• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel*

    2014-04-24 10:53:12ZhangJingzhou張靖周LiuBo劉波XuHuasheng徐華勝
    關(guān)鍵詞:劉波

    Zhang Jingzhou(張靖周),Liu Bo(劉波),Xu Huasheng(徐華勝)

    1.Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;3.China Gas Turbine Establishment,Aviation Industry Corporation of China,Chengdu,610500,P.R.China

    1 Introduction

    As a matter of fact,the inlet and exit temperature levels and pressure are progressively getting higher in modern gas-turbine combustors while the percentage of compressed air available for cooling purpose becomes more limited.Undoubtedly,the decrease of the quantity of cooling air available and the increase of the gas temperature in the combustion chamber are contradictory elements of the problem,which presents a great challenge for engineers to design an efficient costeffective cooling system to meet combustor durability requirement.

    Jet impingement is one of the most efficient solutions for the effective cooling of the combustor in gas turbine engines[1,2].The heat and mass transfer produced by the turbulent impinging jets have been characterized in a number of investiga-tions reviewed by Viskanta[3],Weigand and Spring[4].Basic investigations on single impinging jet with and without cross-flow were conducted for example by Goldstein and Behbahani[5],Lee et al[6],and Colucci and Viskanta[7].These investigations have shown that the heat transfer produced by an impinging jet depends mainly on a number of parameters,including the Reynolds number of the jet,the nozzle-to-plate spacing,the presence of a confining wall,and the Prandtl number,etc.Convective heat transfer enhancement,increase in the heat transfer rate uniformity,improvement in the coverage of the impingement surface,and decrease in the coolant mass flow rate are some of the concerns of jet impingement[8-14].

    With regards to the effects of a confining wall on the jet impingement,Garimella and Rice[15]as well as Fitzerald and Garimella[16]performed experiments to examine the flow field of a confined jet impingement.A toroidal recirculation-flow pattern in the downstream was clearly shown.Angibletti et al[17]investigated the flow field and heat transfer for a jet impinging on a flat plate.Zhang et al[18]and Wang et al[19]studied the effect of crossflow on jet impingement heat transfer for inline and staggered arrays.Parida et al[20]made an experimental and numerical investigation on the confined oblique impingement configurations for high heat flux applications.It was observed that for the inclined impingement case,the flow had to turn and adjust to the cylindrical jet before starting to develop inside the jet holes.This caused the formation of two nonsymmetrical secondary flow regions.Especially due to this large secondary flow region,the jets got accelerated and flowed out at relatively higher velocity causing the heat transfer rates to increase locally.Moreover,the swirl generated after impingement sustained itself for a longer distance,thereby increasing the overall heat transfer rates.Some researchers addressed the effects of nozzle geometry on heat transfer and fluid flow.

    Although a considerable amount of investigations have been conducted on the jet impingement heat transfer so that the design of impingement cooling systems could be optimized to produce the most effective cooling with a minimum amount of coolant,little work has been made on the heat transfer characteristics of jet impingement inside a semi-confined channel where the coolant air is constrained to evacuate in a single preferential direction toward the trailing exit.This situation could be viewed as a simplified model of impingement-convection heat transfer encountered in the combustor liner cooling configurations.The motivation of present study is to explore the effects of the impingement Reynolds number,impingement distance and the hole pitch on the flow and heat transfer characteristics inside the semi-confined channel.

    2 Experimental Procedures

    2.1 Experimental setup

    The experimental setup is sketched in Fig.1(a).It basically consists of a test section connected to a coolant air supply passage.The coolant air from the compressor is firstly drawn through a standard flow meter and forced to enter into the plenum chamber.Then the coolant air is discharged through the orifice plate to impinge at the target plate.After impingement on the target plate,the spent air is constrained inside the semichannel to exit in only one direction(the positive x-direction as seen in Fig.1(b)).

    Fig.1 Schematic diagram of experimental setup

    The orifice plate is made of epoxy resin of 5mm thickness.The spanwise width(y-direction)is 100mm and the streamwise length(x-di-rection)is 200mm.Single-row and double-row of circular sharp-edged holes are used to generate the impinging jets.The diameter(d)of each hole is equal to 2mm,as shown in Fig.1(c).Singlerow of impinging jets is positioned 3dfrom the closed side of the test section.The spanwise pitch(yn)between adjacent holes varies from 3dto 5d.With regard to the double-row configuration,the first row of jets is positioned 3ddownstream from the closed side of the test section.Two rows of jets are arranged inline with streamwise pitch(xn)of 3d,4dor 5d,respectively.

