• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    2014-04-25 01:26:48SHAOShiJing邵士靖GUOPan郭盼ZHAOLiang趙亮andWANGChunLei王春雷
    Nuclear Science and Techniques 2014年2期
    關鍵詞:趙亮春雷

    SHAO Shi-Jing(邵士靖),GUO Pan(郭盼),ZHAO Liang(趙亮),and WANG Chun-Lei(王春雷)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    SHAO Shi-Jing(邵士靖),1,2GUO Pan(郭盼),1,2ZHAO Liang(趙亮),1,2and WANG Chun-Lei(王春雷)1,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental signif i cance in a diverse set of technical and scientif i c contexts,thus have drawn extensive attentions.On certain surfaces,the water monolayer may exhibit an ordered feature,which may result in the novel wetting phenomenon.In this article,based on the molecular dynamics simulations,we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes.We carefully analyze the water density prof i les and potential of mean force,which are the origin of the special hexagonal ordered water structures near the solid surface.The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.

    Ordered water monolayer,Hydrogen bond,Molecular dynamics simulations

    I.INTRODUCTION

    The complex behaviors of interfacial water[1–9],which are of great importance in research f i elds of protein stability and folding[10],molecular self-assembly[11],manipulating biomolecules[12],rearrangement of immunodef i ciency virus[13]etc.,have drawn extensive attentions[5–7,14], since the molecular structure and dynamics of the interfacial water molecules are usually different from the bulk properties[15].Interfacial water molecules play an important role in biophysical process.For example,water effectively catalyzes chiral interconversion of thalidomide[16],and dewetting transition promotes the amyloid f i brils formation[17]. Owing to the interaction between the interfacial water and the hydrophilic solid substrate,the diffusion of interfacial water[18]is slower,and the lifetime of hydrogen bonds[19]is longer,than that of the bulk water,as having been conf i rmed by experiments[20–22].Recently,ordered structure of the interfacial water conf i ned[23]at one or two dimensions has been studied extensively by both experimental and theoretical methods.In 2009,we reported a liquid water droplet on a water monolayer,termed as“ordered water monolayer does not completely wet water”on a model surface at room temperature[24].Later,similar phenomena were observed by several experiments on sapphire c-plane electrolyte surface[25]and on self-assemble monolayer(SAM)surfaces with the?COOH terminal[26,27].In addition,theoretical simulations found similar phenomenon on hydroxylated metal oxide surfaces of Al2O3and SiO2[4],Talc[28]and Pt(100)metal surfaces[29].We also explored the effect of morphology[30]and the critical length of the charge dipolesof the solid surface[31]on the structures of interfacial water and the surface wetting behaviors.

    In this article,based on molecular dynamics simulations, we investigate the structure and hydrogen bonds to show detail information of the ordered water monolayer on ionic model surface having graphene-like hexagonal lattices with various charges and unit cell sizes.The article is organized as follows.The ordered structure of water monolayer near the surface is described in Sec.III.A.In Sec.III.B,the water density and the potential of mean force(PMF)[28]are studied.InSec.III.C,thenumberofhydrogenbondsiscalculated to show the stable formation of hydrogen bonds network in the ordered water monolayer.Finally,a short conclusion is presented in the last section.

    II.SIMULATION DETAILS

    We conf i gured a hexagonal solid lattice with 1664 solid atoms and the neighbor bond lengthlwas described in Fig.1, the same as our previous studies[24,32].The initial systems for the molecular dynamics simulations contained a water layer of about 4.0nm thick on the ionic model surface, where positive and negative charges were located diagonally in neighboring hexagon,and it was found that the charge had great inf l uence on the f l ux of water molecules in nanotube[12,32].All the simulations were performed atT= 300K(NVT ensemble),with Gromacs 4.5.4[34]by using a time step of 1.0fs.The Lennard-Jones parameters of the solid atoms wereεss=0.105kcal/mol andσss=33.343?A,and SPC/E water model[35]was used.The particle-mesh Ewald method[13]with a real space cutoff of 1nm was adopted for the long-range electrostatic interactions and a 10?A cutoff was used for the van der Waals interactions.The periodic boundary conditions were applied in three directions.The simulation time for every system was 4ns and the last 2ns data was collected for analysis.

