• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Solution of Fractional Fredholm-Volterra Integro-Differential Equations by Means of Generalized Hat Functions Method

    2014-04-14 07:00:59BaofengLi
    關(guān)鍵詞:組間意義差異

    Baofeng Li

    1 Introduction

    Fractional calculus has been known for more than 300 years.These fractional phenomena allow us to describe a real object more accurately than the classical integer order methods.As we all know,the nature of real objects is fractional.However,for many of them the fractionality is very low.The fractional system describes many typical examples,such us the voltage current relation of a semi-infinite lossy transmission line[Wang(1987)],the diffusion of heat through a semi-infinite solid,where heat flow is equal to the half derivative of the temperature[Westerlund(2002)].In recent years,there are a lot of methods for approximation of fractional derivatives and integrals can be used in wide filed of applications.Fractional order calculus plays an important roles in electrical engineering[Nakagava and Sorimachi(1992)],physics[Valdes-Parada;Ochoa-Tapia;Alvarez-Ramirez(2007)],signal processing[Vinagre and Chen(2003);Tseng(2007)],robotics[Maria da Graca Marcos,Duarte,Tenreiro Machado(2008)],chemistry[Oldham and Spanier(1974)],chaos[Tavazoei and Haeri(2008)],and so on.In general,it is difficult to derive the analytical solutions to most of the fractional differential equations.Therefore,it is important to develop some reliable and efficient techniques to solve fractional differential equations[Chen,Yi,Chen and Yu(2012);Yi and Chen(2012);Chen,Sun,Li and Fu(2013)].The numerical solutions of fractional differential equations have attracted considerable attention from many researchers.The most commonly used methods are Variational Iteration Method[Zaid M.Odibat(2010)],Adomian Decomposition Method[EI-Kalla(2008)and Hosseini(2006)],and Generalized Differential Transform Method[Shaher and Zaid(2007);Zaid and Shaher(2008)].Wavelet basis approach has also been successfully employed to solve the factional differential equations.

    The motivation of this paper is to extend the application of generalized hat functions to provide approximate solution of linear and nonlinear integro-differential equations of fractional order.The linear and nonlinear integro-differential equations of fractional order can be solved by many numerical methods.Saeedi and Moghadam[Saeedi and Moghadam(2011)]applied CAS wavelets method to solve the numerical solution of nonlinear Volterra integro-differential equations of fractional order and nonlinear Fredholm integro-differential equations of fractional order.In Refs.[Zhu and Fan(2013),Zhu and Fan(2012)],the authors solved the same integrodifferential equations by using the second kind Chebyshev wavelets[Babolian and Mordad(2011)].

    The structure of this paper is as follows:In Section 2,the generalized hat functions are introduced.The generalized hat functions operational matrix of fractional integration is also introduced and the error analysis of generalized hat functions is given in Section 3.In Section 4,we summarize the application of generalized hat functions operational matrix method to the solution of the fractional integro-differential equation.Four numerical examples are provided to clarify the approach in Section 5.The conclusion is given in Section 6.

    2 Generalized hat functions and their properties

    Using the definition of generalized hat functions,we can obtain

    An arbitrary functionu∈L2[0,T]is approximated in vector form as

    whereUn+1=[u0,u1,...,un]Tand Ψn+1(x)=[ψ0(x),ψ1(x),...,ψn(x)]T.

    Substituting Eq.(1)-(3)into the Eq.(6),we get the coefficients in Eq.(6)as following

    3 Operational matrix of the integration for generalized hat functions

    3.1 Fractional calculus

    Before we introduce the generalized hat functions operational matrix of the fractional integration,we first review some basic definitions of fractional calculus,which have been given in[Li and Sun(2011)].

