• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      殼幔巖漿混合作用與陸內(nèi)環(huán)境高Sr/Y斑巖的形成及成礦:實(shí)例與探討*

      2014-04-11 02:01:51馬星華王志強(qiáng)王超鄢雪龍
      巖石學(xué)報(bào) 2014年7期
      關(guān)鍵詞:包體含礦斑巖

      馬星華 王志強(qiáng) 王超 鄢雪龍

      1.國(guó)土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所,北京 1000372.造山帶與地殼演化教育部重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)地球與空間科學(xué)學(xué)院,北京 1008711.

      從經(jīng)典島弧、陸緣弧環(huán)境斑巖Cu±Au±Mo礦床成礦模型的建立(Lowell and Guilbert,1970; Sillitoe,1972,1979),到近年來(lái)陸內(nèi)環(huán)境(碰撞造山帶或大陸板塊內(nèi)部)斑巖礦床的識(shí)別及其構(gòu)造體制的完善(Richards,2009),人們對(duì)斑巖型礦床的成因認(rèn)識(shí)和勘探找礦思路不斷深入和發(fā)展。代表性成果之一是發(fā)現(xiàn)含礦斑巖往往具有高Sr/Y和La/Yb(或埃達(dá)克質(zhì))地球化學(xué)親和性特征(Thiéblemontetal.,1997; Borisovaetal.,2006),然而,如何合理解釋這一地質(zhì)事實(shí)也成為困擾礦床和巖石學(xué)家多年的難題,爭(zhēng)議一直不斷(Chiaradiaetal.,2012及其引文)?!癆dakite”一詞最早出自Defant and Drummond (1990),用以描述源自年輕(<25Ma)俯沖洋殼具有高Sr(≥400×10-6)、低Y(≤18×10-6)和Yb(≤1.9×10-6)等獨(dú)特地球化學(xué)特征的一套中酸性巖石組合。最初認(rèn)為這些特征與俯沖洋殼發(fā)生部分熔融時(shí)在源區(qū)形成石榴子石±角閃石為主,而沒(méi)有斜長(zhǎng)石的殘留有關(guān)(Martin,1986; Defantetal.,1992)。后來(lái),部分學(xué)者把出現(xiàn)在陸內(nèi)環(huán)境具有類(lèi)似地球化學(xué)特征的巖石也稱(chēng)作“埃達(dá)克巖”,并提出了加厚榴輝巖相下地殼熔融的成因模式(Atherton and Petford,1993; Petford and Atherton,1996; Chungetal.,2003)。同樣,部分學(xué)者在解釋產(chǎn)于陸內(nèi)環(huán)境與Cu、Au、Mo等金屬礦化有關(guān)的高Sr/Y斑巖的成因時(shí)也引用了此模式(張旗等,2002; Wangetal.,2006; Houetal.,2009)。

      然而,一個(gè)至關(guān)重要的問(wèn)題是,含礦斑巖具有高Sr/Y特征并非是巖漿源區(qū)信息的直接反映。因?yàn)楹V斑巖巖漿往往是經(jīng)歷過(guò)復(fù)雜演化后的最終產(chǎn)物(Richards and Kerrich,2007),巖漿從最初的在源區(qū)形成、到隨后的上升遷移和侵位,都很可能是在開(kāi)放、變化的系統(tǒng)中進(jìn)行(Davidson,1996),多種地質(zhì)過(guò)程(例如AFC、MASH、巖漿混合作用等)均可以造成巖漿具有高Sr/Y特征(Castilloetal.,1999; Macphersonetal.,2006; Guoetal.,2007; Moyen,2009; Chenetal.,2013; Maetal.,2013)。因此,人們已逐漸開(kāi)始意識(shí)到埃達(dá)克巖不能代表原始巖漿,不可以簡(jiǎn)單地用高Sr/Y特征反演源區(qū)即存在含石榴子石殘留相,甚或推斷源區(qū)為加厚下地殼(Castillo,2012)。與此同時(shí),越來(lái)越多的研究表明(Keithetal.,1997; Maughanetal.,2002; Maetal.,2013),幔源組份(巖漿、流體及成礦物質(zhì))在斑巖礦床成巖及成礦過(guò)程中扮演著至關(guān)重要的角色。

      本文將以一個(gè)產(chǎn)于陸內(nèi)環(huán)境的斑巖礦床——敖侖花礦床為例,在對(duì)前人關(guān)于成礦巖體研究基礎(chǔ)上,報(bào)道礦區(qū)內(nèi)同期不成礦巖體的地質(zhì)和地球化學(xué)特征,通過(guò)對(duì)比兩者的差異來(lái)探討含礦斑巖高Sr/Y的原因及控制成礦與否的關(guān)鍵因素。

      圖1 興蒙造山帶地質(zhì)簡(jiǎn)圖(a,據(jù)內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局,1991修編)、敖侖花礦區(qū)地質(zhì)圖(b,據(jù)Ma et al.,2013修編)及含礦斑巖中的代表性暗色包體照片(c、d)Fig.1 Geological sketch map of the Xing’an-Mongolian Orogenic Belt (a,modified after BGMRI,1991),geological map of the Aolunhua deposit (b,modified after Ma et al.,2013) and photographs of MMEs within the ore-bearing porphyry (c,d)

      1 野外地質(zhì)和巖石學(xué)

      位于大興安嶺南段的敖侖花礦床(圖1a),是西拉木倫多金屬成礦帶內(nèi)近幾年發(fā)現(xiàn)的以Mo、Cu礦化為主的斑巖型礦床(張連昌等,2010;曾慶棟和劉建明,2010)。區(qū)內(nèi)與成礦相關(guān)的巖體是二長(zhǎng)花崗斑巖,出露面積約1.2km2,以巖株形式侵位于上二疊統(tǒng)索倫組(P2s)中(圖1b)。通過(guò)SHRIMP鋯石U-Pb定年獲得該巖體的形成年齡為134Ma,與輝鉬礦Re-Os等時(shí)線成礦年齡(132Ma)在誤差范圍內(nèi)一致(馬星華等,2009,2010)。野外地質(zhì)調(diào)查顯示,含礦斑巖內(nèi)發(fā)育鎂鐵質(zhì)暗色包體(MMEs),大小不等(5~40cm),呈橢圓或渾圓狀(圖1c,d),包體與寄主巖石的界限復(fù)雜多樣,或截然分明或模糊過(guò)渡,有些包體表現(xiàn)出明顯的流動(dòng)拉伸形態(tài),顯示出巖漿包體的特征(Maetal.,2013)。

      在礦區(qū)東南部,出露一處不含礦的巖體(下文簡(jiǎn)稱(chēng)“貧礦巖體”)(圖1b),主要由黑云母花崗巖構(gòu)成(面積約6km2),空間上該巖體向礦區(qū)方向延伸與石英斑巖(脈)相連。與含礦斑巖不同的是,貧礦巖體中不發(fā)育鎂鐵質(zhì)包體。LA-ICP-MS鋯石定年結(jié)果顯示其形成于126Ma(鄒滔等,2011),與成礦巖體同為大興安嶺地區(qū)早白堊世巖漿活動(dòng)高峰期的產(chǎn)物。

