張倩茹,郭 娟,周 煒
(北京大學(xué)第一醫(yī)院風(fēng)濕免疫科,北京 100034)
ChinJAllergyClinImmunol,2014,8(3):254- 258
大動脈炎(Takayasu’s arteritis, TA)是主要累及主動脈及其主要分支的慢性非特異性全層動脈炎性反應(yīng)。近年研究表明,細胞免疫在TA發(fā)病機制中占據(jù)重要地位,TA動脈壁標(biāo)本免疫組織化學(xué)研究可見較多CD4+T細胞、CD8+T細胞、巨噬細胞、自然殺傷細胞、γδT細胞及中性粒細胞浸潤[1]。本文就近幾年TA免疫發(fā)病機制研究進展作一綜述。
Toll樣受體 (Toll-like receptor, TLR) 是參與非特異性免疫的一類重要蛋白質(zhì)分子,也是連接非特異性免疫和特異性免疫的橋梁。當(dāng)微生物突破機體的物理屏障如皮膚黏膜等時,TLR可將其識別并激活機體產(chǎn)生免疫應(yīng)答。為進一步研究血管炎血管受累情況,Pryshchep等[2]對TLR 1~TLR 9在顳動脈、主動脈、鎖骨下動脈、頸動脈、髂動脈及腸系膜動脈的表達進行了相關(guān)研究,發(fā)現(xiàn)TLR 2和TLR 4廣泛存在于上述6個部位的血管中;進一步應(yīng)用免疫組織化學(xué)法證實,TLR2和TLR4主要表達在大血管的中膜和外膜交界處,而非內(nèi)膜和中膜上。在體外試驗中,以脂多糖刺激動脈壁,導(dǎo)致樹突狀細胞標(biāo)記物CD86、CD83明顯升高,免疫組化法示CD86+細胞主要表達在外膜中,提示TLR可能主要表達于樹突狀細胞上。Deng等[3]報道樹突狀細胞能夠識別細菌等病原體并調(diào)控炎性反應(yīng)類型。將人顳動脈(通過尸檢或手術(shù)切除獲得)植入SCID小鼠制成顳動脈-SCID小鼠模型,移植后第7天將脂多糖注入小鼠體內(nèi),免疫組化法發(fā)現(xiàn)大量T細胞被招募,浸潤至移植動脈并被激活。而在體外試驗中, 樹突細胞通過TLR4識別脂多糖被活化,CC類趨化因子配體20(CC chemokine ligand 20, CCL20)表達增加;表達CCL20受體即CC類趨化因子受體6(CC chemokine receptor 6, CCR6)陽性的T細胞生成增多,從而導(dǎo)致全層動脈炎,這在顳動脈-SCID小鼠模型中也得到了證實。因此,阻斷CCL20-CCR6可能為血管炎的治療提供新方法。
白介素(interleukin, IL)-6是由活化的單核細胞、巨噬細胞和T細胞合成的促炎細胞因子,其作用為B細胞和T細胞激活,成纖維細胞增生、急性時相蛋白合成[4]。正常T細胞表達分泌的活性調(diào)節(jié)蛋白(regulated upon activation, normal T cell expressed and secreted,RANTES)和IL-8是對外周血單個核細胞(peripheral blood mononuclear cell,PBMC)有趨化作用的趨化因子。研究顯示,TA患者IL-6[5]、RANTES[5]和IL-8[6]增加,并和疾病活動度相關(guān)。IL-6和RANTES誘導(dǎo)基質(zhì)金屬蛋白酶(matrix metalloproteinase, MMP)合成,從而降解動脈壁的彈性纖維和膠原纖維。與健康對照組相比,TA患者血清中MMP-2、MMP-3和MMP-9明顯升高,且MMP-3和MMP-9與疾病活動度相關(guān)[7]。由此可見,TA患者IL-6和RANTES升高可誘導(dǎo)浸潤的PBMC和或平滑肌細胞合成分泌MMP增加,破壞動脈壁結(jié)構(gòu)。有報道應(yīng)用 IL-6受體拮抗劑治療難治性TA可使患者病情明顯緩解[8-10],這也證實了IL-6參與TA發(fā)病。
Park等[11]報道,IL-18在TA活動期升高,經(jīng)治療緩解后水平下降且差異有統(tǒng)計學(xué)意義,提示IL-18與TA疾病活動度相關(guān)。有研究顯示,用植物血凝集素+12-十四酸佛波酯-13-乙酸鹽刺激PBMC,與健康對照組相比,TA患者干擾素(interferon,IFN)-γ、IL-2、IL-3、IL- 4、TNF-α的mRNA表達增加,IL-10表達減低;以脂多糖刺激PBMC,與健康對照組相比,TA患者IL-12表達增加,表明IFN-γ、IL-2、IL-3、IL- 4、TNF-α、IL-12、IL-10在TA不同的病理過程中起關(guān)鍵作用[12]。IFN-γ、IL-2、IL-3和IL-12主要由T輔助細胞(T helper cell,Th)1分泌[13]。IL- 4由Th2細胞分泌,在IL-2和IL-12存在的前提下能增加Th1所分泌細胞因子如IFN-γ分泌,誘導(dǎo)發(fā)生細胞免疫[14]。因此,IFN-γ、IL-2、IL-3、IL- 4和IL-12升高,以及IL-10減低,可提示Th1型細胞因子在TA患者中廣泛存在。