    Two series of simulations were performed to investigate the ordered water monolayer formation on a hexagonal polarity solid surface.In the f i rst series of simulations, the chargeqof the solid atoms increased from 0.6e to 1.0e with 0.1e interval and there were 5252 water molecules in the simulation boxes with the volume of 6.395nm×6.816nm×20.110nm.The value of the neighboring bond length of solid atoms was kept as the constant ofl=0.142nm.In the second series of simulations,the bond lengthlwas set at 0.120nm,0.130nm,0.142nm, 0.150nm and 0.160nm,withq=0.8e,and the water layer thickness was kept at about 4.0nm,with the water molecules of 3525,4314,5252,5721 and 6564,in the simulation boxes of 5.404nm×5.760nm×20.110nm,5.854 nm×6.240 nm×20.110 nm,6.395nm×6.816nm×20.110nm, 6.755nm×7.20nm×20.110nmand7.205nm×7.680 nm×20.110 nm,respectively.

    III.RESULTS AND DISCUSSIONS

    A.Structure analysis of the water monolayer

    To study the structure of water molecules in the water monolayer on the solid surface,two angle parametersθand?are introduced as illustrated in Fig.2(c)and 2(d),whereθis def i ned as the angle between a water molecule dipole and z axis,and?is the angle formed between the projection onto x-y plane of a water dipole and a crystallographic direction[30].Here,the def i nition of the water monolayer is the water molecules in the f i rst layer next to the solid surface with an average thickness of 0.4nm,the same as our previous work[24],which is also consistent with the existence of an experimentally observable monolayer[36].The second layer is def i ned as the water molecules with an average thickness of 0.4nm above the water monolayer.

    As shown in Fig.2(e),two peaks of angleθconf i rm the two states,namely,state 1 and state 2 as depicted in Figs.2(a) and 2(b).The left peaks atθ≈60°represent state 1 with oxygen atoms attracted by the positive charged atoms,while the right peaks atθ≈120°represent state 2 with?OH bonds pointing towards the negative charged atoms.Fig.2(f)is the normalized probability distributions of angle?with three peaks at?≈0°,120°and 240°,which demonstrate that the water molecules in the monolayer can form a 2D hexagonal conf i guration(Fig.2(d)),the same as our previous work[24]. Asqincreases from 0.6e to 1.0e,all the peaks in Figs.2(e) and 2(f)become higher and the water molecules in the monolayer become ordered due to the larger binding of the surface charged atoms.However,the peaks are quite different as the bond lengthlincreases.Atl=0.142nm andq=0.8e,the peaks are the highest(Figs.2(g)and 2(h)),hence the most ordered water molecules in the water monolayer.As theldeparts from 0.142nm,the ordered hexagonal water monolayer gradually disappears.These results show that the ordered water structure greatly depends on the surface charge and suitable cell size.

    B.Water density distribution prof i les and PMF curves

    Figures.3(a)and 3(b)show the water density as a function ofzat differentqandl.The referencez=0 corresponds to the solid surface.Two peaks can be seen for all curves locating atz=0.3nm and 0.6nm.Due to the strong binding of charges on the surface,we can observe a quite high density peak near the solid surface forming the monolayer.The density increases with the charge,reaching the largest atq= 0.9eand1.0e.Withincreasingcellsize,thedensityincreases fi rst untill=0.142nm,where it begins to decrease,indicating the formation and break-down of the ordered structure, respectively.

    Thedensityrelatestopotentialofmeanforce(PMF),F(z), by the expression[28],

    Fig.2.(Color online)(a)State 1 with water molecule adsorbed by positive binding charge and three negative neighbor charges marked with A,A’,B.(b)State 2 with water molecule adsorbed by negative binding charge and three positive neighbor charges marked with C,D,D’.(c) Schematic of angleθdef i ned as the angle between a water molecule dipole and z axis.(d)Schematic of angle?def i ned as the angle formed between the projection onto x-y plane of a water dipole and a crystallographic.(e)Probability distribution ofθin the monolayervs.q.(f) Probability prof i le for angle?in the monolayervs.q.(g)Probability prof i les ofθin the monolayervs.l.(h)Probability distribution of?in the monolayervs.l.