      圖2 敖侖花礦區(qū)含礦斑巖(a)、包體(b)、包體中針狀磷灰石(c)和貧礦花崗巖(d)巖相學(xué)照片Hb-角閃石;Bt-黑云母;Pl-斜長(zhǎng)石;Ksp-鉀長(zhǎng)石;β-Qt-β石英;Ttn-榍石;Mag-磁鐵礦;Ap-磷灰石Fig.2 Representative petrographic photographs for the ore-bearing porphyry (a),MMEs (b),needlelike apatite in MMEs (c) and barren granite (d) of the Aolunhua depositHb-hornblende; Bt-biotite; Pl-plagioclase; Ksp-K-feldspar; β-Qtz-β-form quartz; Ttn-titanite; Mag-magnetite; Ap-apatite

      敖侖花含礦二長(zhǎng)花崗斑巖及其內(nèi)部包體的巖石學(xué)特征已在Maetal.(2013)中給出,結(jié)合本次新的巖相學(xué)觀察,總結(jié)如下:含礦斑巖主要礦物組成包括斜長(zhǎng)石、堿性長(zhǎng)石、石英、黑云母和角閃石,斑晶礦物主要是自形角閃石和板狀斜長(zhǎng)石,斜長(zhǎng)石常具有明顯環(huán)帶結(jié)構(gòu)(圖2a);副礦物有鋯石、榍石、磷灰石和磁鐵礦等。暗色包體的成份以閃長(zhǎng)質(zhì)為主,具有細(xì)粒、等粒結(jié)構(gòu)(圖2b),礦物組成包括角閃石、斜長(zhǎng)石、鉀長(zhǎng)石、石英和黑云母;副礦物有榍石、鋯石、磁鐵礦、磷灰石等(圖2b,c)。

      區(qū)內(nèi)貧礦的黑云母花崗巖具有正常的花崗結(jié)構(gòu),其主要礦物包括石英(30%~40%)、鉀長(zhǎng)石(30%~45%)、斜長(zhǎng)石(20%~25%)和黑云母(5%~8%),不含角閃石。其中黑云母多為它形充填結(jié)構(gòu),石英常以斑晶形式出現(xiàn),具有高溫β石英晶形(圖2d)。副礦物包括鋯石、磷灰石、磁鐵礦和鈦鐵礦等。

      2 元素地球化學(xué)

      選擇9件黑云母花崗巖進(jìn)行主、微量元素地球化學(xué)分析。測(cè)試在中國(guó)地質(zhì)大學(xué)(北京)地學(xué)實(shí)驗(yàn)中心完成,主量元素通過(guò)Li2B4O7和LiBO2(67:33)混合熔劑和加拿大Glaisse高溫自動(dòng)燃?xì)馊蹣訖C(jī)制樣,采用X-熒光光譜法(XRF)分析,測(cè)試條件為x射線工作電壓40kV,電流60mA,分析誤差在3%以內(nèi)。微量和稀土元素分析采用ICP-MS方法完成,含量小于10×10-6的元素分析誤差在10%,對(duì)含量超過(guò)10×10-6的元素誤差為5%。

      分析結(jié)果顯示(表1),敖侖花貧礦巖體具有高SiO2(74%~78%)和K2O(4.3%~4.9%),低CaO(0.2%~1.1%)、MgO(<0.3%)、TiO2和P2O5的特征,顯示準(zhǔn)鋁質(zhì)到過(guò)鋁質(zhì)性質(zhì)(A/CNK=0.9~1.2)。此外,貧礦巖體具有較低的Mg#值(2~30),與實(shí)驗(yàn)?zāi)M的基性下地殼熔體Mg#值一致(<40,Rapp and Watson,1995),明顯低于含礦斑巖(Mg#=45~52)(鄒滔等,2011; Maetal.,2013)。

      貧礦巖體相對(duì)富集輕稀土(LREE)、Th、U和Pb,虧損Sr、Ba、Eu和Ti等元素(圖3),稀土配分模式上顯示出極負(fù)的Eu異常(δEu=0.05~0.2)。此外,貧礦巖體具有較低的Cr(1×10-6~6×10-6)和Ni(1.2×10-6~3.0×10-6)含量(表1)。這些特征明顯區(qū)別于含礦斑巖,例如后者Eu異常不明顯(圖3),而富集Sr、Ba和Rb等大離子親石元素(LILE),具有較高的Cr、Ni含量(鄒滔等,2011; Maetal.,2013)。在Sr/Y-Y和(La/Yb)N-YbN圖解上(Martin,1986; Drummond and Defant,1990),含礦斑巖和包體因具有較高的Sr/Y、(La/Yb)N和低的Y、YbN值,數(shù)據(jù)點(diǎn)基本投在埃達(dá)克巖區(qū),而貧礦花崗巖樣品則分布在正常的島弧巖漿巖系列范圍內(nèi)(圖4)。

      3 討論

      3.1 含礦斑巖傳統(tǒng)成因模式遺留的問(wèn)題

      目前認(rèn)為具有埃達(dá)克巖地球化學(xué)特征的巖石主要存在以下四種成因模式:(1)俯沖洋殼的熔融(Kay,1978; Defant and Drummond,1990);(2)加厚的鎂鐵質(zhì)下地殼熔融(Atherton and Petford,1993; Petford and Atherton,1996; Chungetal.,2003);(3)拆沉的下地殼熔融(Kay and Kay,1993; Xuetal.,2002; Wangetal.,2006);(4)富水玄武質(zhì)巖漿的分離結(jié)晶(Castilloetal.,1999; Macphersonetal.,2006)。顯然,除了模式(4)認(rèn)為高Sr/Y(或La/Yb)與巖漿演化過(guò)程有關(guān)外,其余三種模式均默認(rèn)高Sr/Y是原始巖漿的固有性質(zhì)(Chiaradiaetal.,2012)。目前,對(duì)于非弧(non-arc)環(huán)境埃達(dá)克巖來(lái)說(shuō),最為流行的觀點(diǎn)是加厚或拆沉的鎂鐵質(zhì)下地殼熔融,特別是隨著近年來(lái)陸內(nèi)環(huán)境斑巖礦床的發(fā)現(xiàn),眾多學(xué)者應(yīng)用該模式來(lái)解釋含礦斑巖的高Sr(La)和低Y(Yb)特征(Wangetal.,2006; Houetal.,2011)。

