 尤物成人国产欧美一区二区三区| 变态另类丝袜制服| 757午夜福利合集在线观看| 国产精华一区二区三区| 免费看a级黄色片| 丰满人妻熟妇乱又伦精品不卡| 亚洲av免费在线观看| 日日夜夜操网爽| 国产黄色小视频在线观看| 国产视频一区二区在线看| 国产成人aa在线观看| 日韩 欧美 亚洲 中文字幕| 黑人欧美特级aaaaaa片| 国产精品女同一区二区软件 | 国产在视频线在精品| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 精品99又大又爽又粗少妇毛片 | 亚洲avbb在线观看| 亚洲精品日韩av片在线观看 | 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 激情在线观看视频在线高清| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 精品久久久久久久久久久久久| 久久精品影院6| 国产亚洲精品av在线| 少妇裸体淫交视频免费看高清| 亚洲欧美精品综合久久99| 99精品在免费线老司机午夜| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品亚洲一区二区| 久9热在线精品视频| 悠悠久久av| 欧美日韩福利视频一区二区| 精品电影一区二区在线| 国产精品久久视频播放| 又黄又粗又硬又大视频| 国产三级黄色录像| 色综合婷婷激情| 亚洲国产精品999在线| 露出奶头的视频| 欧美乱色亚洲激情| 日日干狠狠操夜夜爽| 久久国产精品影院| 国产淫片久久久久久久久 | 校园春色视频在线观看| 无遮挡黄片免费观看| 成人亚洲精品av一区二区| 久久久久久久久大av| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀| 99热这里只有是精品50| 一二三四社区在线视频社区8| 中文字幕人妻熟人妻熟丝袜美 | 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 午夜a级毛片| 国产 一区 欧美 日韩| 深夜精品福利| 美女被艹到高潮喷水动态| a级毛片a级免费在线| h日本视频在线播放| 精品无人区乱码1区二区| 午夜免费观看网址| 欧美一级a爱片免费观看看| 国产三级黄色录像| 好看av亚洲va欧美ⅴa在| 两个人视频免费观看高清| 欧美最新免费一区二区三区 | 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| a级毛片a级免费在线| 亚洲va日本ⅴa欧美va伊人久久| 最近最新中文字幕大全免费视频| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 亚洲人成网站在线播放欧美日韩| 久久精品91无色码中文字幕| 日韩有码中文字幕| 亚洲av二区三区四区| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| avwww免费| 国内精品久久久久精免费| 免费大片18禁| 少妇熟女aⅴ在线视频| 桃红色精品国产亚洲av| 亚洲专区中文字幕在线| 中出人妻视频一区二区| 免费av毛片视频| 精品一区二区三区av网在线观看| 啦啦啦免费观看视频1| 精品久久久久久成人av| 他把我摸到了高潮在线观看| 国产又黄又爽又无遮挡在线| 有码 亚洲区| 91九色精品人成在线观看| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| 亚洲av免费高清在线观看| av中文乱码字幕在线| 日韩欧美在线二视频| 免费高清视频大片| 香蕉久久夜色| 一个人观看的视频www高清免费观看| 黄色成人免费大全| 在线观看日韩欧美| 亚洲成人精品中文字幕电影| 久久伊人香网站| 亚洲av美国av| 欧美日韩国产亚洲二区| 母亲3免费完整高清在线观看| 在线天堂最新版资源| xxxwww97欧美| 高清日韩中文字幕在线| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线 | 国产av不卡久久|