    where,kBis the Boltzmann constant andρw=33nm?3is the number density of bulk water.F(z)is the potential of mean force for bringing a water molecule from the bulk to a distancezfrom the solid surface.Figs.3(c)and 3(d)show the PMF curves and for every curve there are two valleys atz= 0.3nm and 0.6nm.The two valleys account for the adsorption of the solid surface.The minimum PMF atz=0.3nm is about?0.9kcal/mol atq≥0.8e andl=0.142nm.The PMF reveals the adsorption interaction of the solid surfaces at the valleys.The adsorption increases with the charge,displaying a wide range of binding strength to attract the water molecules and form the ordered monolayer.This is different from the bulk water.Suitable cell size is quite important for adsorption interaction of the solid surface and formation ofthe monolayer.The PMF results indicate that the distribution of water molecules and formation of the ordered water monolayer are affected by the charge and cell size.

    Fig.3.(Color online)(a)Density prof i le of water molecules away from the surfacevs.q,divided by the number density of bulk water,ρw= 33nm?3.(b)The density prof i levs.l,ρz/ρw.(c)Potential of mean forceF(z)vs.q.(d)F(z)vs.l.

    Fig.4.(Color online)Average number of hydrogen bonds of a water molecule to other water molecules in the same layer(◆),to water molecules in the second layer(?),and their sum(■)as function ofq(a)andl(b).

    C.Hydrogen bonds in the water monolayer

    The ordered water monolayer affects the formation of hydrogen bonds of the water molecules in the interface.We calculated the average hydrogen bonds of a water molecule to its neighboring water molecules in the same monolayer(“in the monolayer”H bonds),and to water molecules in the second layer(“to the second layer”H bonds),as shown in Fig.4. The criteria characterizing existence of hydrogen bond between two water molecules is the geometric def i nition that their O?O distance is less than 3.5?A and simultaneously the angle H?O···O is less than 30°[37].

    In Fig.4(a),the number of hydrogen bonds within the monolayer increases and the number of the hydrogen bonds between the monolayer and the second layer decreases as the increase of charge.Their sum remains at~2.9 whenq≥0.8e,which approaches 3,the maximum number of hydrogen bonds that any water molecule can form in the monolayer[24].The interaction energy between the monolayer and the charged surface is stronger when the charge increases as we calculate in Sec.III(B).The water molecules bound inthe monolayer make it easy to form hydrogen bond with the water molecule in the same layer.There is competition for formation of hydrogen bonds between the“in the monolayer”H bonds and“to the second layer”H bonds.The increase of former leads to the decrease of latter for weaker interaction between the water molecules in the monolayer and water molecules in the second layer.In Fig.4(b),whenl= 0.142nm andq=0.8e,the average number of hydrogen bonds among the water molecules in the monolayer is larger than the others,and the number of hydrogen bonds between the monolayer and the second layer is the smallest.The total number of hydrogen bonds per water molecule in the monolayer is also about 3.Thus,the large charge and the suitable unit cell size(l=0.142nm)make the water molecules in the monolayer prefer to form hydrogen bonds within the water monolayer,rather than form hydrogen bonds between the monolayer and water molecules in the second layer.Clearly, the unit cell size is also the key to the formation of hydrogen bonds of the water molecules near the solid surface.

    IV.CONCLUSION

    In summary,we study the structure,properties of free energy and hydrogen bonds of ordered water monolayer on ionic model surface with graphene-like hexagonal lattices with different charges and unit cell sizes by molecular dynamics simulations.The results indicate that both the charge and unit cell size have a great effect on the water molecular behaviors in the monolayer,such as water molecular conf i gurations and the hydrogen bond network.The charged surface displaying strong adhesive interaction is described by the water density prof i les and potential of mean force.We have also carefully investigated the number of hydrogen bonds of the ordered water monolayer near the solid surface.It is expected that the f i nding in this paper may help to deeply understand the ordered water monolayer on the surface.

    ACKNOWLEDGEMENTS

    We thank Prof.FANG Hai-Ping and Dr.XIU Peng for the helpful discussions and suggestions.