      盡管熔融實(shí)驗(yàn)表明與石榴子石殘留物平衡的熔體具有虧損Y和HREE(重稀土)的特點(diǎn)(Rapp and Watson,1995),暗示加厚的下地殼(榴輝巖或角閃榴輝巖)似乎可以熔融出這種巖漿,然而,對(duì)于能夠分異或出溶大量熱液流體的含礦巖漿而言,還不得不考慮以下幾個(gè)關(guān)鍵問(wèn)題:(1)含礦巖漿是濕巖漿體系(一般H2O≥4%; Ridolfietal.,2010),干的榴輝巖或角閃榴輝巖發(fā)生熔融是否能夠生成這種足夠富水的巖漿?(2)下地殼巖石中所含的成礦物質(zhì)相對(duì)有限,并且其熔融形成的長(zhǎng)英質(zhì)熔體無(wú)論對(duì)金屬元素(特別是Cu、Au)還是對(duì)絡(luò)合元素(例如S、Cl等)的溶解度都不高(Kress,1997),因此,僅靠單一的下地殼熔融,是否能夠提供成礦所需的巨量金屬和絡(luò)合劑?(3)成礦物質(zhì)一般以硫化物的形式儲(chǔ)集在源區(qū),在熔融過(guò)程中硫化物若發(fā)生分解、釋放金屬,需要在較高的氧逸度(fO2>FMQ+2; Mungall,2002)條件下進(jìn)行, 而下地殼fO2較低且基本保持不變(Sillitoe,2010), 難以形成較富礦的巖漿;(4)已發(fā)表的大量數(shù)據(jù)表明,含礦斑巖HREE相對(duì)于MREE(中稀土)并非十分虧損。正如圖3所示,敖侖花含礦斑巖稀土配分具有典型的凹曲式,相對(duì)虧損MREE,重稀土內(nèi)部分餾不明顯((Dy/Yb)N=1.3~1.8),與Moyen(2009)模擬的石榴子石平衡熔體的稀土配分模式(圖3中虛線表示)相差較大,而與角閃石平衡熔體的配分模式(實(shí)線)十分一致,說(shuō)明角閃石是主要的分離相或殘留相礦物,而非石榴子石。許多文獻(xiàn)未能對(duì)含礦斑巖的凹曲式稀土配分特征給予重視,僅僅根據(jù)高Sr低Y就推測(cè)源區(qū)為含石榴子石的加厚下地殼,這種推斷是不合適的。

      表1敖侖花礦區(qū)主要巖漿巖常量(wt%)和微量(×10-6)元素分析結(jié)果
      Table 1Major (wt%) and trace (×10-6) elements data for the igneous rocks of the Aolunhua deposit

      樣品號(hào)10W?110W?210W?310W?410W?510W?610W?710W?810W?9P?avg.M?avg.巖石類(lèi)型貧礦花崗巖含礦斑巖?包體?SiO276 7678 3174 3277 9677 3777 1277 1177 6876 3168 2762 47TiO20 040 110 150 040 040 110 100 100 110 530 89Al2O312 8110 3413 1211 0111 5612 6212 3812 6112 6914 9115 84Fe2OT30 791 111 350 840 851 171 131 111 262 833 90MnO0 010 030 020 030 030 030 020 020 030 030 06MgO0 090 130 210 070 160 060 010 010 071 092 36CaO0 200 741 130 680 770 430 280 220 162 604 29Na2O3 503 043 703 943 463 103 532 933 684 744 35K2O4 654 914 334 424 464 744 824 684 923 773 90P2O50 010 010 030 010 010 010 000 010 000 190 29LOI0 550 611 090 350 660 520 520 560 680 981 34Total99 4099 3499 4699 3599 3799 9299 9199 9399 9399 7899 56Li11 618 919 510 79 911 69 36 96 99 414 9Sc2 61 83 12 22 32 42 22 32 63 58 0Ti269765104829727970364969574624985362V2 35 710 71 01 73 64 44 05 747 697 9Cr3 62 65 25 45 81 11 61 51 1106 843 6Co0 20 51 00 20 20 50 70 80 75 47 1Ni1 51 22 32 72 71 62 83 01 33 54 5Cu7 53 161 32 64 22 52 42 32 879 8138 9Ga16 717 916 016 815 817 617 416 917 219 521 3Rb16619915514714321221222220192 595 7Sr52 5167 0251 079 376 036 329 836 740 1644 2749 6Y22 722 627 622 423 024 827 226 918 49 712 5Zr126175173128119140153144145127130Nb11 115 816 013 113 015 315 315 914 15 66 8Mo0 51 41 93 71 70 80 72 01 919 1108 2Ba10723833376105145118127167809611La13 132 936 816 316 641 143 438 823 821 324 9Ce32 165 474 339 639 978 576 570 274 741 850 0Pr3 97 68 44 84 89 110 28 95 45 16 1Nd14 225 928 417 317 529 633 329 117 419 724 3Sm3 44 75 24 04 05 36 15 43 13 54 4Eu0 10 20 30 10 10 20 10 10 11 01 3Gd3 24 04 63 73 74 55 14 62 72 83 6Tb0 50 60 70 60 60 70 80 80 50 40 5Dy3 53 94 43 73 74 24 74 43 12 02 5Ho0 70 80 90 80 80 91 00 90 70 30 5Er2 22 42 72 32 32 62 82 72 11 01 2Tm0 30 40 40 30 30 40 40 40 40 10 2Yb2 42 62 92 42 52 83 02 92 50 91 1Lu0 40 40 40 40 40 40 50 40 40 10 2Hf3 84 74 54 03 84 85 35 04 83 13 1Ta0 81 01 00 90 91 21 21 30 90 40 4Pb21 922 011 728 025 119 719 519 119 68 87 9Th13 015 416 014 213 716 617 418 015 14 83 6U4 33 83 06 66 72 52 01 32 01 91 9Mg#21 521 627 017 030 49 92 72 112 047 058 8Sr/Y2 37 49 13 53 31 51 11 42 267 161 2(La/Yb)N3 99 19 14 84 810 510 49 77 017 017 4YbN14 215 217 114 314 516 417 616 914 45 36 1K/Ba35917210848535427234030724440 154 4Zr/Hf33 637 338 631 831 629 028 828 930 039 740 5

      注:含礦斑巖和包體數(shù)據(jù)為平均值(引自鄒滔等,2011和Maetal.,2013)

      圖3 敖侖花礦區(qū)巖漿巖稀土和微量元素圖解礦物平衡熔體模擬引自Moyen (2009);貧礦巖體數(shù)據(jù)來(lái)自本文,其他數(shù)據(jù)引自鄒滔等(2011)和Ma et al.(2013)Fig.3 Chondrite-normalized rare earth elements patterns and primitive mantle-normalized trace elements diagrams of igneous rocks from the Aolunhua depositData for simulated melts are from Moyen (2009).Data for barren granite are from this study,data for MMEs and ore-bearing porphyries are from Zou et al.(2011) and Ma et al.(2013)