    The impingement target is a thin constantan foil of 0.01mm thickness(70mm long,100mm wide)which is mounted on the inner surface of a nylon plate(200mm long,100mm wide and 20mm thick).The foil spans the width of the plate and is tightened up by the adjustable copper bars to tension the foil after it is heated.The impingement distance or the nozzle-to-plate spacing between the orifice plate and the target plate is adjusted by a spacer thickness,giving some different non-dimensional orifice-to-target space ratios(zn/d,impingement distance to the diameter of jet hole).The foil is heated by DC current with two-side edges connecting to the copper bars to ensure uniform heat flux.The voltage(V)and the current(I)are recorded to determine the heat flux.In the experiment,the constant heat-flux on the heating foil surface is set as 5 000W/m2.To make the object thermal image be detected by the infrared camera,a viewing window with 30mm wide and 70mm long is opened in the nylon insulation plate.

    2.2 Measurement and parameter definition

    The impingement Reynolds number is determined as

    where dis the inlet diameter of jet hole,νthe kinematic viscosity of the jet,ujthe mean jet velocity at the inlet,˙mthe total mass flow rate of the air emerging from the orifice plate,μis the dynamic viscosity of the jet,and Nis the number of holes in the orifice plate.

    The temperature distribution on the rear face of the foil(the opposite side of jet impingement)is measured by an infrared camera(TVS-2000 MK)working in the 3—5μm band at speed of 30 frames per second.The field of view is 25°×18.8°/0.4m,the instantaneous field of view is 1.3mrad,and the thermal sensitivity is 0.07°C at 30°C.The infrared camera calibration is conducted by using a series of thermocouples placed on the black painted test surface to act as the benchmark[21,22].These thermocouples are used to estimate the emissivity of the test surface.The emissivity of the black painted surface when viewed directly is about 0.96.Three copper-constantan thermocouples are fixed on the foil to check the heater temperature and to help determine steadystate conditions.Once the temperature field on the impinging target reaches steady,the thermal image is recorded by the infrared camera.The detective distance is set as 100mm and accordingly the transmissivity for the infrared camera is approximately regarded as 1.

    In the present case,the infrared camera is used in conjunction with the″heated thin foil″steady state heat transfer sensor(Carlomagno and Cardone[23]).Since the impingement target thickness is very thin,the Biot number(Bi=hδ/λs,where his the convective heat transfer coefficient on the target surface,δandλsare the thickness and thermal conductivity of the thin target plate,respectively)is small with respect to unity,the temperature on the face of the foil opposite to the jet impingement may be considered practically the same as that on the target surface directly impinged by the jets.Considering the energy balance of a thin plate in steady state conditions,the local convective heat transfer coefficient on the target surface is evaluated as

    where Twis the target wall temperature,Tjthe impinging jet temperature(metered in the plenum chamber),qjthe Joule heat flux,and qradationthe radiation heat flux,and qconvectionthe natural convection heat flux on the rear foil surface.

    Due to the thermal inertia of the foil and the time averaging process of the image,present measurements have to be considered as time averaged.This means that temperature fluctuations due to flow turbulence are not measured.

    The net rate of radiation heat flux is estimated as

    where Tais the surrounding ambient temperature,εbackthe emissivity of nylon plate,andσthe Stefan-Boltzmann constant.

    The heat loss from the back of foil by natural convection mode is determined according to the empirical relation for natural convection from vertical flat plate.

    where hfis the natural convection heat transfer coefficient over the back of heated foil,which is determined according to the empirical relation for natural convection from vertical flat plate.

    Heat transfer measurements are expressed in dimensionless form in terms of Nusselt number.The laterally-averaged Nusselt number is defined as

    whereλis the thermal conductivity of air,and hav,xthe laterally-averaged convective heat transfer coefficient.

    The discharge coefficient,which is inversely proportional to the pressure drop across the coolant hole in the rib-roughened channel,is defined as

    where p*is the coolant flow total pressure in the plenum chamber metered by apressure probe,p0the coolant flow static pressure at semi-confined channel outlet,approximately regarded as the ambient pressure.

    In all experiments,the measured temperature difference(between the surface and ambient)is at least 10°C with an uncertainty of±2%.The uncertainty of the power supplied to the heater,is assumed to be the same as the uncer-tainty of the heat flux out of the heater,that is,approximately±6%.The uncertainty in the thermal conductivity of air,given the small temperature fluctuations,is estimated to be less than±2%.The uncertainty of the flow rate is about 1%.And the measured errors of pressure are estimated as±3%.Following the uncertainty analysis based on Moffat[24],the maximum uncertainty in the measurement of the average convective heat transfer is±8%.The uncertainty in discharge coefficient measurements is estimated in the order of±5%.

    2.3 Baseline validation of single jet impingement

    Baseline validation is made to provide checks on the present measurement apparatus and procedures.The baseline test aiming at a single round jet employed for this purpose matches that employed by Gao et al[9]with Rej=23 000and nozzle-to-plate distance of 2diameters.Fig.2presents the comparison of area-averaged Nusselt number profiles.Here the area-averaged Nusselt number is defined in terms of the region of radius(R)surrounding the jet impinging stagnation point.