    [1]Stirnemann G,Rossky P J,Hynes J T,et al.Faraday Discuss, 2010,146:263–281.

    [2]Stirnemann G,Castrill′on S R V,Hynes J T,et al.Phys Chem Chem Phys,2011,13:19911–19917.

    [3]Malani A and Ayappa K G.J Chem Phys,2012,136:194701.

    [4]Phan A,Ho T A,Cole D R,et al.J Phys Chem C,2012,116: 15962–15973.

    [5]Ostroverkhov V,Waychunas G A,Shen Y R.Phys Rev Lett, 2005,94:46102.

    [6]Zheng J M,Chin W C,Khijniak E,et al.Adv Colloid Interfac, 2006,127:19–27.

    [7]Sovago M,Campen R K,Wurpel G W H,et al.Phys Rev Lett, 2008,100:173901.

    [8]Zanotti J M,Bellissent-Funel M C,Chen S H.Europhys Lett, 2005,71:91–97.

    [9]Goertz M P,Houston J,Zhu X Y.Langmuir,2007,23:5491–5497.

    [10]Hummer G,Garde S,Garc?a A E,et al.Chem Phys,2000,258: 349–370.

    [11]Vauthey S,Santoso S,Gong H,et al.P Natl Acad Sci USA, 2002,99:5355–5360.

    [12]Xiu P,Zhou B,Qi W P,et al.J Am Chem Soc,2009,131: 2840–2845.

    [13]York D M,Darden T A,Pedersen L G,et al.Biochemistry-US, 1993,32:1443–1453.

    [14]Gragson D E,McCarty B M,Richmond G L.J Am Chem Soc, 1997,119:6144–6152.

    [15]Bandyopadhyay S,Tarek M,Klein M L.Curr Opin Colloid Int, 1998,3:242–246.

    [16]Tian C,Xiu P,Meng Y,et al.Chem-Eur J,2012,18:14305–14313.

    [17]Yang Z,Shi B,Lu H,et al.J Phys Chem B,2011,115:11137–11144.

    [18]Chen S H,Gallo P,Bellissent-Funel M C.Can J Phys,1995,73:703–709.

    [19]Li J,Liu T,Li X,et al.J Phys Chem B,2005,109:13639–13648.

    [20]Riter R E,Willard D M,Levinger N E.J Phys Chem B,1998,102:2705–2714.

    [21]Pal S K,Peon J,Bagchi B,et al.J Phys Chem B,2002,106: 12376–12395.

    [22]Pal S K,Peon J,Zewail A H.P Natl Acad Sci USA,2002,99: 1763–1768.

    [23]Pal S,Balasubramanian S,Bagchi B.J Phys Chem B,2003,107:5194–5202.

    [24]Wang C,Lu H,Wang Z,et al.Phys Rev Lett,2009,103: 137801.

    [25]L¨utzenkirchen J,Zimmermann R,Preoˇcanin T,et al.Adv Colloid Interfac,2010,157:61–74.

    [26]James M,Darwish T A,Ciampi S,et al.Soft Matter,2011,7: 5309–5318.

    [27]James M,Ciampi S,Darwish T A,et al.Langmuir,2011,27: 10753–10762.

    [28]Rotenberg B,Patel A J,Chandler D.J Am Chem Soc,2011,133:20521–20527.

    [29]Limmer D T,Willard A P,Madden P,et al.P Natl Acad Sci USA,2013,110:4200–4205.

    [30]Wang C,Zhou B,Xiu P,et al.J Phys Chem C,2011,115: 3018–3024.

    [31]Wang C,Zhou B,Tu Y,et al.Sci Rep,2012,2:358.

    [32]Ren X P,Zhou B,Li L T,et al.Chin Phys B,2013,22:016801.

    [33]Xu W,Tu Y,Wang C,et al.Nucl Sci Tech,2011,22:307–310.

    [34]Hess B,Kutzner C,van der Spoel D,et al.J Chem Theory Comput,2008,4:435–447.

    [35]Berendsen H J C,Grigera J R,Straatsma T P.J Phys Chem, 1987,91:6269–6271.

    [36]Miranda P B,Xu L,Shen Y R,et al.Phys Rev Lett,1998,81: 5876–5879.