      圖4 敖侖花礦區(qū)巖漿巖Sr/Y-Y和(La/Yb)N-YbN圖解(底圖據(jù)Martin,1986; Drummond and Defant,1990)貧礦巖體數(shù)據(jù)來(lái)自本文,其他數(shù)據(jù)引自鄒滔等(2011)和Ma et al.(2013).角閃石(56%)+單斜輝石(31%)+榍石(5%)+磷灰石(5%)+磁鐵礦(3%)分離結(jié)晶趨勢(shì)線;②斜長(zhǎng)石分離結(jié)晶趨勢(shì)線Fig.4 Sr/Y vs.Y (a) and (La/Yb)N vs.YbN (b) discrimination diagrams for adakites and normal arc rocks from the Aolunhua deposit (after Martin,1986; Drummond and Defant,1990)Data for barren granite are from this study,data for MMEs and ore-bearing porphyries are from Zou et al.(2011) and Ma et al.(2013).①trends line of fractional crystallization of hornblende (56%)+clinopyroxene (31%)+titanite (5%)+apatite (5%)+magnetite (3%); ②trends line of fractional crystallization of plagioclase

      3.2 含礦斑巖混合成因的證據(jù)及普遍性

      如前文所述,敖侖花含礦斑巖中存在許多鎂鐵質(zhì)暗色包體(MMEs)(圖1c,d)。目前認(rèn)為發(fā)育在長(zhǎng)英質(zhì)巖石中的暗色包體主要有三種成因類(lèi)型:(1)同源巖漿的礦物堆晶體(Noyesetal.,1983);(2)經(jīng)歷過(guò)部分熔融后的難熔殘留體(Whiteetal.,1999);(3)幔源巖漿包體,即代表添加到寄主長(zhǎng)英質(zhì)巖漿中的外來(lái)鎂鐵質(zhì)巖漿(Holdenetal.,1987; Chenetal.,2008; Feeleyetal.,2008)。

      Maetal.(2013)通過(guò)對(duì)敖侖花含礦斑巖中暗色包體的詳細(xì)研究,認(rèn)為它們是幔源巖漿包體,而不是“堆晶體”或“殘留體”,主要證據(jù)包括:(1)包體多呈橢圓或渾圓狀(圖1c),顯示塑性變形特征,暗示包體與寄主巖石曾經(jīng)以巖漿狀態(tài)共存;(2)包體不具有堆晶或變質(zhì)結(jié)構(gòu),而是典型的巖漿結(jié)晶結(jié)構(gòu)(圖2b);(3)與寄主巖石斑狀結(jié)構(gòu)不同,包體多為細(xì)、等粒結(jié)構(gòu),且發(fā)育針狀磷灰石(圖2c),指示巖漿在混合時(shí)發(fā)生過(guò)淬冷過(guò)程;(4)暗色包體中可見(jiàn)具溶蝕結(jié)構(gòu)的長(zhǎng)石、石英,指示巖漿注入時(shí)曾發(fā)生過(guò)晶體交換;(5)鋯石定年結(jié)果顯示,包體和含礦斑巖年齡在誤差范圍內(nèi)一致(~132Ma)(鄒滔等,2011),鋯石CL圖像顯示包體中無(wú)繼承鋯石,而含礦斑巖則存在繼承鋯石,說(shuō)明兩者來(lái)自不同的源區(qū)但近同時(shí)形成。如Maetal.(2013)所述,寄主巖石含礦斑巖也保存了一系列巖漿混合的證據(jù):(1)含礦斑巖中的斜長(zhǎng)石存在結(jié)構(gòu)和成份不平衡環(huán)帶,An值從核部到邊部突然升高,這與富Ca巖漿添加到低Ca巖漿中有關(guān)(Kemp,2004; Browneetal.,2006);(2)含礦斑巖Mg#值(45~52)明顯高于玄武巖實(shí)驗(yàn)熔體Mg#值(≤40; Rapp and Watson,1995),暗示含礦斑巖不可能單由地殼巖石熔融而來(lái)(Chenetal.,2008);(3)含礦斑巖中單顆粒鋯石的核部和邊部εHf值差別較大,這也與開(kāi)放體系下巖漿發(fā)生混合作用有關(guān)(Griffinetal.,2002; Kemp and Hawkesworth,2006)。

      綜上可知,含礦斑巖不是由單一的下地殼部分熔融而成,幔源巖漿在其形成過(guò)程中具有重要參與。含礦斑巖中普遍發(fā)育的鎂鐵質(zhì)巖漿包體成為指示這一過(guò)程的最直觀證據(jù)。值得注意的是,除了敖侖花礦床,目前國(guó)內(nèi)外已有多個(gè)斑巖礦床的成礦巖體中發(fā)現(xiàn)了鎂鐵質(zhì)巖漿包體,例如云南的普朗(曹殿華等,2009)和馬廠箐(郭曉冬等,2012)、安徽的銅陵銅官山(杜楊松等,2004)、西藏的甲瑪(彭惠娟等,2011)和驅(qū)龍(楊志明等,2008)、新疆的希勒庫(kù)都克(龍靈利等,2010),以及俄羅斯的Zhireken(Berzina and Sotnikov,2004)等斑巖礦床。因此,斑巖體中廣泛發(fā)育的鎂鐵質(zhì)暗色包體表明幔源巖漿對(duì)含礦斑巖成巖及成礦的貢獻(xiàn)可能具有普遍意義。

      3.3 含礦斑巖高Sr/Y成因

      敖侖花含礦斑巖中的鎂鐵質(zhì)包體顯著富集Sr、Ba、LREE等LILE,虧損Nb、Ta、Ti等HFSE,顯示出與典型弧巖漿類(lèi)似的地球化學(xué)特征,加之其相對(duì)低硅、富鎂(Mg#=54~63),具有中等放射性成因Nd和Hf同位素(Maetal.,2013),說(shuō)明包體巖漿很可能來(lái)自俯沖流體交代的富集巖石圈地幔,這與包體普遍發(fā)育自形角閃石、榍石和原生磁鐵礦等礦物所指示的巖漿體系富H2O、高fO2性質(zhì)是一致的??紤]到敖侖花礦床形成于早白堊世(~132Ma),此時(shí)華北板塊和西伯利亞板塊已完成碰撞對(duì)接(Ruzhentsev and Pospelov,1992; Xiaoetal.,2003),因此地幔的富集主要與陸-陸碰撞前的俯沖階段(主要是古生代時(shí)期)古亞洲洋板片長(zhǎng)期俯沖脫水、交代上覆巖石圈有關(guān)。

      研究表明,經(jīng)歷過(guò)俯沖流體改造的富集巖石圈地幔發(fā)生熔融(陸內(nèi)階段再活化),容易形成極其富集LILE的玄武質(zhì)巖漿(Shandetal.,1994; Gibsonetal.,1995)。以本文為例,敖侖花基性包體的Sr和Ba含量可以分別達(dá)到660×10-6~891×10-6和520×10-6~809×10-6(Maetal.,2013)。當(dāng)這種巖漿底侵至下地殼底部時(shí)誘發(fā)地殼巖石發(fā)生部分熔融形成長(zhǎng)英質(zhì)熔體,隨后兩者發(fā)生不同程度的混合形成高M(jìn)g的安山質(zhì)混漿(Chenetal.,2013)。通過(guò)這一過(guò)程,幔源巖漿不僅向下地殼提供了足夠的熱使其熔融,更重要的是同時(shí)卷入到新生成的長(zhǎng)英質(zhì)巖漿中,通過(guò)混合作用改變了寄主巖漿的組成(Maetal.,2013)。如圖5所示,敖侖花含礦斑巖富Sr、高M(jìn)g#,且兩者顯示出大致的正相關(guān),表明幔源巖漿的加入造成了含礦巖漿元素的協(xié)同變化。同時(shí),含礦斑巖HREE相對(duì)MREE分餾不明顯(圖3),暗示石榴子石可能不是主要的分離相或殘留相(Richards and Kerrich,2007),與之平衡的熔體不會(huì)太富Sr(斜長(zhǎng)石作為殘留相礦物之一)。因此,含礦斑巖的高Sr特征可能主要還是與富LILE偏基性巖漿的加入有關(guān)(Maetal.,2013)。