    Fig.2 Baseline validation of area-averaged Nusselt numbers under single jet impingement

    Fig.2illustrates that the averaged Nusselt number distributions on the impinged plate for both works exhibite the same behaviors.The good agreement of area-averaged Nusselt number distribution with Gao et al[9]validates the experimental procedures and apparatus employed in the present study.

    3 Results and Discussion

    3.1 Temperature distributions

    Fig.3presents the temperature distributions on the constant heat-flux(q=5 000W/m2)heating foil surface under orifice-to-target spacing zn/d=2and spanwise pitch yn/d=3.Fig.4presents the temperature distributions for double-row case under zn/d=1,xn/d=3and yn/d=4.It seems that each impingement jet is responsible for a high heat transfer zone around the stagnation point.As the impingement Reynolds increases,the stagnation zone corresponding to each impinging jet is extended and the temperature on the stagnation zone is decreased obviously,which is coincidental perfectly to the previous studies.

    Fig.3 Thermal images on target for single-row case(yn/d=3,zn/d=2)

    3.2 Heat transfer coefficients

    Heat transfer variations with the impingement distance zn/dhave been investigated extensively.A few laterally-averaged Nusselt number profiles extracted from these measurements are displayed in Fig.5.

    Fig.4 Thermal images on target for double-row case(xn/d=3,yn/d=4,zn/d=1)

    As a consequence,it is notable that the im-pingement distance zn/d=2leads to the highest local heat transfer over the range of impingement distances tested for the single-row case.The heat transfer rate generated by the impingement distance zn/d=3is close to that for zn/d=2.A rapidly decrease of laterally-averaged Nusselt number appears under impingement distance zn/d=1.At this distance,the confinement effect is greatly penalizing due to the self-interaction of impinging jet and circular flow induced by the impinging jet near the closed side of semi-confined channel.This effect seems more vigorous under higher impingement Reynolds number.While for the double-row case,the optimum impingement distance is zn/d=1.This tendency is completely contrary to that of single-row case.With regard to the double-row case,the interaction of the jets from front row and rear row will play an important role in the heat transfer.In the case of zn/d=1,the stagnation zone corresponding to each row may be seriously affected by the other row.The junction effect may be superior to confinement effect,re-sulting in tremendous heat transfer enhancement under zn/d=1.

    Fig.5 Laterally-averaged Nusselt numbers under different zn/d

    Fig.6shows the influence of spanwise jet-tojet pitch(yn/d)on the laterally-averaged Nusselt number in the single-row case,while Fig.7shows the influence of streamwise jet-to-jet pitch(xn/d)on the laterally-averaged Nusselt number in the double-row case.As expected,under the same impingement Reynolds number,the laterallyaveraged Nusselt number is decreased with the increase of yn/d.With regard to the double-row case,the increase of xn/dextends the impinging cooling region.Besides,there is a little decrease of heat transfer coefficient in the region between two row impinging holes.

    Fig.6 Laterally-averaged Nusselt numbers under different yn/d

    By comparison of the single-row and doublerow cases,it is found that the laterally-averaged Nusselt number distributions within the zone of the first row of double-row case do not fit perfectly with the single-row case.Downstream of this region,heat transfer is drastically reduced in the single-row case since the impingement is not efficient any more whereas the impinging jets from the secondary row maintain high heat exchanges in the double-row configuration.

    Fig.7 Laterally-averaged Nusselt numbers under different xn/d

    It is noticed that the quantity of air used to impinge the target is associated with the number of impinging jets and the impingement Reynolds number.Therefore,one should not compare directly the averaged Nusselt numbers for different spanwise spacings from Figs.6,7.To evaluate the overall cooling efficiency of the different impingement configurations and to compare these different impingement cases directly,one can work at a fixed mass flow rate of coolant per unit area of cooled surface.In the present study,Gjis expressed as

    where Gjrepresents the air quantity devoted to the cooling of a given area(as seen in Fig.1)surrounding the impinging jet.

    For the sigle-row jet impingement with zn/d=2,the area-averaged Nusselt numbers are ex-pressed as functions of Gjin Fig.8.It is interesting to find that the increase of impingement Reynolds number does not mean that the heat transfer rate will be certainly increased at a fixed value of Gj.As an example,for Gjfixed at 8.5,area-averaged Nusselt number is increased by 20%when changing the impingement configuration fromyn/d=4and Rej=28 400to yn/d=5and Rej=34 800.Furthermore the influence of yn/don area-averaged Nusselt number seems more significantly under the larger impingement Reynolds number.