TA為全層動脈炎,動脈壁外膜中浸潤的炎性細胞多由滋養(yǎng)血管內(nèi)溢出,這一過程需要激活滋養(yǎng)血管內(nèi)皮細胞,以便淋巴細胞能夠穿出血管壁[15]。TA患者中血漿可溶性血管細胞黏附分子1(soluble vascular cell adhesion molecule-1,sVACM1)水平升高[16],誘導(dǎo)動脈組織中細胞間黏附分子(intercellular adhesion molecule-1, ICAM1)及Ⅰ、Ⅱ型人類白細胞抗原(human leukocyte antigen,HLA)表達增加,有助于識別黏附浸潤的淋巴細胞[1]。內(nèi)皮素-1為內(nèi)皮縮血管肽類,參與內(nèi)皮功能失調(diào)和血管重塑的發(fā)生,研究示TA患者內(nèi)皮素-1表達增加[17]。最終血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)表達增加,導(dǎo)致新生血管形成??傊瑒用}外膜新生血管形成和黏附分子表達上調(diào)造成了TA炎性細胞的聚集。
既往研究表明,TA患者浸潤細胞中有15%的CD4+T細胞和15%的CD8+T細胞[1]。CD4+T細胞能夠通過釋放IFN-γ刺激和維持肉芽腫形成[18]。TA患者外周血中CD4+CD8+比例升高[19],HLA-DR+T細胞數(shù)目增加[20],蛋白激酶C活性增加,細胞內(nèi)Ca水平升高[21],表明其T細胞處于激活狀態(tài)。體外培養(yǎng)人臍帶血管內(nèi)皮細胞時發(fā)現(xiàn),淋巴細胞細胞毒性增加[22]、純化的人主動脈抗原存在時,淋巴細胞增殖明顯[19],表明外周血淋巴細胞易于被主動脈抗原激活。
體液免疫在TA發(fā)病中是否發(fā)揮作用,目前研究仍存在爭議。TA患者尚無特異性自身抗體存在。Park等[23]研究發(fā)現(xiàn),IgM抗內(nèi)皮細胞抗體(anti-endothelial cell autoantibodies,AECAs)可能與TA疾病活動度相關(guān)。Blank等[24]報道,AECAs是通過增加黏附分子表達、核因子-κB (nuclear factor-kappa B,NF-κB)激活及單核細胞的黏附刺激內(nèi)皮細胞導(dǎo)致TA發(fā)生。而Tripathy等[25]研究發(fā)現(xiàn),TA患者AECAs通過補體依賴的細胞毒作用損壞內(nèi)皮細胞,而非抗體依賴的細胞毒作用。Tripathy等[26]還發(fā)現(xiàn),36%TA患者抗膜聯(lián)蛋白V抗體陽性,而對照組陽性率僅為6%,該蛋白可誘導(dǎo)血管內(nèi)皮細胞凋亡,為TA病理生理過程提供了新依據(jù);在該研究中,抗內(nèi)皮細胞抗體見于54%抗膜聯(lián)蛋白V抗體陽性的患者中。而Tripathy等[27]的另一項研究提示,TA患者抗單核細胞抗體顯著增加,且與疾病活動度相關(guān)。TA患者存在抗主動脈抗體早有報道[28],Dhingra等[29]應(yīng)用酶聯(lián)免疫吸附試驗揭示TA患者較健康對照者抗主動脈抗體滴度顯著升高。有研究表明,活動期TA患者抗內(nèi)皮細胞抗體和抗主動脈抗體檢出率明顯高于其他膠原病[30]。Baltazares等[31]應(yīng)用相應(yīng)抗體檢測35例TA患者血清中動脈壁主要蛋白成分(如彈性蛋白、膠原蛋白),結(jié)果與對照組無顯著性差異。綜上所述,目前尚未發(fā)現(xiàn)TA特異性自身抗原,找到TA特異性自身抗體-抗原反應(yīng)將有助認識TA發(fā)病機制。
Nishino等[32]檢測9例TA患者血清中B細胞刺激因子(B cell activating factor,BAFF)水平發(fā)現(xiàn),活動期TA患者BAFF較健康對照組和非活動期TA患者明顯升高,提示BAFF與疾病活動度相關(guān)。抗CD20單克隆抗體rituximab 可用于治療難治性TA。Galarza等[33]的回顧性研究中包括2例TA患者,這2例TA患者應(yīng)用甲氨蝶呤和腫瘤壞死因子拮抗劑均無效,改為rituximab后,1例緩解,另1例則再次改為環(huán)磷酰胺聯(lián)合硫唑嘌呤治療,提示rituximab效果亦欠佳。應(yīng)用rituximab成功治療難治性TA也見于其他文獻報道[34-35]。Hoyer 等[36]通過流式細胞術(shù)分析了17例TA患者外周血B細胞亞群情況,對照組為9例活動期系統(tǒng)性紅斑狼瘡患者和9名健康志愿者,結(jié)果發(fā)現(xiàn)與對照組相比,活動期TA患者外周血CD19+CD20-CD27high細胞增多,這些細胞中80%表達HLA-DR,提示新生細胞增多;活動期TA患者漿母細胞數(shù)目和比例都明顯高于健康對照者和非活動期TA,考慮其與疾病活動度相關(guān);該項研究中有3例活動期難治性TA患者應(yīng)用rituximab治療后病情緩解。這一結(jié)果提示B細胞失衡在TA發(fā)病中也發(fā)揮了重要作用。TA發(fā)病機制復(fù)雜,細胞免疫起主導(dǎo)作用,越來越多的證據(jù)提示體液免疫也發(fā)揮重要作用[37]。確定新的T細胞亞群(如Th17)是否參與TA發(fā)病、尋找TA特異性自身抗體,可加深對TA發(fā)病機制的認識,對TA的診斷和治療有重要意義。