    Definition 1.The Riemann-Liouville fractional integral of orderαis given by

    Definition 2.The Caputo definition of fractional differential operator is given by

    The Caputo fractional derivatives of orderαis also defined asDαu(x)=Jr?αDru(x),whereDris the usual integer differential operator of orderr.The relation between the Riemann-Liouville operator and Caputo operator is given by the following expressions:

    3.2 Fractional order generalized hat functions operational matrix of integration.

    IfJαis fractional integration operator of generalized hat functions,we can get:

    Apart from the generalized hat functions,we consider another basis set of block pulse functions.The set of these functions,over the interval[0,T),is defined as

    LetBn(x)=[b0(x),b1(x),...,bn?1(x)]T.SupposeJα(Bn(x))≈FαnBn(x),thenFαnis called the block pulse operational matrix of fractional integration[21],here

    There is a relation between the block pulse functions and generalized hat functions,namely

    3.3 Error analysis

    In this section,from Eq.(6),we suppose

    whereJαnu(x)denotes the approximation ofαorder Riemann-Liouville fractional integral ofu(x).Letεn(x)=|Jαu(x)?Jαnu(x)|,then we have the following theorem.

    Theorem 3.1Ifu(x),x∈[0,T]is approximated by the Eq.(6),then

    (ii)Ifjh

    Using the Taylor’s series ofu(x),in the powers of(x?jh),we have

    whereu(k)denotes thekth order derivative ofu(x).From Eq.(24)and Eq.(25),we get

    2.1 兩組患者臨床療效比較 觀察組患者治愈率高于對照組,組間比較差異有統(tǒng)計學(xué)意義(χ2=8.362,P<0.05),見表1。

    (iii)According to the definition of the absolute errorεn(x),we obtain

    Forjh

    Substituting Eq.(27)into Eq.(29),we have

    IfMax|u00(kh)|≤M,k=0,1,2,...,j,then we obtain

    This completes the proof.

    Whenα=0.5,m=32,the comparison results for the fractional integration is shown in Figure 1

    4 The algorithm for finding numerical solution of fractional integro-differential equations

    4.1 Linear fractional integro-differential equations

    Consider the linear fractional integro-differential equations subject to initial conditions

    Figure 1:0.5-order integration of the function u(t)=t.

    whereu(s)(x)stands for thesth-order derivative ofu(x),Dα(·)denotes the Caputo fractional order derivative of orderα,f(x)is input term andu(x)is the output response.k1(x,t),k2(x,t)are given functions.λ1,λ2are real constants.

    Now we approximateDαu(x),k1(x,t),k2(x,t)andf(x)in terms of generalized hat functions as follows

    Now using Eq.(35)and Eq.(12),we obtain

    Substituting Eq.(20)into Eq.(37),we have

    Substituting the above equations into Eq.(33),we have

    which is a linear system of algebraic equations.By solving this system we can obtain the approximation of Eq.(37).

    4.2 Nonlinear fractional integro-differential equations

    In this section we deal with nonlinear fractional integro-differential equation of the form

    subject to initial conditions

    wherep,q∈N,and the other parameters and variables are the same as the section 4.1.While dealing with such a situation,the same procedure(as in linear case)of expansion of fractional order derivatives via generalized hat functions is adopted with exception at the term containing[u(t)]p,[u(t)]q.

    From Eq.(38),we haveu(x)≈EBn(x)and hence

    Following the procedure of section 4.1 and using the Eq.(45)and Eq.(46),the Eq.(44)is transformed into a nonlinear system of algebraic equations

    Solving the system of equations given by Eq.(47),the approximate numerical solutionu(x)is obtained.The Eq.(47)can be solved by iterative numerical technique such as Newton’s method.Also the Matlab function “fsolve”is available to deal with such a nonlinear system of algebraic equations.

    5 Numerical examples

    In order to illustrate the effectiveness of the proposed method,we consider numerical examples of linear and nonlinear nature.

    Example 5.1Consider this equation:

    Figure 2:Comparison of Num.sol.and Exa.Sol.of n=8.

    Example 5.2Consider the following nonlinear equation:

    Figure 3:Comparison of Num.sol.and Exa.Sol.of n=16.

    Figure 4:Comparison of Num.sol.and Exa.Sol.of n=32.

    Figure 5:Comparison of Num.sol.and Exa.Sol.of n=64.

    Table 1:The absolute errors for different values of n.

    We can see that the numerical solutions are more and more close to the exact solution with the value ofnbecomes large by taking a closer look at Figures 6-8.

    Example 5.3Consider this equation:

    Figure 6:Comparison of Num.sol.and Exa.Sol.of n=16 for Example 3.

    Figure 7:Comparison of Num.sol.and Exa.Sol.of n=32for Example 3.