    [37]Luzar A and Chandler D.J Chem Phys,1993,98:8160–8173.

    10.13538/j.1001-8042/nst.25.020502

    (Received January 8,2014;accepted in revised form February 24,2014;published online March 20,2014)

    ?Supported by the National Science Foundation of China(Nos.11290164 and 11204341),the Knowledge Innovation Program of SINAP,the Knowledge Innovation Program of the Chinese Academy of Sciences,Shanghai Supercomputer Center of China and Supercomputing Center of Chinese Academy of Science

    ?Corresponding author,wangchunlei@sinap.ac.cn

    猜你喜歡
    趙亮春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    虎子的周日
    十幾歲(2021年5期)2021-11-22 23:37:22
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years*
    Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River*
    豐 碑
    春雷
    春雷乍響活驚蟄
    亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 18禁裸乳无遮挡免费网站照片 | 欧美精品亚洲一区二区| 在线av久久热| 老鸭窝网址在线观看| 欧美日韩亚洲综合一区二区三区_| 精品乱码久久久久久99久播| 岛国视频午夜一区免费看| 一二三四在线观看免费中文在| 日韩一卡2卡3卡4卡2021年| 久久久水蜜桃国产精品网| 91成人精品电影| 国产视频一区二区在线看| 啦啦啦观看免费观看视频高清| 国产国语露脸激情在线看| 日韩大码丰满熟妇| 久久天躁狠狠躁夜夜2o2o| 亚洲无线在线观看| 19禁男女啪啪无遮挡网站| 国产精品香港三级国产av潘金莲| 村上凉子中文字幕在线| 伊人久久大香线蕉亚洲五| 国产久久久一区二区三区| 男人的好看免费观看在线视频 | 欧美性长视频在线观看| 午夜激情福利司机影院| 久久久久久大精品| 在线视频色国产色| 欧美另类亚洲清纯唯美| 99久久无色码亚洲精品果冻| 国内揄拍国产精品人妻在线 | 午夜福利一区二区在线看| 精品久久久久久,| 国产av在哪里看| 少妇粗大呻吟视频| 久热爱精品视频在线9| 天天一区二区日本电影三级| 午夜精品久久久久久毛片777| 长腿黑丝高跟| 国产又爽黄色视频| 国产一区二区三区视频了| 亚洲国产中文字幕在线视频| 亚洲精品中文字幕一二三四区| 亚洲激情在线av| 日本免费一区二区三区高清不卡| 亚洲最大成人中文| 50天的宝宝边吃奶边哭怎么回事| 国产97色在线日韩免费| 最近最新免费中文字幕在线| 叶爱在线成人免费视频播放| 久热这里只有精品99| 成人国产一区最新在线观看| 中文字幕久久专区| 色尼玛亚洲综合影院| 男人的好看免费观看在线视频 | 老汉色av国产亚洲站长工具| 国产精品一区二区三区四区久久 | 精品久久久久久,| 日日爽夜夜爽网站| 国产久久久一区二区三区| av福利片在线| 给我免费播放毛片高清在线观看| 国产欧美日韩精品亚洲av| 97人妻精品一区二区三区麻豆 | 两个人免费观看高清视频| av欧美777| 午夜a级毛片| 久久婷婷人人爽人人干人人爱| 精华霜和精华液先用哪个| 中文字幕高清在线视频| 啦啦啦观看免费观看视频高清| 桃红色精品国产亚洲av| 久久久久久久久久黄片| 欧美一区二区精品小视频在线| 手机成人av网站| 校园春色视频在线观看| 日韩av在线大香蕉| 黑丝袜美女国产一区| 国产不卡一卡二| 99re在线观看精品视频| 日韩精品免费视频一区二区三区| 国内揄拍国产精品人妻在线 | 琪琪午夜伦伦电影理论片6080| 黄色视频不卡| 国产三级黄色录像| 精品久久久久久,| 精品少妇一区二区三区视频日本电影| 99热这里只有精品一区 | 久久性视频一级片| 成人亚洲精品一区在线观看| 久久99热这里只有精品18| 午夜免费成人在线视频| 亚洲精品在线美女| 在线十欧美十亚洲十日本专区| 成人一区二区视频在线观看| 亚洲国产精品久久男人天堂| 无人区码免费观看不卡| 日本免费a在线| 免费av毛片视频| 草草在线视频免费看| 