    Fig.8 Area-averaged Nusselt numbers vs.Gj

    With regard to the relation of front row and rear row,it behaves more complicated.As we know,the jets from the first row impinging holes form uneven cross flow relative to the downstream jets,which deflects the downstream jets from the normal direction and weakens the convective heat transfer capacity of downstream jets.Simultaneously,the secondary jets behave as″disturbed pins″to the cross flow,which often enhances the convective heat transfer capacity of cross flow.The contradictory aspects are responsible for the complicated heat transfer features along downstream of the first row.In the case of zn/d=1,the impingement jets maintain stronger penetration in the surrounding fluid,which is weakly affected by the cross flow.At the same time,the cross flow is strengthened more obviously,so that the heat transfer enhancement shows advantageous in the region corresponding to the secondary row.While in the case of a larger zn/d,the jet penetration is decadent to be easily deflected by the cross flow and the convective heat transfer of the cross flow is also weaken,and the laterally-averaged Nusselt number is thus reduced on the second row compared with the peak Nusselt number on the first row.

    3.3 Discharge coefficients

    The discharge coefficient is inversely proportional to the pressure drop between the jet inlet and the channel outlet.Fig.9presents the influence of zn/d on the discharge coefficients in the single-row case.It is shown that the impingement distance zn/d=1leads to the lowest discharge coefficient over the range of impingement distances tested for the single-row case,which indicates that the pressure drop for this situation is the biggest.By comparison,the influence of zn/don the discharge coefficients is more obvious when the spanwise jet-to-jet pitch is smaller.

    Fig.9 Discharge coefficients vs.Rejunder different zn/d

    The influence of yn/don the discharge coefficients is shown in Fig.10.It is evident that yn/d has an important effect on the discharge coeffi-cient in the single-row case.When the spanwise jet-to-jet pitch is smaller,the interaction of the adjacent jets will be more intensive,owing to the increases of flow loss and a smaller discharge coefficient.As it can be seen from the figures,the influence is more significant in the higher impingement Reynolds number.

    Fig.10 Discharge coefficients vs.Rejunder different yn/d

    Fig.11 Comparison of discharge coefficients

    Fig.11presents the comparison of discharge coefficients between single-row case and double-row case.It can be found that the discharge coefficient in the double-row case decreases compared with that of the single-row case at the same impingement Reynolds number.Due to the interaction of jets between adjacent streamwise rows,the flow loss inside the channel increases,which is contributed to the decrease of the discharge coefficient.

    4 Conclusions

    Experimental investigation is conducted to investigate the flow and heat transfer performances of impingement cooling inside semi-confined channel.Effects of impingement Reynolds number,orifice-to-target spacing and hole pitch on the convective heat transfer coefficient and discharge coefficient are revealed.The results are summarized as follows:

    (1)The impingement distance zn/d=2leads to the highest local heat transfer over the range of impingement distances tested for the single-row case.The impingement heat transfer is enhanced with the increase of impinging Reynolds number or the decrease of spanwise jet-to-jet pitch.

    (2)The laterally-averaged Nusselt number distributions within the zone of the first row of double-row case do not fit perfectly with the single-row case.The optimum impingement distance is zn/d=1in the double-row case.And the laterally-averaged Nusselt number is reduced on the second row compared to the first row at larger impingement distance.

    (3)The spanwise jet-to-jet pitch has an important effect on the discharge coefficient.A smaller jet-to-jet pitch generally results in a lower discharge coefficient.This influence is more significant under the higher impingement Reynolds number.The discharge coefficient in the doublerow case is decreased relative to the single-row case at the same impingement Reynolds number.

    [1] Leger B,Miron P,Emidio J M.Geometric and aerothermal influences on multi-h(huán)oled plate temperature:application on combustor wall[J].International Jour-nal of Heat and Mass Transfer,2003,46:1215-1222.

    [2] Facchini B,Surace M,Tarchi L.Impingement cooling for modern combustors:experimental analysis and preliminary design[R].ASME Paper GT 2005-68361,2005.

    [3] Viskanta R.Heat transfer to impinging isothermal gas and flame jets[J].Experimental Thermal and Fluid Science,1993,6:111-134.

    [4] Weigand B,Spring S.Multiple jet impingement—A Review[J].Heat Transfer Research,2011,42:101-142.

    [5] Goldstein R J,Behbahani A I.Impingement of a circular jet with and without cross flow[J].International Journal of Heat and Mass Transfer,1982,25:1377-1382.

    [6] Lee D,Greif R,Lee S,et al.Heat transfer from a flat plate to a fully developed axisymmetric impinging jet[J].ASME J Heat Transfer,1995(117):772-776.

    [7] Colucci D W,Viskanta R.Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J].Experimental Thermal and Fluid Science,1996,13:71-80.

    [8] Brignoni L A,Garimella S V.Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J].International Journal of Heat and Mass Transfer,2000,43:1133-1139.