    The comparison of numerical results forα=0.7,α=0.8,α=0.9,α=1 and the exact solution forα=1 are shown in Figure.9.

    Figure 8:Comparison of Num.sol.and Exa.Sol.of n=64for Example 3.

    Figure 9:Numerical solution and exact solution of α=1.

    From Figure 9,we can see clearly that the numerical solutions are in very good agreement with the exact solution whenα=1.It is evident from the Figure 9 that,asαclose to 1,the numerical solutions by the generalized hat functions converge to the exact solution.

    6 Conclusion

    In this work,we introduce the generalized hat functions and operational matrix of the fractional integration.Using the operational matrix to solve the fractional linear and nonlinear integro-differential equations numerically.By solving the linear and nonlinear system,numerical solutions are obtained.The error analysis of generalized hat functions is proposed.The numerical results show that the approximations are in very good coincidence with the exact solution

    Acknowledgement:This work is supported by the Natural Science Foundation of Tangshan Normal University(2014D09).

    Babolian,E.;Mordad,M.(2011):A numerical method for solving systems of linear and nonlinear integral equations of second kind by hat basis functions.Comput.Math.Appl,vol.62,no.1,pp.187-198.

    Chen,Y.M.;Yi,M.X.;Chen,C.;Yu,C.X.(2012):Bernstein polynomials method for fractional convection-diffusion equation with variable coefficients.Computer Modeling in Engineering&Sciences,vol.83,no.6,pp.639-653.

    Chen,Y.M.;Sun,L.;Li,X.;Fu,X.H.(2013):Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets.Computer Modeling in Engineering&Sciences,vol.90,no.5,pp.359-378.

    da Graca Marcos,M.;Duarte,F.;Tenreiro Machado,J.A.(2008):Fractional dynamics in the trajectory control of redundant manipulators.Communications in Nonlinear Science and Numerical Simulations,vol.13,pp.1836-1844.

    EI-Kalla,I.L.(2008):Convergence of the Adomian method applied to a class of nonlinear integral equations.Applied Mathematics and Computation,vol.21,pp.372-376.

    Hosseini,M.M.(2006):Adomian decomposition method for solution of nonlinear differential algebraic equations.Applied Mathematics and Computation,vol,181,pp.1737-1744.

    Li,Y.L.;Sun,N.(2011):Numerical solution of fractional differential equations using the generalized block pulse operational matrix.Comput.Math.Appl,vol.62,pp.1046-1054.

    Momani,S.;Odibat,Z.(2007):Generalized differential transform method for solving a space and time-fractional diffusion-wave equation.Physics Letters A,vol.370,pp.379-387.

    Nakagava,M.;Sorimachi,K.(1992):Basic characteristics of a fractance device,IEICE Transactions on Fundamentals of Electronics.Communications and Computer Sciences,vol.E75-A,no.12,pp.1814-1818.

    Oldham,K.B.;Spanier,J.(1974):The Fractional Calculus,Academic Press,New York.

    Odibat,Z.M.(2010):A study on the convergence of variational iteration method.Mathematical and Computer Modelling,vol.51,pp.1181-1192.

    Odibat,Z.;Momani,S.(2008):Generalized differential transform method:Application to differential equations of fractional order.Applied Mathematics and Computation,vol.197,pp.467-477.

    Podlubny,I.(1999):Fractional Differential Equations,Academic press.

    Saeedi,H.;Moghadam,M.M.(2011):Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets.Commun.Nonlinear Sci.Numer.Simulat.,vol.16,pp.1216-1226.

    Saeedi,H.;Moghadam,M.M.;Mollahasani,N.;Chuev,G.N.(2011):A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order.Commun.Nonlinear Sci.Numer.Simulat,vol.16,pp.1154-1163.

    Tseng,Ch.(2007):Design of FIR and IIR fractional order Simpson digital integrators.Signal Processing,vol.87,pp.1045-1057.

    Tavazoei,M.S.;Haeri,M.(2008):Chaotic attractors in incommensurate fractional order systems.Physical D,vol.237,pp.2628-2637.

    Valdes-Parada,F.J.;Ochoa-Tapia,J.A.;Alvarez-Ramirez,J.(2007):Effective medium equations for fractional Fick’s law in porous media.Physical A,vol.373,pp.339-353.