亚洲真实伦在线观看| 18禁黄网站禁片免费观看直播| 国产高清激情床上av| 午夜福利欧美成人| 国产精品久久久人人做人人爽| 亚洲国产看品久久| 精品国产超薄肉色丝袜足j| 窝窝影院91人妻| 亚洲欧洲精品一区二区精品久久久| 成人亚洲精品av一区二区| 黄色丝袜av网址大全| 国产av一区在线观看免费| 国产成人欧美在线观看| 欧美乱妇无乱码| 好男人在线观看高清免费视频 | 精品福利观看| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 久久人人精品亚洲av| 日韩 欧美 亚洲 中文字幕| 国产精品香港三级国产av潘金莲| 国产精品免费一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 黄色 视频免费看| av电影中文网址| 可以在线观看毛片的网站| 婷婷丁香在线五月| 久久精品成人免费网站| 亚洲精品粉嫩美女一区| 中文字幕人妻丝袜一区二区| 91成人精品电影| 国产又爽黄色视频| 18禁国产床啪视频网站| 久久精品影院6| 俄罗斯特黄特色一大片| а√天堂www在线а√下载| 丝袜人妻中文字幕| 女警被强在线播放| 在线观看免费午夜福利视频| 51午夜福利影视在线观看| 国产精品久久久av美女十八| 变态另类成人亚洲欧美熟女| 欧美久久黑人一区二区| 欧美中文日本在线观看视频| 国产亚洲欧美98| 午夜激情福利司机影院| 黄色片一级片一级黄色片| 在线观看免费午夜福利视频| 欧美日韩福利视频一区二区| 一级作爱视频免费观看| 操出白浆在线播放| 在线观看午夜福利视频| 色播亚洲综合网| 日日干狠狠操夜夜爽| 嫩草影院精品99| 久久久久久久久久黄片| 亚洲成人精品中文字幕电影| 99国产极品粉嫩在线观看| 91成人精品电影| 婷婷六月久久综合丁香| 免费av毛片视频| 一二三四社区在线视频社区8| 性色av乱码一区二区三区2| 香蕉av资源在线| 亚洲片人在线观看| 亚洲国产精品999在线| av天堂在线播放| 国产又爽黄色视频| 18禁国产床啪视频网站| 国产免费av片在线观看野外av| 午夜福利一区二区在线看| 老汉色av国产亚洲站长工具| 日本a在线网址| 午夜福利在线观看吧| 禁无遮挡网站| 桃色一区二区三区在线观看| 国产99久久九九免费精品| 欧美乱色亚洲激情| 亚洲人成网站在线播放欧美日韩| 在线观看66精品国产| 女性被躁到高潮视频| 国产爱豆传媒在线观看 | 热re99久久国产66热| 国产精品亚洲一级av第二区| 国产不卡一卡二| 国产成人精品无人区| 麻豆成人午夜福利视频| 一级毛片女人18水好多| 老汉色∧v一级毛片| 日本 av在线| 国产黄色小视频在线观看| 国产色视频综合| 成人欧美大片| 国产亚洲精品第一综合不卡| av在线天堂中文字幕| 亚洲成国产人片在线观看| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 欧美成狂野欧美在线观看| 级片在线观看| 久久香蕉精品热| 9191精品国产免费久久| 人人妻人人看人人澡| 男女那种视频在线观看| 中文字幕最新亚洲高清| 亚洲国产中文字幕在线视频| x7x7x7水蜜桃| 午夜久久久在线观看| 日韩欧美国产在线观看| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 精品国产超薄肉色丝袜足j| 啦啦啦免费观看视频1| 亚洲国产欧洲综合997久久, | 免费看日本二区| 国产片内射在线| 中文字幕精品免费在线观看视频| 亚洲电影在线观看av| 日韩欧美一区视频在线观看| 天堂动漫精品| 久久久久久久午夜电影| 亚洲熟妇中文字幕五十中出| 女生性感内裤真人,穿戴方法视频| 天堂动漫精品| 色在线成人网| 久久人人精品亚洲av| 日韩欧美一区二区三区在线观看| www.999成人在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲aⅴ乱码一区二区在线播放 | 国产精品av久久久久免费| 香蕉丝袜av| 丝袜人妻中文字幕| 99久久国产精品久久久| 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添小说| 黄色成人免费大全| av中文乱码字幕在线| 88av欧美| 精品久久久久久久末码| 免费看十八禁软件| 最近在线观看免费完整版| 校园春色视频在线观看| 亚洲午夜理论影院| 侵犯人妻中文字幕一二三四区| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 一夜夜www| 一个人观看的视频www高清免费观看 | 欧美zozozo另类| 黄色视频,在线免费观看| 亚洲成av片中文字幕在线观看| 男女做爰动态图高潮gif福利片| 亚洲av美国av| 久久精品aⅴ一区二区三区四区| 亚洲自拍偷在线| 久久婷婷人人爽人人干人人爱| 国产不卡一卡二| 