    [9] Gao N,Sun H,Ewing D.Heat transfer to impinging round jets with triangular tabs[J].International Journal of Heat and Mass Transfer,2003,46:2557-2569.

    [10]Alekseenko S V,Bilsky A V,Dulin V M,et al.Experimental study of an impinging jet with different swirl rates[J].Int J Heat Fluid Flow,2007(28):1340-1359.

    [11]Katti V,Prabhu S V.Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular jet[J].International Journal of Heat and Fluid Flow,2008,29:1279-1294.

    [12]Koseoglu M F,Baskayab S.The role of jet inlet geometry in impinging jet heat transfer,modeling and experiments[J].International Journal of Thermal Science,2010,49:1417-1426.

    [13]Violato D,Ianiro A,Cardone G,et al.Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J].International Journal of Heat and Fluid Flow,2012,37:22-36.

    [14]Yu Y Z,Zhang J Z,Xu H S.Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J].International Journal of Heat and Mass Transfer,2014,72:222-233.

    [15]Garimella S V,Rice R A.Confined and submerged liquid jet impingement heat transfer[J].ASME Journal of Heat Transfer,1995,117:871-877.

    [16]Fitzgerald J A,Garimella S V.A study of the flow field of a confined and submerged impinging jet[J].International Journal of Heat and Mass Transfer,1998,41:1025-1034.

    [17]Angibletti M,Di Tommaso R M,Nino E,et al.Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jet[J].International Journal of Heat and Mass Transfer,2003,46:1703-1713.

    [18]Zhang J Z,Li Y K,Tan X M,et al.Numerical computation and experimental investigation on local convective heat transfer characteristics for jet array impingement[J].Chinese Journal of Aeronautics,2005,25:339-342.

    [19]Wang T,Lin M J,Bunker R S.Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme[J].International Journal of Heat and Mass Transfer,2005,48:4887-4903.

    [20]Parida P R,Ekkad S V,Ngo K.Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications[J].International Journal of Thermal Science,2011,50:1037-1050.

    [21]Zhang J Z,Gao S,Tan X M.Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontal forced flow[J].International Journal of Heat and Mass Transfer,2013,57:321-330.

    [22]Tan X M,Zhang J Z.Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator[J].Experimental Thermal and Fluid Science,2013,48:134-146.

    [23]Carlomagno G M,Cardone G.Infrared thermography for convective heat transfer measurements[J].Experiments in Fluids,2010,49:1187-1218.

    [24]Moffat R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1:3-17.

    [25]Goldstein R J,Seol W S.Heat transfer to a row of impinging circular air jets including the effect of entrainment[J].International Journal of Heat and Mass Transfer,1991,34:2133-2146.