    Vinagre,B.M.;Chen,Y.Q.(2003):Two direct Tustin discretization methods for fractional-order differentiator/integrator.Journal of the Franklin Institute,vol.340,pp.349-362.

    Wang,J.C.(1987):Realizations of generalized Warburg impedance with RC ladder networks and transmission lines.Journal of the Electrochemical Society,vol.134,no.8,pp.1915-1920.

    Westerlund,S.(2002):Dead Matter Has Memory,Causal Consulting,Kalmar,Sweden,2002.

    Yi,M.X.;Chen,Y.M.(2012):Haar wavelet operational matrix method for solving fractional partial differential equations.Computer Modeling in Engineering&Sciences,vol.88,no.3,pp.229-244.

    Zhu,L.;Fan,Q.B.(2013):Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW,Commun.Nonlinear Sci.Numer.Simulat.,vol.18,pp.1203-1213.

    Zhu,L.;Fan,Q.B.(2012):Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet.Commun.Nonlinear Sci.Numer.Simulat.,vol.17,pp.2333-2341.

    猜你喜歡
    組間意義差異
    一件有意義的事
    新少年(2022年9期)2022-09-17 07:10:54
    相似與差異
    音樂探索(2022年2期)2022-05-30 21:01:37
    有意義的一天
    找句子差異
    數(shù)據(jù)組間平均數(shù)、方差關(guān)系的探究
    生物為什么會有差異?
    更 正
    Geological characteristics, metallogenic regularities and the exploration of graphite deposits in China
    China Geology(2018年3期)2018-01-13 03:07:16
    Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions☆
    詩里有你
    北極光(2014年8期)2015-03-30 02:50:51
    赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 国产黄色免费在线视频| 天天躁夜夜躁狠狠久久av| 天天操日日干夜夜撸| 久久久午夜欧美精品| 看非洲黑人一级黄片| 91aial.com中文字幕在线观看| 搡女人真爽免费视频火全软件| 美女主播在线视频| 亚洲人与动物交配视频| 欧美 日韩 精品 国产| 精品亚洲成国产av| 熟女av电影| 99re6热这里在线精品视频| 三级经典国产精品| 久久免费观看电影| 亚洲精品乱码久久久久久按摩| av.在线天堂| 国产免费一级a男人的天堂| 男女边摸边吃奶| 亚洲国产精品999| 午夜福利,免费看| 亚洲无线观看免费| 成年人免费黄色播放视频 | 午夜福利,免费看| 全区人妻精品视频| 各种免费的搞黄视频| 激情五月婷婷亚洲| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| 十八禁网站网址无遮挡 | 丝袜在线中文字幕| 午夜福利,免费看| 亚洲av国产av综合av卡| 五月玫瑰六月丁香| 国产黄片视频在线免费观看| 在线观看www视频免费| 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 久久影院123| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 国产成人精品婷婷| 国产片特级美女逼逼视频| 久久久久久久国产电影| 99热全是精品| 97在线人人人人妻| 久久久久久久久久成人| 色94色欧美一区二区| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 人人妻人人澡人人看| 国产av国产精品国产| 一级av片app| 内射极品少妇av片p| 日本与韩国留学比较| 搡老乐熟女国产| 麻豆成人午夜福利视频| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 中国国产av一级| 99热全是精品| av有码第一页| 最近最新中文字幕免费大全7| 成人无遮挡网站| 久久久久久久久久久丰满| 成人免费观看视频高清| 成人国产av品久久久| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 日韩中字成人| 人妻人人澡人人爽人人| 美女中出高潮动态图| 高清黄色对白视频在线免费看 | 亚洲国产精品999| 