      圖5 敖侖花礦區(qū)巖漿巖Sr-Mg#圖解下地殼實(shí)驗(yàn)熔體數(shù)據(jù)引自Rapp and Watson (1995);貧礦巖體數(shù)據(jù)來(lái)自本文,其他數(shù)據(jù)引自鄒滔等(2011)和Ma et al.(2013)Fig.5 Sr-Mg# diagram for igneous rocks from the Aolunhua depositData for lower crustal melts are from Rapp and Watson (1995).Data for barren granite are from this study,data for MME and ore-bearing porphyries are from Zou et al.(2011) and Ma et al.(2013)

      圖6 敖侖花含礦斑巖代表性鋯石透射光照片(鋯石中富含磷灰石等礦物晶體)Fig.6 Transmission light images of representative zircons from the Aolunhua ore-bearing porphyry,showing apatite inclusions in zircons

      一般基性下地殼部分熔融生成的中酸性熔體的含水量有限(Petford and Gallagher,2001),而通過(guò)富集地幔來(lái)源的偏基性巖漿的不斷加入,能夠彌補(bǔ)寄主巖漿含水量的不足,同時(shí)改變其氧逸度條件(Chiaradiaetal.,2012)。與鎂鐵質(zhì)包體類(lèi)似,敖侖花含礦斑巖中也發(fā)育自形角閃石、榍石、原生磁鐵礦等礦物,顯示出高fO2濕巖漿特性。在富H2O、高fO2環(huán)境下,角閃石以及榍石、磁鐵礦、磷灰石和鋯石等副礦物能夠較早結(jié)晶(圖2b,c、圖6),而斜長(zhǎng)石早期結(jié)晶會(huì)受到抑制(Münteneretal.,2001)。由于角閃石、榍石等礦物在安山質(zhì)熔體中的DSr/Y、DLa/Yb值遠(yuǎn)小于1(Rollinson,1993),所以這些礦物的過(guò)早分離結(jié)晶會(huì)造成殘余巖漿進(jìn)一步向富Sr、La貧Y、Yb方向演化(模擬見(jiàn)圖4a,b),而斜長(zhǎng)石分離結(jié)晶引起的效應(yīng)則相反(但由于其結(jié)晶相對(duì)較晚,未能對(duì)巖漿Sr含量的減小造成明顯影響),結(jié)果使得含礦斑巖具有更高的Sr/Y、La/Yb值(Maetal.,2013)。綜上可知,富集地幔起源的基性巖漿與殼源酸性巖漿發(fā)生混合及隨后在富H2O、高fO2條件下發(fā)生以角閃石為主的分離結(jié)晶,可能是導(dǎo)致含礦斑巖具有埃達(dá)克巖地球化學(xué)特性的真正原因,即埃達(dá)克巖往往與斑巖型礦床緊密共生的根本所在。

      3.4 貧礦巖體:?jiǎn)我粴ぴ慈垠w

      圖7 殼幔巖漿混合作用與陸內(nèi)環(huán)境斑巖型礦床形成示意圖Fig.7 Model diagram for magma mixing and metallogenesis of the intracontinental porphyry deposit

      敖侖花貧礦巖體黑云母花崗巖的主要礦物組成包括石英、鉀長(zhǎng)石、斜長(zhǎng)石和少量黑云母,不發(fā)育角閃石。其中黑云母呈他形充填結(jié)構(gòu),顯示其較晚結(jié)晶,說(shuō)明巖漿體系很晚才富水。部分石英具有高溫β石英晶型(圖2d),表明巖漿相對(duì)高溫的特征。巖體中副礦物除含有鋯石、磷灰石外,還發(fā)育鈦鐵礦,指示較還原的氧逸度環(huán)境(Foley and Wheller,1990)。全巖地球化學(xué)分析顯示貧礦巖體具有較高的SiO2(74%~78%)、K2O(4.3%~4.9%)、Rb(143×10-6~222×10-6)和Pb(12×10-6~28×10-6)含量,而MgO(<0.3%)、CaO(0.2%~1.1%)和Cr(1.1×10-6~5.8×10-6)含量較低,A/CNK介于0.9~1.2之間,具有顯著的Eu負(fù)異常(δEu=0.05~0.2)。此外,所有樣品的Mg#值較低(2~30),Sr含量均小于400×10-6(表1),與實(shí)驗(yàn)獲得的玄武巖熔體Mg#值和Sr含量范圍一致(圖5;Rapp and Watson,1995)。因此,這些巖石學(xué)和地球化學(xué)特征表明,敖侖花貧礦巖體很可能是正常厚度的基性下地殼部分熔融的產(chǎn)物。

      貧礦巖體與含礦斑巖在空間上相鄰,不同的是前者出露規(guī)模明顯大于后者,形成時(shí)間(126Ma)略晚于含礦斑巖(132Ma)(鄒滔等,2011),與Wuetal.(2002)統(tǒng)計(jì)的東北地區(qū)最后一期A型花崗巖的大規(guī)模形成時(shí)間(130~120Ma)一致。因此,敖侖花貧礦巖體很可能是區(qū)內(nèi)巖石圈進(jìn)一步伸展,軟流圈物質(zhì)上涌引發(fā)下地殼更大規(guī)?;罨l(fā)生部分熔融的結(jié)果。但由于貧礦巖體中不發(fā)育鎂鐵質(zhì)巖漿包體,巖石學(xué)和地球化學(xué)特征也均表現(xiàn)出普通殼源巖漿的特性,因此地幔組份可能沒(méi)有或很少參與到巖漿的形成(見(jiàn)圖7模式圖)。同時(shí),這種相對(duì)貧水、低氧逸度的巖漿也不利于形成斑巖型礦床(Sillitoe,2010)。