    猜你喜歡
    劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國畫家(2023年1期)2023-02-16 07:57:50
    Electron delocalization enhances the thermoelectric performance of misfit layer compound(Sn1-xBixS)1.2(TiS2)2
    Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100?
    Retrieval of multiple scattering contrast from x-ray analyzer-based imaging*
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動手
    “故事大王”講故事
    大連大學(xué)美術(shù)學(xué)院劉波繪畫作品選
    青青草视频在线视频观看| 这个男人来自地球电影免费观看 | 欧美日韩综合久久久久久| 日本黄色日本黄色录像| 国产xxxxx性猛交| 天天躁狠狠躁夜夜躁狠狠躁| 国产色婷婷99| 午夜福利,免费看| 伦精品一区二区三区| 久久久欧美国产精品| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区视频在线观看| 亚洲男人天堂网一区| 亚洲精品美女久久久久99蜜臀 | 校园人妻丝袜中文字幕| videossex国产| 天天操日日干夜夜撸| 亚洲综合色惰| 天美传媒精品一区二区| 亚洲精品美女久久av网站| 777久久人妻少妇嫩草av网站| 日本vs欧美在线观看视频| 精品一品国产午夜福利视频| 亚洲婷婷狠狠爱综合网| 免费高清在线观看视频在线观看| 亚洲伊人色综图| 欧美少妇被猛烈插入视频| 波多野结衣av一区二区av| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 午夜免费鲁丝| 五月开心婷婷网| 国产一级毛片在线| 国产一区二区在线观看av| 欧美激情极品国产一区二区三区| 国产女主播在线喷水免费视频网站| 精品国产一区二区三区四区第35| 日韩av免费高清视频| 宅男免费午夜| 天堂8中文在线网| 国产福利在线免费观看视频| 精品一区二区免费观看| videos熟女内射| 黄色怎么调成土黄色| 麻豆av在线久日| 九九爱精品视频在线观看| 99久久精品国产国产毛片| 午夜老司机福利剧场| 丰满乱子伦码专区| av又黄又爽大尺度在线免费看| 一级,二级,三级黄色视频| 精品少妇黑人巨大在线播放| 精品亚洲乱码少妇综合久久| 丰满饥渴人妻一区二区三| 亚洲欧美中文字幕日韩二区| 亚洲欧洲精品一区二区精品久久久 | 国产成人a∨麻豆精品| 性少妇av在线| 亚洲av成人精品一二三区| 国产欧美日韩综合在线一区二区| 伊人久久大香线蕉亚洲五| 99久久精品国产国产毛片| 亚洲精品av麻豆狂野| 制服人妻中文乱码| 多毛熟女@视频| 亚洲第一区二区三区不卡| 久久精品国产a三级三级三级| 少妇熟女欧美另类| 卡戴珊不雅视频在线播放| 国产亚洲午夜精品一区二区久久| 熟女少妇亚洲综合色aaa.| 最近中文字幕高清免费大全6| 99久久综合免费| 亚洲欧美中文字幕日韩二区| 97在线人人人人妻| 十八禁高潮呻吟视频| 亚洲精品在线美女| 精品少妇内射三级| av天堂久久9| 中文字幕色久视频| 欧美日韩视频精品一区| 美女大奶头黄色视频| 成年人免费黄色播放视频| 成人午夜精彩视频在线观看| 老汉色∧v一级毛片| 久久精品久久精品一区二区三区| 搡老乐熟女国产| 黄色一级大片看看| 国产成人免费观看mmmm| 日产精品乱码卡一卡2卡三| 免费观看av网站的网址| 天堂中文最新版在线下载| 波野结衣二区三区在线| 国产熟女欧美一区二区| 女人久久www免费人成看片| 精品一品国产午夜福利视频| 国产日韩欧美亚洲二区| 伊人久久大香线蕉亚洲五| 精品亚洲乱码少妇综合久久| 成人二区视频| 国产精品久久久久久精品古装| 欧美日韩av久久| a级毛片黄视频| 丝袜脚勾引网站| 99香蕉大伊视频| 免费女性裸体啪啪无遮挡网站| 91精品三级在线观看| 亚洲经典国产精华液单| 美女大奶头黄色视频| 最新的欧美精品一区二区| 欧美人与性动交α欧美精品济南到 | 五月伊人婷婷丁香| 亚洲国产av新网站| 丰满迷人的少妇在线观看| 亚洲成人手机| av不卡在线播放| 欧美国产精品va在线观看不卡| 精品国产国语对白av| 天美传媒精品一区二区| 又粗又硬又长又爽又黄的视频| 亚洲欧洲国产日韩| 免费高清在线观看视频在线观看| 婷婷色麻豆天堂久久| 精品人妻偷拍中文字幕| 欧美日韩一区二区视频在线观看视频在线| 色哟哟·www| 国产精品人妻久久久影院| 久久精品国产自在天天线| 最黄视频免费看| 国产男人的电影天堂91| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 熟女av电影| 伊人亚洲综合成人网| 日韩大片免费观看网站| av不卡在线播放| 涩涩av久久男人的天堂| 国产一区二区三区综合在线观看| 波多野结衣一区麻豆| av一本久久久久| 亚洲国产色片| 一区二区日韩欧美中文字幕| 国产成人精品无人区| 精品一区二区免费观看| 一本久久精品| 天天影视国产精品| 国产成人精品久久二区二区91 | 亚洲成人一二三区av| h视频一区二区三区| 免费观看av网站的网址| 国产麻豆69| 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| 日本欧美视频一区| 99国产综合亚洲精品| 26uuu在线亚洲综合色| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 在线观看一区二区三区激情| 九草在线视频观看| av福利片在线| 免费观看无遮挡的男女| 啦啦啦啦在线视频资源| 亚洲视频免费观看视频| 狠狠婷婷综合久久久久久88av| 久久精品国产自在天天线| 777米奇影视久久| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 成人18禁高潮啪啪吃奶动态图| 男人舔女人的私密视频| 天天操日日干夜夜撸| 9色porny在线观看| 午夜福利视频在线观看免费| 一区二区三区精品91| 亚洲精品av麻豆狂野| tube8黄色片| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 亚洲综合精品二区| 2022亚洲国产成人精品| 亚洲av.av天堂| 国产成人a∨麻豆精品| 香蕉精品网在线| 91精品三级在线观看| freevideosex欧美| 成人影院久久| 欧美日韩av久久| 久久久久久人人人人人| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆 | 久久这里只有精品19| 亚洲欧美清纯卡通| 亚洲精品一二三| 久久久精品国产亚洲av高清涩受| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 搡老乐熟女国产| 大话2 男鬼变身卡| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 国产又爽黄色视频| 街头女战士在线观看网站| 久久国产亚洲av麻豆专区| 高清在线视频一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲国产欧美网| 男人添女人高潮全过程视频| 99香蕉大伊视频| 色婷婷久久久亚洲欧美| 国产免费现黄频在线看| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 午夜日本视频在线| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 18禁观看日本| 国产黄色免费在线视频| 热99国产精品久久久久久7| 黄片小视频在线播放| 日韩伦理黄色片| 欧美人与性动交α欧美软件| 欧美人与善性xxx| 日日撸夜夜添| 亚洲国产欧美日韩在线播放| 久久精品国产亚洲av高清一级| 观看美女的网站| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久| 亚洲国产色片| 免费观看在线日韩| 毛片一级片免费看久久久久| 18禁国产床啪视频网站| 午夜激情久久久久久久| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 少妇 在线观看| 成人亚洲欧美一区二区av| 搡老乐熟女国产| 天天躁狠狠躁夜夜躁狠狠躁| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇一区二区三区视频日本电影 | 啦啦啦中文免费视频观看日本| 多毛熟女@视频| 欧美中文综合在线视频| 我要看黄色一级片免费的| 国产亚洲一区二区精品| 蜜桃在线观看..| 久久免费观看电影| 午夜福利网站1000一区二区三区| 97在线视频观看| a 毛片基地| 热99久久久久精品小说推荐| 亚洲精品日韩在线中文字幕| 男女国产视频网站| 欧美精品亚洲一区二区| 日本欧美视频一区| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 婷婷色av中文字幕| 99国产精品免费福利视频| 成人国产麻豆网| 一区二区三区乱码不卡18| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 大码成人一级视频| 777久久人妻少妇嫩草av网站| 精品亚洲成a人片在线观看| 日本色播在线视频| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 综合色丁香网| 久久亚洲国产成人精品v| 大片电影免费在线观看免费| 一个人免费看片子| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 午夜精品国产一区二区电影| 亚洲精品自拍成人| 婷婷色综合www| 成年人免费黄色播放视频| 多毛熟女@视频| 在线观看人妻少妇| 久久久久久伊人网av| 国产无遮挡羞羞视频在线观看| 日本-黄色视频高清免费观看| 亚洲精品av麻豆狂野| 国产精品不卡视频一区二区| 夫妻午夜视频| 波多野结衣av一区二区av| 免费人妻精品一区二区三区视频| 一二三四在线观看免费中文在| av.在线天堂| 毛片一级片免费看久久久久| 欧美激情极品国产一区二区三区| 我的亚洲天堂| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 亚洲视频免费观看视频| 久久午夜综合久久蜜桃| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 欧美人与性动交α欧美精品济南到 | 亚洲国产欧美网| 看免费成人av毛片| 国产片内射在线| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 看非洲黑人一级黄片| 蜜桃国产av成人99| 一区二区三区精品91| 黄色视频在线播放观看不卡| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 美女福利国产在线| 免费高清在线观看日韩| 美国免费a级毛片| 国产在线视频一区二区| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 国产成人av激情在线播放| 另类亚洲欧美激情| 国产视频首页在线观看| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 成人午夜精彩视频在线观看| 久久ye,这里只有精品| 国产淫语在线视频| 在线观看三级黄色| 精品国产一区二区三区四区第35| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 99热网站在线观看| 国产野战对白在线观看| 国产一区亚洲一区在线观看| 亚洲国产看品久久| 欧美另类一区| 尾随美女入室| 国产成人av激情在线播放| 久久久欧美国产精品| 精品一区在线观看国产| 考比视频在线观看| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 熟女少妇亚洲综合色aaa.| 青春草视频在线免费观看| 午夜激情久久久久久久| av视频免费观看在线观看| 国产精品 欧美亚洲| 少妇精品久久久久久久| 亚洲av.av天堂| videos熟女内射| 色吧在线观看| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 熟妇人妻不卡中文字幕| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| 国产熟女午夜一区二区三区| 韩国精品一区二区三区| 中国三级夫妇交换| 精品视频人人做人人爽| 久久ye,这里只有精品| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 久久这里有精品视频免费| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 免费少妇av软件| 日韩av免费高清视频| 欧美精品高潮呻吟av久久| 亚洲精品乱久久久久久| 韩国精品一区二区三区| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 免费高清在线观看日韩| 在现免费观看毛片| 伊人亚洲综合成人网| 热99国产精品久久久久久7| 