国产午夜精品久久久久久一区二区三区| 成人影院久久| 久久久久久久大尺度免费视频| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 亚洲国产最新在线播放| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| 国产亚洲91精品色在线| 简卡轻食公司| 欧美变态另类bdsm刘玥| 男人舔奶头视频| 欧美性感艳星| 欧美丝袜亚洲另类| 国产av精品麻豆| 国产成人免费观看mmmm| 国产 精品1| 人妻 亚洲 视频| 日韩一本色道免费dvd| a级毛片免费高清观看在线播放| 51国产日韩欧美| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 亚洲欧洲精品一区二区精品久久久 | 色吧在线观看| 麻豆成人午夜福利视频| 高清视频免费观看一区二区| 69精品国产乱码久久久| 最近手机中文字幕大全| 少妇的逼水好多| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| 国产一级毛片在线| 国产精品久久久久久久电影| 欧美少妇被猛烈插入视频| 国产黄色视频一区二区在线观看| 在线精品无人区一区二区三| 亚洲伊人久久精品综合| 人妻少妇偷人精品九色| 免费看不卡的av| av播播在线观看一区| 黄色毛片三级朝国网站 | √禁漫天堂资源中文www| 51国产日韩欧美| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 国产成人a∨麻豆精品| 在线观看人妻少妇| 成人毛片a级毛片在线播放| 男女国产视频网站| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 日韩强制内射视频| 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 免费人妻精品一区二区三区视频| 91精品伊人久久大香线蕉| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 久久99一区二区三区| 青春草亚洲视频在线观看| 在线观看www视频免费| 伦精品一区二区三区| 精品一区二区免费观看| 国产中年淑女户外野战色| 尾随美女入室| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 在线精品无人区一区二区三| av免费在线看不卡| 黄色视频在线播放观看不卡| 黄色日韩在线| 伦理电影免费视频| 十八禁高潮呻吟视频 | 欧美丝袜亚洲另类| 国产免费一级a男人的天堂| 免费大片18禁| 99久久人妻综合| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 免费大片18禁| videos熟女内射| 午夜日本视频在线| 性色avwww在线观看| 99久久精品一区二区三区| 日本与韩国留学比较| 一区二区三区免费毛片| 亚洲国产精品999| 菩萨蛮人人尽说江南好唐韦庄| 国产 精品1| 亚洲,欧美,日韩| 精品国产乱码久久久久久小说| 男人和女人高潮做爰伦理| 91精品一卡2卡3卡4卡| 亚洲美女黄色视频免费看| 国产高清有码在线观看视频| 亚洲图色成人| 国产亚洲5aaaaa淫片| 91精品伊人久久大香线蕉| 精品一品国产午夜福利视频| 免费播放大片免费观看视频在线观看| 国产日韩欧美视频二区| 免费观看在线日韩| 亚洲色图综合在线观看| 成人午夜精彩视频在线观看| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 国产在线免费精品| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 两个人的视频大全免费| 精品少妇内射三级| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 国产片特级美女逼逼视频| 免费看光身美女| 亚州av有码| 国产精品一二三区在线看| .国产精品久久| 色哟哟·www| 中文字幕亚洲精品专区| 亚洲一区二区三区欧美精品| 大香蕉97超碰在线| 久久久国产精品麻豆| 精品久久久久久久久av| 精品亚洲乱码少妇综合久久| 国产真实伦视频高清在线观看| 插阴视频在线观看视频| 国产一区二区三区综合在线观看 | 婷婷色综合大香蕉| 欧美xxxx性猛交bbbb| 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 国产在线一区二区三区精| 男人舔奶头视频| 成人无遮挡网站| 尾随美女入室| 丰满乱子伦码专区| 黄色欧美视频在线观看| 亚洲av.av天堂| 日韩一区二区三区影片| 久久99一区二区三区| 高清不卡的av网站| 亚洲性久久影院| 各种免费的搞黄视频| 嘟嘟电影网在线观看| 交换朋友夫妻互换小说| 精品久久久精品久久久| 国产白丝娇喘喷水9色精品| a级毛片免费高清观看在线播放| 又爽又黄a免费视频| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 少妇精品久久久久久久| 免费播放大片免费观看视频在线观看| 国产精品伦人一区二区| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| 人妻制服诱惑在线中文字幕| 一级毛片久久久久久久久女| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| videos熟女内射| 日本色播在线视频| 