      3.5 殼幔巖漿混合作用對(duì)陸內(nèi)環(huán)境斑巖成礦的意義

      斑巖Cu±Au±Mo礦床形成于富H2O、S和高fO2的巖漿體系(Mungall,2002; Richards,2011)。親銅和親鐵元素主要以硫化物的形式儲(chǔ)集在地幔中(Sillitoe,1979; Hamlynetal.,1985)。在高fO2的條件下(>SSO; Mungall,2002),硫化物將發(fā)生分解,釋放的S和金屬元素以硫酸鹽等形式進(jìn)入熔體形成含礦巖漿(Jugoetal.,2001),之后隨著含礦巖漿不斷向地殼淺部運(yùn)移,形成富含揮發(fā)分和礦質(zhì)的巖漿-熱液系統(tǒng),伴隨巖漿的侵位、結(jié)晶,含礦流體最終發(fā)生出溶、成礦(Burnham,1997)。之所以世界上絕大部分的斑巖型礦床沿俯沖帶分布,正是因?yàn)楦_帶之上的弧巖漿很容易具備這樣的條件(Sillitoe,2010)。

      對(duì)于產(chǎn)于陸內(nèi)環(huán)境的斑巖礦床而言,也理應(yīng)滿足上述類(lèi)似的條件,可能的形成過(guò)程為:經(jīng)歷過(guò)俯沖板片脫水流體交代的巖石圈地幔,進(jìn)入陸內(nèi)演化階段仍然保留了富集性質(zhì),在新的構(gòu)造環(huán)境下(擠壓向伸展轉(zhuǎn)換等)受到活化,部分熔融形成富H2O、高fO2的玄武質(zhì)巖漿(Sillitoe,2010)。這種巖漿有利于萃取和攜帶地幔中的金屬元素進(jìn)入到熔體,同時(shí),當(dāng)其底侵至地殼與殼源花崗質(zhì)熔體發(fā)生混合時(shí),形成的混漿由于繼承了幔源巖漿的性質(zhì)(特別是高fO2),會(huì)進(jìn)一步促進(jìn)地殼中的成礦元素遷移到巖漿中,最終形成富礦的斑巖巖漿-熱液系統(tǒng)。敖侖花礦床流體包裹體C、H、O和硫化物S、Pb同位素研究表明,成礦流體也顯示出地幔和地殼雙重來(lái)源特征(馬星華和陳斌,2011)。因此,幔源組分(巖漿、流體和礦質(zhì))在陸內(nèi)環(huán)境斑巖型礦床的形成過(guò)程中具有重要貢獻(xiàn)。對(duì)斑巖型Cu±Au±Mo礦床找礦而言,這一認(rèn)識(shí)的實(shí)際意義在于,除關(guān)注斑巖體中是否含有指示巖漿富水的角閃石斑晶外(Richardsetal.,2011),鎂鐵質(zhì)巖漿包體的發(fā)育程度或許可以成為另一個(gè)判斷成礦潛力的初步標(biāo)志。

      致謝兩位評(píng)審專(zhuān)家和特約編輯對(duì)本文提出了寶貴的修改建議,謹(jǐn)此一并表示感謝。

      Atherton MP and Petford N.1993.Generation of sodium-rich magmas from newly underplated basaltic crust.Nature,362(6416): 144-146

      Berzina AN and Sotnikov VI.2005.Contribution from mafic melt to the Zhireken porphyry Mo-Cu deposit,eastern Transbaikalia,Russia: Evidence from mafic microgranular enclaves.International Journal of Economic and Environment Geology,1(1): 42-45

      Borisova AY,Pichavant M,Polvé M,Wiedenbeck M,Freydier R and Candaudap F.2006.Trace element geochemistry of the 1991Mt.Pinatubo silicic melts,Philippines: Implications for ore-forming potential of adakitic magmatism.Geochimica et Cosmochimica Acta,70(14): 3702-3716

      Browne BL,Eichelberger JC,Patino LC,Vogel TA,Uto K and Hoshizumi H.2006.Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano,SW Japan.Journal of Volcanology and Geothermal Research,154(1):103-116

      Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region (BGMRI).1991.Regional Geology of Inner Mongolia Autonomous Region.Beijing: Geological Publishing House,128-651 (in Chinese)

      Burnham CW.1997.Magmas and hydrothermal fluids.In: Barnes HL (ed.).Geochemistry of Hydrothermal Ore Deposits.3rdEdition.New York: John Wiley and Sons,63-123

      Cao DH,Wang AJ,Li WC,Wang GS,Li RP and Li YK.2009.Magma mixing in the Pulang porphyry copper deposit: Evidence from petrology and element geochemistry.Acta Geologica Sinica,83(2): 166-175 (in Chinese with English abstract)

      Castillo PR,Janney PE and Solidum RU.1999.Petrology and geochemistry of Camiguin Island,southern Philippines: Insights into the source of adakite and other lavas in a complex arc tectonic setting.Contributions to Mineralogy and Petrology,134(1): 33-51

      Castillo PR.2012.Adakite petrogenesis.Lithos,134-135: 304-316

      Chen B,Tian W,Jahn BM and Chen ZC.2008.Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang,North China craton: Evidence for hybridization between mantle-derived magmas and crustal components.Lithos,102(1): 118-137

      Chen B,Jahn BM and Suzuki K.2013.Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications.Geology,41(1): 91-94

      Chiaradia M,Ulianov A,Kouzmanov K and Beate B.2012.Why large porphyry Cu deposits like high Sr/Y magmas? Scientific Reports 685,doi: 10.1038/srep00685

      Chung SL,Liu DY,Ji JQetal.2003.Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet.Geology,31(11): 1021-1024

      Davidson JP.1996.Deciphering mantle and crustal signatures in subduction zone magmatism.Geophysical Monograph Series,96: 251-262

      Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294): 662-665

      Defant MJ,Jackson TE,Drummond MS,De Boer JZ,Bellon H,Feigenson MD,Maury RC and Stewart RH.1992.The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview.Journal of the Geological Society (London),149(4): 569-579

      Drummond MS and Defant MJ.1990.A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons.Journal of Geophysical Research,95(B13): 21503-21521

      Du YS,Qin XL and Tian SH.2004.Mesozoic magmatic to hydrothermal process in the Tongguanshan ore field,Tongling,Anhui Province,China: Evidence from xenoliths and their hosts.Acta Petrologica Sinica,20(2): 339-350 (in Chinese with English abstract)

      Feeley TC,Wilson LF and Underwood SJ.2008.Distribution and compositions of magmatic inclusions in the Mount Helen Dome,Lassen Volcanic Center,California: Insights into magma chamber processes.Lithos,106(1-2): 173-189

      Foley SF and Wheller GE.1990.Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanites.Chemical Geology,85(1-2): 1-18

      Gibson SA,Thompson RN,Leonardos OH,Dickin AP and Mitchell JG.1995.The Late Cretaceous impact of the Trindade mantle plume: Evidence from large-volume,mafic,potassic magmatism in SE Brazil.Journal of Petrology,36(1): 189-229

      Griffin WL,Wang X,Jackson SE,Pearson NJ and O’Reilly SY.2002.Zircon geochemistry and magma mixing,SE China: In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes.Lithos,61(3-4): 237-269

      Guo F,Nakamuru E,Fan WM,Kobayoshi K and Li CW.2007.Generation of Palaeocene adakitic andesites by magma mixing,Yanji Area,NE China.Journal of Petrology,48(4): 661-692