97碰自拍视频| 99久久久亚洲精品蜜臀av| 欧美性猛交黑人性爽| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 中文字幕久久专区| 大型黄色视频在线免费观看| 国产不卡一卡二| 嫩草影院精品99| 99热6这里只有精品| 国产精品电影一区二区三区| 老汉色∧v一级毛片| 色综合亚洲欧美另类图片| 叶爱在线成人免费视频播放| 成年人黄色毛片网站| 欧美中文日本在线观看视频| 怎么达到女性高潮| 欧美激情久久久久久爽电影| 国产成人欧美| 久久精品国产亚洲av香蕉五月| 国产精品爽爽va在线观看网站 | 精品熟女少妇八av免费久了| 国产亚洲欧美精品永久| 一级毛片精品| 国产精品亚洲一级av第二区| 精品久久久久久,| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 岛国在线观看网站| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 色播亚洲综合网| 久久这里只有精品19| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品电影一区二区在线| 精品国产美女av久久久久小说| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 黑人操中国人逼视频| 久久婷婷成人综合色麻豆| 国产精品久久久人人做人人爽| 一夜夜www| 黄色片一级片一级黄色片| 两个人看的免费小视频| 老司机在亚洲福利影院| 最好的美女福利视频网| 国产黄a三级三级三级人| 丝袜人妻中文字幕| 精品日产1卡2卡| av电影中文网址| 韩国精品一区二区三区| www.999成人在线观看| 麻豆av在线久日| 久久久国产成人精品二区| 精品高清国产在线一区| 欧美三级亚洲精品| 十八禁网站免费在线| 亚洲成av人片免费观看| 一级毛片女人18水好多| 午夜福利高清视频| 国产一区二区激情短视频| 亚洲av成人av| 在线永久观看黄色视频| 高清毛片免费观看视频网站| 黄色毛片三级朝国网站| 成人三级黄色视频| 1024视频免费在线观看| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| or卡值多少钱| 一级作爱视频免费观看| 丁香六月欧美| 国产成人欧美| 亚洲av电影在线进入| 亚洲成国产人片在线观看| 欧美日韩瑟瑟在线播放| 两个人免费观看高清视频| 青草久久国产| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www| www.自偷自拍.com| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 精品不卡国产一区二区三区| 国产欧美日韩精品亚洲av| 俺也久久电影网| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看的www视频| 大香蕉久久成人网| 丁香六月欧美| 亚洲精品一区av在线观看| av欧美777| 午夜福利在线观看吧| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 99国产综合亚洲精品| 国产成人欧美在线观看| 中文字幕最新亚洲高清| 欧美日本视频| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 亚洲第一欧美日韩一区二区三区| 欧美国产精品va在线观看不卡| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 亚洲全国av大片| 在线观看免费日韩欧美大片| 亚洲国产日韩欧美精品在线观看 | 国产精品国产高清国产av| 亚洲美女黄片视频| 亚洲七黄色美女视频| xxxwww97欧美| 又黄又粗又硬又大视频| 他把我摸到了高潮在线观看| 日韩有码中文字幕| 天天一区二区日本电影三级| 99久久无色码亚洲精品果冻| 国产区一区二久久| 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 久久九九热精品免费| 中文字幕高清在线视频| 午夜影院日韩av| 亚洲av电影在线进入| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 99热只有精品国产| 国内精品久久久久久久电影| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 国产亚洲av嫩草精品影院| 久久 成人 亚洲| 国产精品久久久av美女十八| 午夜免费激情av| 欧美日本视频| 久久精品国产亚洲av香蕉五月| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱码精品一区二区三区| av在线播放免费不卡| 