一级黄片播放器| 国产有黄有色有爽视频| 卡戴珊不雅视频在线播放| 久久亚洲国产成人精品v| 18禁裸乳无遮挡动漫免费视频| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 99久国产av精品国产电影| 性高湖久久久久久久久免费观看| 天堂8中文在线网| 午夜影院在线不卡| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 一区在线观看完整版| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 在线播放无遮挡| 国产亚洲欧美精品永久| tube8黄色片| 69精品国产乱码久久久| 一级av片app| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 少妇高潮的动态图| 高清不卡的av网站| 黄色一级大片看看| 久久久久久久精品精品| 欧美激情国产日韩精品一区| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看 | 国产av码专区亚洲av| 人人澡人人妻人| 两个人免费观看高清视频 | 国产精品国产av在线观看| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放 | 内地一区二区视频在线| 观看av在线不卡| 少妇人妻精品综合一区二区| 久久热精品热| 男人爽女人下面视频在线观看| 波野结衣二区三区在线| 嫩草影院入口| 波野结衣二区三区在线| 18禁在线无遮挡免费观看视频| 国产伦在线观看视频一区| 久久久精品94久久精品| 少妇的逼水好多| 大片电影免费在线观看免费| 久久精品国产鲁丝片午夜精品| freevideosex欧美| 乱系列少妇在线播放| 国产成人精品久久久久久| 欧美日韩国产mv在线观看视频| 内射极品少妇av片p| 久久ye,这里只有精品| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 全区人妻精品视频| 我要看黄色一级片免费的| 人人妻人人澡人人爽人人夜夜| 色视频在线一区二区三区| 免费人成在线观看视频色| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 日韩一本色道免费dvd| 欧美 亚洲 国产 日韩一| 黄色一级大片看看| 国产精品久久久久久av不卡| 亚洲成色77777| 国产成人免费无遮挡视频| 免费看光身美女| 天堂8中文在线网| 97超碰精品成人国产| 日韩av免费高清视频| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩亚洲高清精品| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 精品久久久久久久久亚洲| 国产中年淑女户外野战色| a级毛片在线看网站| 男人和女人高潮做爰伦理| 永久网站在线| 色婷婷久久久亚洲欧美| 中文天堂在线官网| 亚洲精品第二区| 一级,二级,三级黄色视频| 精品人妻熟女av久视频| 久久免费观看电影| 国产日韩欧美视频二区| 国产精品无大码| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 免费黄色在线免费观看| 2022亚洲国产成人精品| 国产精品一二三区在线看| 国产亚洲5aaaaa淫片| 麻豆精品久久久久久蜜桃| 亚洲精品视频女| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看 | 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| tube8黄色片| 日韩三级伦理在线观看| 亚洲丝袜综合中文字幕| 多毛熟女@视频| 久久婷婷青草| 噜噜噜噜噜久久久久久91| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 久久久欧美国产精品| 搡老乐熟女国产| 尾随美女入室| 国产av国产精品国产| 女人久久www免费人成看片| 国精品久久久久久国模美| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 久久女婷五月综合色啪小说| 国产在视频线精品| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 三级国产精品欧美在线观看| 欧美日韩av久久| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 亚洲欧美精品专区久久| 中文字幕免费在线视频6| 99热国产这里只有精品6| 中文字幕制服av| 国产欧美日韩综合在线一区二区 | 久久99精品国语久久久| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件| 久久久久久久久久久丰满| 一级毛片 在线播放| 在线观看一区二区三区激情| 97在线视频观看| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 熟女av电影| 亚洲情色 制服丝袜| 欧美+日韩+精品| a级毛片免费高清观看在线播放| 少妇被粗大的猛进出69影院 | 精品少妇黑人巨大在线播放| 91久久精品国产一区二区成人| 三级经典国产精品| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 