      Guo XD,Ge LS,Wang L,Wang ZH and Shi XC.2012.Characteristics of deep-derived enclaves and its zircon LA-ICP-MS U-Pb age of Machangjing complex,Yunnan Province.Acta Petrologica Sinica,28(5): 1413-1424 (in Chinese with English abstract)

      Hamlyn PR,Keays RR,Cameron WE,Crawford AJ and Waldron HM.1985.Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas.Geochimica et Cosmochimica Acta,49(8): 1797-1811

      Holden P,Halliday AN and Stephens WE.1987.Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production.Nature,330(6143): 53-56

      Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY and Gao YF.2009.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3): 25-51

      Jugo PJ,Luth RW and Richards JP.2001.Experimental determination of sulfur solubility in basaltic melts at sulfide vs.sulfate saturation: Possible implications for ore formation.AGU Fall Meeting Abstracts,1: 5

      Kay RW.1978.Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust.Journal of Volcanology and Geothermal Research,4(1-2): 117-132

      Kay RW and Kay MS.1993.Delamination and delamination magmatism.Tectonophysics,219(1-3): 177-189

      Keith JD,Whitney JA,Hattori K,Ballantyne GH,Christiansen EH,Barr DL,Cannan TM and Hook CJ.1997.The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic Mining Districts,Utah.Journal of Petrology,38(12): 1679-1690

      Kemp AIS.2004.Petrology of high-Mg,low-Ti igneous rocks of the Glenelg River Complex (SE Australia) and the nature of their interaction with crustal melts.Lithos,78(1-2): 119-156

      Kemp AIS and Hawkesworth CJ.2006.Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution.Chemical Geology,226(3): 144-162

      Kress V.1997.Magma mixing as a source for Pinatubo sulphur.Nature,389(6651): 591-593

      Long LL,Wang YW,Wang JB,Wang HJ,Li QL,Wang SL,Pu KX,Zhang HQ and Liao Z.2010.Magma mixing in the Xilekuduke Cu-Mo ore district in Xinjiang: Evidence from zircon U-Pb chronology.Acta Petrologica Sinica,26(2): 449-456 (in Chinese with English abstract)

      Lowell JD and Guilbert JM.1970.Lateral and vertical alteration-mineralization zoning in porphyry copper ore deposits.Economic Geology,65(4): 373-408

      Ma XH,Chen B,Lai Y and Lu YH.2009.Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit,Inner Mongolia,and its geological implications.Acta Petrologica Sinica,25(11): 2939-2950 (in Chinese with English abstract)

      Ma XH,Chen B,Lai Y,Dou JL and Zou T.2010.Fluid exsolution,evolution and mineralization in porphyry Cu-Mo deposit: A case study from Aolunhua deposit,southern Da Xing’an Mts.Acta Petrologica Sinica,26(5): 1397-1410 (in Chinese with English abstract)

      Ma XH and Chen B.2011.The source of hydrothermal fluids and mineralization in the Aolunhua porphyry Mo-Cu deposit,southern Da Hinggan Mountains: Constraints from stable (C,H,O and S) and Radiogenic Pb isotopes.Journal of Jilin University (Earth Science Edition),41(6): 1770-1783 (in Chinese with English abstract)

      Ma XH,Chen B and Yang MC.2013.Magma mixing origin for the Aolunhua porphyry related to Mo-Cu mineralization,eastern Central Asian Orogenic Belt.Gondwana Research,24(3-4): 1152-1171

      Macpherson CG,Dreher ST and Thirlwall MF.2006.Adakites without slab melting: High pressure differentiation of island arc magma,Mindanao,the Philippines.Earth and Planetary Science Letters,243(3-4): 581-593

      Martin H.1986.Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas.Geology,14(9): 753-756

      Maughan DT,Keith JD,Christiansen EH,Pulsipher T,Hattori K and Evans NJ.2002.Contribution from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit,Utah,USA.Mineralium Deposita,37(1): 14-37

      Moyen JF.2009.High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”.Lithos,112(3-4): 556-574

      Mungall JE.2002.Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits.Geology,30(10): 915-918

      Müntener O,Kelemen PB and Grove TL.2001.The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study.Contributions to Mineralogy and Petrology,141(6): 643-658

      Noyes HJ,Frey FA and Wones DR.1983.A tale of two plutons: Geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak Plutons,Central Sierra Nevada,California.The Journal of Geology,91(5): 487-509

      Peng HJ,Wang XW,Axel M,Qin ZP,Hou L and Zhou Y.2011.Magma mixing in Jiama Cu-polymetalic deposit of Tibet: Evidence from quartz and feldspar phenocrysts.Mineral Deposits,30(2): 249-265 (in Chinese with English abstract)

      Petford N and Atherton M.1996.Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith,Peru.Journal of Petrology,37(6): 1491-1521

      Petford N and Gallagher K.2001.Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma.Earth and Planetary Science Letters,193(3-4): 483-499

      Rapp RP and Watson EB.1995.Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling.Journal of Petrology,36(4): 891-931

      Richards JP and Kerrich R.2007.Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis.Economic Geology,102(4): 537-576

      Richards JP.2009.Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere.Geology,37(3): 247-250

      Richards JP.2011.High Sr/Y magmas and porphyry Cu±Mo±Au deposits: Just add water.Economic Geology,106(7): 1075-1081

      Ridolfi F,Renzulli A and Puerini M.2010.Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview,new thermobarometric formulations and application to subduction-related volcanoes.Contributions to Mineralogy and Petrology,160(1): 45-66

      Rollinson HR.1993.Using Geochemical Data: Evaluation,Presentation,Interpretation.London: Pearson Education Limited,89

      Ruzhentsev SV and Pospelov II.1992.The south Mongolian Variscan fold system.Geotectonics,26: 383-395

      Shand P,Gaskarth JW,Thirlwall MF and Rock NMS.1994.Late Caledonian lamprophyre dike swarms of Southeastern Scotland.Mineralogy and Petrology,51(2-4): 277-298

      Sillitoe RH.1972.A plate tectonic model for the origin of porphyry copper deposits.Economic Geology,67(2): 184-197

      Sillitoe RH.1979.Some thoughts on gold-rich porphyry copper deposits.Mineralium Deposita,14(2): 161-174

      Sillitoe RH.2010.Porphyry copper systems.Economic Geology,105(1): 3-41

      Thiéblemont D,Stein G and Lescuyer JL.1997.Epithermal and porphyry deposits: The adakite connection.Earth and Planetary Sciences Letters,325: 103-109

      Wang Q,Xu JF,Jian P,Bao ZW,Zhao ZH,Li CF,Xiong XL and Ma JL.2006.Petrogenesis of adakitic porphyries in an extensional tectonic setting,Dexing,South China: Implications for the genesis of porphyry copper mineralization.Journal of Petrology,47(1): 119-144

      White AJR,Chappell BW and Wyborn D.1999.Application of the restite model to the Deddick granodiorite and its enclaves: A reinterpretation of the observations and data of Maasetal.(1997).Journal of Petrology,40(3): 413-421