[1]Seko Y, Minota S, Kawasaki A, et al. Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis[J].J Clin Invest, 1994, 93:750.
[2]Pryshchep O, Ma-Krupa W, Younge BR, et al. Vessel-specific Toll-like receptor profiles in human medium and large arteries[J].Circulation, 2008, 118:1276-1284.
[3]Deng J, Ma-Krupa W, Gewirtz AT, et al. Toll-like receptors 4 and 5 induce distinct types of vasculitis[J].Circulation Res, 2009, 104:488- 495.
[4]Akira S, Hirano T, Taga T, et al. Biology of multifunctional cytokines:IL 6 and related molecules (IL 1 and TNF)[J].FASEB J, 1990, 4:2860-2867.
[5]Noris M, Daina E, Gamba S, et al. Interleukin-6 and RANTES in Takayasu arteritis a guide for therapeutic decisions?[J].Circulation, 1999, 100:55-60.
[6]Tripathy NK, Sinha N, Nityanand S. Interleukin-8 in Takayasu’s arteritis:plasma levels and relationship with disease activity[J].Clin Exp Rheumatol, 2004, 22:27-30.
[7]Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis[J].Circulation, 2003, 108:1469-1473.
[8]Nishimoto N, Nakahara H, Yoshio-Hoshino N, et al. Successful treatment of a patient with takayasu arteritis using a humanized anti-interleukin-6 receptor antibody[J].Arthritis Rheum, 2008, 58:1197-1200.
[9]Tombetti E, Franchini S, Papa M, et al. Treatment of refractory Takayasu arteritis with tocilizumab:7 Italian patients from a single referral center[J].J Rheumatol, 2013, 40:2047-2051.
[11] Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis[J].Rheumatol, 2006, 45:545-548.
[12] Tripathy NK, Chauhan SK, Nityanand S. Cytokine mRNA repertoire of peripheral blood mononuclear cells in Takayasu’s arteritis[J].Clin Exp Immunol, 2004, 138:369-374.
[13] Muraille E, Leo O. Revisiting the Th1Th2 paradigm[J].Scandinavian J Immunol, 1998, 47:1-9.
[14] Bream JH, Curiel RE, Yu CR, et al. IL- 4 synergistically enhances both IL-2-and IL-12-induced IFN-γ expression in murine NK cells[J].Blood, 2003, 102:207-214.
[15] Hotchi M. Pathological studies on Takayasu arteritis[J].Heart Vessels, 1992, 7:11-17.