内地一区二区视频在线| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 欧美另类一区| 日本黄色日本黄色录像| 热re99久久国产66热| 你懂的网址亚洲精品在线观看| 精品一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| av免费观看日本| 九九爱精品视频在线观看| 成人国产麻豆网| 久久久a久久爽久久v久久| 日韩av免费高清视频| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 国产精品一区二区性色av| 免费黄色在线免费观看| av福利片在线| 精品亚洲成国产av| 成人特级av手机在线观看| 99re6热这里在线精品视频| 男男h啪啪无遮挡| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 免费黄色在线免费观看| 看非洲黑人一级黄片| 中文字幕免费在线视频6| 中国三级夫妇交换| a级一级毛片免费在线观看| 国产综合精华液| 国产精品一区二区在线观看99| 波野结衣二区三区在线| 精品少妇内射三级| 天天操日日干夜夜撸| 日本黄色片子视频| 草草在线视频免费看| 黄色欧美视频在线观看| 国产精品女同一区二区软件| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 成人影院久久| 黄色日韩在线| 国产精品一区www在线观看| 日本av免费视频播放| 成年av动漫网址| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 亚洲成人av在线免费| a 毛片基地| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| 丰满乱子伦码专区| 日韩熟女老妇一区二区性免费视频| 国产精品熟女久久久久浪| 蜜臀久久99精品久久宅男| 三级国产精品片| 亚洲一区二区三区欧美精品| 亚洲人与动物交配视频| 五月伊人婷婷丁香| 97在线人人人人妻| 日本vs欧美在线观看视频 | 亚洲内射少妇av| 赤兔流量卡办理| 国产成人免费无遮挡视频| 三级国产精品欧美在线观看| 国产日韩欧美视频二区| 69精品国产乱码久久久| 黄色欧美视频在线观看| 久久久久久久精品精品| 亚洲经典国产精华液单| 国产成人aa在线观看| 日本色播在线视频| 99久久人妻综合| 多毛熟女@视频| 国产成人精品福利久久| 国产精品嫩草影院av在线观看| 国产午夜精品久久久久久一区二区三区| 97在线人人人人妻| 我要看日韩黄色一级片| 黄色日韩在线| 国产片特级美女逼逼视频| 成人黄色视频免费在线看| 国产日韩欧美亚洲二区| 成人漫画全彩无遮挡| 黄色日韩在线| 99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 2018国产大陆天天弄谢| 国产成人freesex在线| 婷婷色综合www| 国产精品成人在线| 精品亚洲成a人片在线观看| 夫妻午夜视频| 女人久久www免费人成看片| 久久久久精品性色| 又大又黄又爽视频免费| a级一级毛片免费在线观看| 91精品国产国语对白视频| 制服丝袜香蕉在线| 男人狂女人下面高潮的视频| 国产男人的电影天堂91| 日韩成人伦理影院| 精品卡一卡二卡四卡免费| 午夜日本视频在线| 黄色视频在线播放观看不卡| 欧美日韩在线观看h| av线在线观看网站| 久久久精品94久久精品| 国产高清不卡午夜福利| 久久99热6这里只有精品| 少妇人妻久久综合中文| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 亚洲av综合色区一区| 日韩精品有码人妻一区| 另类亚洲欧美激情| 久久6这里有精品| 伊人亚洲综合成人网| 亚洲不卡免费看| 国产精品欧美亚洲77777| 亚洲中文av在线| 人妻少妇偷人精品九色| 日本wwww免费看| 99久久精品一区二区三区| 亚洲,一卡二卡三卡| 国产永久视频网站| 少妇人妻精品综合一区二区| 桃花免费在线播放| 成人美女网站在线观看视频| 黄色怎么调成土黄色| 全区人妻精品视频| 亚洲成人一二三区av| 亚洲国产欧美在线一区| 免费看光身美女| 国产 精品1| 99久久精品热视频| 国产欧美日韩精品一区二区| 在线观看免费高清a一片| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 国产精品三级大全| 最近中文字幕2019免费版| 另类精品久久| 国产亚洲欧美精品永久| av有码第一页| 国产日韩欧美视频二区| 99久久中文字幕三级久久日本| 另类亚洲欧美激情| 我要看黄色一级片免费的| 一区在线观看完整版| 国产精品伦人一区二区| 国产男人的电影天堂91| 三级经典国产精品| 久久人人爽人人片av| 日本wwww免费看| 人妻一区二区av| 在现免费观看毛片| 国产欧美日韩综合在线一区二区 | 亚洲国产欧美在线一区| 亚洲中文av在线| 99热全是精品| 在线观看三级黄色| 久久女婷五月综合色啪小说| 久久精品久久久久久久性| 一边亲一边摸免费视频| 成人亚洲欧美一区二区av| 成人二区视频| 欧美国产精品一级二级三级 | 国产日韩欧美视频二区| 精品午夜福利在线看| 大香蕉久久网| 久久精品夜色国产| 十分钟在线观看高清视频www | 亚洲精品国产成人久久av| 精品国产一区二区三区久久久樱花| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 夜夜看夜夜爽夜夜摸| 欧美3d第一页| 97在线视频观看| 精品国产一区二区三区久久久樱花| 欧美丝袜亚洲另类|