国产成人精品无人区| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 九色亚洲精品在线播放| 中文欧美无线码| 性色av一级| 美女主播在线视频| 女的被弄到高潮叫床怎么办| 日本wwww免费看| 久久精品夜色国产| 日韩,欧美,国产一区二区三区| 久久久久久久久免费视频了| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 制服丝袜香蕉在线| 最近2019中文字幕mv第一页| 国产精品偷伦视频观看了| 亚洲av综合色区一区| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 2018国产大陆天天弄谢| 考比视频在线观看| xxxhd国产人妻xxx| 亚洲av电影在线进入| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| av免费在线看不卡| 丝袜喷水一区| 一级毛片电影观看| 亚洲国产日韩一区二区| 午夜91福利影院| 肉色欧美久久久久久久蜜桃| 久久久久精品性色| av在线观看视频网站免费| 婷婷成人精品国产| 精品国产乱码久久久久久小说| 久久精品国产亚洲av天美| 亚洲伊人久久精品综合| 巨乳人妻的诱惑在线观看| 91久久精品国产一区二区三区| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 国产免费视频播放在线视频| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕| 国产免费视频播放在线视频| 日本av手机在线免费观看| 欧美av亚洲av综合av国产av | 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| 亚洲精品第二区| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文欧美无线码| 99久久精品国产国产毛片| 精品国产露脸久久av麻豆| 啦啦啦在线免费观看视频4| 免费在线观看完整版高清| 亚洲综合色网址| 久热久热在线精品观看| 亚洲精品,欧美精品| 日韩 亚洲 欧美在线| 永久网站在线| 丝袜美足系列| 女人久久www免费人成看片| 人人澡人人妻人| 午夜福利乱码中文字幕| 亚洲av.av天堂| 三上悠亚av全集在线观看| 亚洲天堂av无毛| 超碰97精品在线观看| freevideosex欧美| videossex国产| 久久精品久久久久久久性| 国产成人精品久久久久久| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 日本-黄色视频高清免费观看| 高清不卡的av网站| 国产淫语在线视频| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 纵有疾风起免费观看全集完整版| www日本在线高清视频| a级片在线免费高清观看视频| 久久热在线av| 18+在线观看网站| 日韩三级伦理在线观看| 老熟女久久久| 日韩制服骚丝袜av| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 十分钟在线观看高清视频www| 97在线人人人人妻| 国产国语露脸激情在线看| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品国产av成人精品| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久 | 欧美激情极品国产一区二区三区| 国产精品亚洲av一区麻豆 | 亚洲成人一二三区av| 男女啪啪激烈高潮av片| 咕卡用的链子| 日本黄色日本黄色录像| 亚洲综合色网址| 高清在线视频一区二区三区| 国产一区二区在线观看av| 成人二区视频| 久久99精品国语久久久| 精品少妇一区二区三区视频日本电影 | 精品少妇内射三级| 在线天堂中文资源库| 精品少妇久久久久久888优播| 亚洲第一青青草原| 国产一区二区 视频在线| 成人午夜精彩视频在线观看| 一级毛片电影观看| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 国产成人午夜福利电影在线观看| 成人影院久久| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 免费看不卡的av| 国产精品 欧美亚洲| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久 | 国产男人的电影天堂91| 好男人视频免费观看在线| 亚洲综合色网址| 建设人人有责人人尽责人人享有的| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 视频区图区小说| 新久久久久国产一级毛片| 欧美精品国产亚洲| 考比视频在线观看| 国产视频首页在线观看| 国产在线免费精品| 午夜91福利影院| 亚洲av欧美aⅴ国产| 777久久人妻少妇嫩草av网站| 街头女战士在线观看网站| 天天躁夜夜躁狠狠躁躁| 一级毛片 在线播放| 丁香六月天网| 丰满乱子伦码专区| kizo精华| 91精品国产国语对白视频| 人体艺术视频欧美日本| 老司机亚洲免费影院| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 女人精品久久久久毛片| 久久狼人影院| 黑人欧美特级aaaaaa片| 精品酒店卫生间| 久久国产亚洲av麻豆专区| 精品国产露脸久久av麻豆| 人妻人人澡人人爽人人| 制服丝袜香蕉在线| 一二三四在线观看免费中文在| 男人操女人黄网站| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| kizo精华| av国产精品久久久久影院| 黄色一级大片看看| 大片免费播放器 马上看| 你懂的网址亚洲精品在线观看| 免费日韩欧美在线观看| 电影成人av| 国产精品国产三级国产专区5o| 青草久久国产| 三上悠亚av全集在线观看| 日韩大片免费观看网站| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 欧美日韩av久久| 亚洲人成电影观看| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 电影成人av| 婷婷色av中文字幕| 日日撸夜夜添| 一区福利在线观看| 在线观看美女被高潮喷水网站| 性高湖久久久久久久久免费观看| 久久国内精品自在自线图片| 国产成人精品无人区| 日韩一区二区三区影片| 日本色播在线视频| 国产野战对白在线观看| 日韩av免费高清视频| 精品酒店卫生间| 国产精品一二三区在线看| 国产亚洲欧美精品永久| 99精国产麻豆久久婷婷| 如何舔出高潮| 国产视频首页在线观看| 在线看a的网站| 亚洲伊人色综图|