      Wu FY,Sun DY,Li HM,Jahn,BM and Wilde SA.2002.A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis.Chemical Geology,187(1): 143-173

      Xiao WJ,Windley BF,Hao J and Zhai MG.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China: Termination of the central Asian orogenic belt.Tectonics,22(6),1069,doi: 10.1029/2002TC001484

      Xu JF,Shinjo R,Defant MJ,Wang Q and Rapp RP.2002.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust? Geology,30(12): 1111-1114

      Yang ZM,Hou ZQ,Song YC,Li ZQ,Xia DX and Pan FC.2008.Qulong superlarge porphyry Cu deposit in Tibet: Geology,alteration and mineralization.Mineral Deposits,27(3): 279-318 (in Chinese with English abstract)

      Zeng QD and Liu JM.2010.Zircon SHRIMP U-Pb dating and geological significance of the granite porphyry from the Banlashan porphyry molybdenum deposit in Xilamulun molybdenum metallogenic belt.Journal of Jilin University (Earth Science Edition),40(4): 828-834 (in Chinese with English abstract)

      Zhang LC,Wu HY and Xiang P.2010.Ore-forming processes and mineralization of complex tectonic system during the Mesozoic: A case from the Xilamulun Mo-Cu metallogenic belt.Acta Petrologica Sinica,26(5): 1351-1362 (in Chinese with English abstract)

      Zhang Q,Wang YL,Zhang FQ,Wang Q and Wang Y.2002.Adakite and porphyry copper deposit.Geology and Mineral Resources of South China,(3): 85-90 (in Chinese with English abstract)

      Zou T,Wang JB,Wang YW,Yuan JM,Lin LJ and Dou JL.2011.Geochemical characteristics of the granitic rocks in the Aolunhua porphyry copper-molybdenum deposit,Inner Mongolia.Acta Geologica Sinica,85(2): 213-223 (in Chinese with English abstract)

      附中文參考文獻(xiàn)

      曹殿華,王安建,李文昌,王高尚,李瑞萍,李以科.2009.普朗斑巖銅礦巖漿混合作用: 巖石學(xué)及元素地球化學(xué)證據(jù).地質(zhì)學(xué)報(bào),83(2): 166-175

      杜楊松,秦新龍,田世宏.2004.安徽銅陵銅官山礦區(qū)中生代巖漿-熱液過(guò)程: 來(lái)自巖石包體及其寄主巖的證據(jù).巖石學(xué)報(bào),20(2): 339-350

      郭曉冬,葛良勝,王梁,王治華,史小翠.2012.云南馬廠菁巖體中深遠(yuǎn)包體特征及其鋯石LA-ICP-MS U-Pb年齡.巖石學(xué)報(bào),28(5): 1413-1424

      龍靈利,王玉往,王京彬,王莉娟,李秋立,王書(shū)來(lái),蒲克信,張會(huì)瓊,廖震.2010.新疆希勒庫(kù)都克銅鉬礦區(qū)巖漿混合作用:來(lái)自鋯石U-Pb年代學(xué)的證據(jù).巖石學(xué)報(bào),26(2): 449-456

      馬星華,陳斌,賴(lài)勇,魯穎淮.2009.內(nèi)蒙古敖侖花斑巖鉬礦床成巖成礦年代學(xué)及地質(zhì)意義.巖石學(xué)報(bào),25(11): 2939-2950

      馬星華,陳斌,賴(lài)勇,竇金龍,鄒滔.2010.斑巖銅鉬礦床成礦流體的出溶、演化與成礦: 以大興安嶺南段敖侖花礦床為例.巖石學(xué)報(bào),26(5): 1397-1410

      馬星華,陳斌.2011.大興安嶺南段敖侖花斑巖鉬(銅)礦床成礦流體來(lái)源與成礦作用:穩(wěn)定同位素C、H、O、S和放射性Pb同位素約束.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),41(6): 1770-1783

      內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局.1991.內(nèi)蒙古自治區(qū)區(qū)域地質(zhì)志.北京: 地質(zhì)出版社,128-651

      彭惠娟,汪雄武,Axel M,秦志鵬,侯林,周云.2011.西藏甲瑪銅多金屬礦區(qū)成礦斑巖的巖漿混合作用: 石英及長(zhǎng)石斑晶新證據(jù).礦床地質(zhì),30(2): 249-265

      楊志明,侯增謙,宋玉財(cái),李振清,夏代詳,潘鳳雛.2008.西藏驅(qū)龍超大型斑巖銅礦床: 地質(zhì)、蝕變與成礦.礦床地質(zhì),27(3): 279-318

      曾慶棟,劉建明.2010.西拉木倫鉬礦帶半拉山斑巖鉬礦床花崗斑巖鋯石SHRIMP U-Pb測(cè)年及其地質(zhì)意義.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),40(4): 828-834

      張連昌,吳華英,相鵬.2010.中生代復(fù)雜構(gòu)造體系的成礦過(guò)程與成礦作用: 以華北大陸北緣西拉木倫鉬銅多金屬成礦帶為例.巖石學(xué)報(bào),26(5): 1351-1362

      張旗,王元龍,張福勤,王強(qiáng),王焰.2002.埃達(dá)克巖與斑巖銅礦.華南地質(zhì)與礦產(chǎn),(3): 85-90

      鄒滔,王京彬,王玉往,袁繼明,林龍軍,竇金龍.2011.內(nèi)蒙古敖侖花斑巖銅鉬礦床花崗巖類(lèi)地質(zhì)地球化學(xué)特征.地質(zhì)學(xué)報(bào),85(2): 213-223

      猜你喜歡
      包體含礦斑巖
      暗色微粒包體是殼幔巖漿混合作用的證據(jù)嗎?
      一種新型多功能電弧爐澆鑄裝置
      玻璃(2020年2期)2020-12-11 22:20:04
      常見(jiàn)的難熔包體礦物學(xué)特征分析
      斑巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
      巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
      煌斑巖的研究進(jìn)展
      新疆卡特巴阿蘇金礦床含礦巖石及圍巖地球化學(xué)特征與構(gòu)造環(huán)境簡(jiǎn)析
      河北省非金屬礦床成礦地質(zhì)條件及含礦建造劃分
      內(nèi)蒙古某低品位斑巖型銅鉬礦石浮選試驗(yàn)
      金屬礦山(2013年11期)2013-03-11 16:55:07
      地球深部包體與成礦關(guān)系——一個(gè)有意義的研究方向
      钦州市| 永州市| 察隅县| 孝义市| 淅川县| 潼南县| 山东省| 嘉兴市| 黄骅市| 古交市| 五原县| 北宁市| 虎林市| 大丰市| 崇明县| 江源县| 西丰县| 内江市| 宾川县| 宾阳县| 宣城市| 虎林市| 府谷县| 盐亭县| 确山县| 乌拉特前旗| 庄河市| 尖扎县| 绍兴县| 疏勒县| 犍为县| 肥西县| 甘泉县| 武城县| 盐池县| 明溪县| 龙里县| 崇明县| 呼玛县| 甘谷县| 嘉鱼县|