[16] Noguchi S, Numano F, Gravanis MB, et al. Increased levels of soluble forms of adhesion molecules in Takayasu arteritis[J].Internat J Cardiol, 1998, 66:S23-S33.
[17] de Souza AWS, Mariz HA, Neto ETR, et al. Risk factors for cardiovascular disease and endothelin-1 levels in Takayasu arteritis patients[J].Clin Rheumatol, 2009, 28:379-383.
[18] Wagner AD, Bj?rnsson J, Bartley GB, et al. Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology[J].American J Pathology, 1996, 148:1925.
[19] Sagar S, Ganguly NK, Koicha M, et al. Immunopa-thogenesis of Takayasu arteritis[J].Heart Vessels Suppl, 1992, 7:85-90.
[20] Nityanand S, Giscombe R, Srivastava S, et al. A bias in the alphabeta t cell receptor variable region gene usage in Takayasu’s arteritis[J].Clin Exp Immunol, 1997, 107:261-268.
[21] Dhar J, Ganguly NK, Kumari S, et al. Role of calcium and protein kinase C in the activation of T cells in Takayasu’s arteritis[J].Japanese heart J, 1995, 36:341-348.
[22] Scott DG, Salmon M, Scott DL, et al. Takayasu’s arteritis:a pathogenetic role for cytotoxic T lymphocytes?[J].Clin Rheumatol, 1986, 5:517-522.
[23] Park M, Park Y, Jung SY, et al. Anti-endothelial cell antibodies and antiphospholipid antibodies in Takayasu’s arteritis:correlations of their titers and isotype distributions with disease activity[J].Clin Exp Rheumatol, 2006, 24:S10.
[24] Blank M, Krause I, Goldkorn T, et al. Monoclonal anti-endothelial cell antibodies from a patient with Takayasu arteritis activate endothelial cells from large vessels[J].Arthritis Rheum, 1999, 42:1421-1432.
[25] Tripathy NK, Upadhyaya S, Sinha N, et al. Complement and cell mediated cytotoxicity by antiendothelial cell antibodies in Takayasu’s arteritis[J].J Rheumatol, 2001, 28:805-808.
[26] Tripathy NK, Sinha N, Nityanand S. Anti-annexin V antibodies in Takayasu’s arteritis:prevalence and relationship with disease activity[J].Clin Exp Immunol, 2003, 134:360-364.
[27] Tripathy NK, Sinha N, Nityanand S. Antimonocyte antibodies in Takayasu’s arteritis:prevalence of and relation to disease activity[J].Journal Rheumatol, 2003, 30:2023-2026.
[28] Wang H, Ma J, Wu Q, et al. Circulating b lymphocytes producing autoantibodies to endothelial cells play a role in the pathogenesis of Takayasu arteritis[J].Vasc Surg, 2010, 53:174-180.
[29] Dhingra R, Chopra P, Talwar KK, et al. Enzyme-linked immunosorbent assay and immunoblot study in Takayasu’s arteritis patients[J].Indian Heart J, 1997, 50:428- 432.
[30] 黨愛民, 朱俊明, 鄭德裕, 等. 大動脈炎與血管內(nèi)皮損傷[J].高血壓雜志, 2004, 12:323-325.
[31] Baltazares M, Mendoza F, Dábague J, et al. Antiaorta antibodies and Takayasu arteritis[J].Int J Cardiol, 1998, 66:S183-S187.
[32] Nishino Y, Tamai M, Kawakami A, et al. Serum levels of BAFF for assessing the disease activity of Takayasu arteritis[J].Clin Exp Rheumatol, 2009, 28:14-17.
[33] Galarza C, Valencia D, Tobón GJ, et al. Should rituximab be considered as the first-choice treatment for severe autoimmune rheumatic diseases?[J].Clin Rev Allergy Immunol, 2008, 34:124-128.
[34] Caltran E, Di Colo G, Ghigliotti G, et al. Two Takayasu arteritis patients successfully treated with rituximab[J].Clin Rheumatol, 2014:1-2.
[35] Ernst D, Greer M, Stoll M, et al. Remission achieved in refractory advanced takayasu arteritis using rituximab[J].Case Rep Rheumatol, 2012:22-26.
[36] Hoyer BF, Mumtaz IM, Loddenkemper K, et al. Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab[J].Ann Rheum Dis, 2012, 71:75-79.
[37] Arnaud L, Haroche J, Mathian A, et al. Pathogenesis of Takayasu’s arteritis:a 2011 update[J].Autoimmun Rev, 2011, 11:61-67.