1024手机看黄色片| 精品高清国产在线一区| 久久狼人影院| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 在线天堂中文资源库| 国产欧美日韩一区二区精品| 精品午夜福利视频在线观看一区| 欧美 亚洲 国产 日韩一| 欧美日本亚洲视频在线播放| 91成年电影在线观看| 操出白浆在线播放| 免费一级毛片在线播放高清视频| 悠悠久久av| 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 色精品久久人妻99蜜桃| 成人一区二区视频在线观看| 无遮挡黄片免费观看| 99riav亚洲国产免费| 精品久久久久久久人妻蜜臀av| 丁香欧美五月| 香蕉国产在线看| 又黄又粗又硬又大视频| 亚洲久久久国产精品| 桃色一区二区三区在线观看| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 国产成人av激情在线播放| 欧美一区二区精品小视频在线| 一夜夜www| 国产精品一区二区免费欧美| 午夜福利在线在线| 在线观看午夜福利视频| 在线国产一区二区在线| 国内揄拍国产精品人妻在线 | 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影| av有码第一页| 欧美日韩亚洲国产一区二区在线观看| 丝袜在线中文字幕| cao死你这个sao货| 看黄色毛片网站| 国产欧美日韩一区二区三| 热99re8久久精品国产| 亚洲最大成人中文| 亚洲成av片中文字幕在线观看| 欧美色欧美亚洲另类二区| 久久国产精品影院| videosex国产| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 久久精品国产综合久久久| 深夜精品福利| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 一级毛片精品| 91麻豆精品激情在线观看国产| 在线看三级毛片| 不卡一级毛片| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 18禁观看日本| 国产亚洲精品久久久久5区| xxx96com| 草草在线视频免费看| 两人在一起打扑克的视频| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 中文字幕高清在线视频| 精品乱码久久久久久99久播| 免费看日本二区| 精品电影一区二区在线| tocl精华| 曰老女人黄片| 黄色视频,在线免费观看| 午夜久久久在线观看| 波多野结衣高清无吗| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区 | 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 日韩欧美三级三区| 欧美黄色淫秽网站| 日韩中文字幕欧美一区二区| 免费看美女性在线毛片视频| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 国产色视频综合| 少妇熟女aⅴ在线视频| 亚洲人成77777在线视频| 可以在线观看毛片的网站| 日本免费a在线| 中文在线观看免费www的网站 | 波多野结衣高清无吗| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 波多野结衣av一区二区av| 欧美中文日本在线观看视频| 最好的美女福利视频网| 亚洲成a人片在线一区二区| 欧美亚洲日本最大视频资源| 精品免费久久久久久久清纯| 男女那种视频在线观看| 国内揄拍国产精品人妻在线 | 日本三级黄在线观看| 日韩免费av在线播放| 夜夜爽天天搞| 9191精品国产免费久久| 久久久水蜜桃国产精品网| 制服人妻中文乱码| 国产av在哪里看| 可以在线观看的亚洲视频| 亚洲精品中文字幕在线视频| 久久精品成人免费网站| 国产精品98久久久久久宅男小说| av在线天堂中文字幕| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 久久午夜综合久久蜜桃| 久久精品国产亚洲av香蕉五月| 欧美丝袜亚洲另类 | 国产99白浆流出| 大型av网站在线播放| 国产熟女xx| 视频区欧美日本亚洲| 日本一本二区三区精品| avwww免费| 午夜激情福利司机影院| 亚洲三区欧美一区| 久久精品91无色码中文字幕| 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 精品国产国语对白av| 国产精品九九99| 精品国产乱子伦一区二区三区| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 久久婷婷成人综合色麻豆| 午夜福利视频1000在线观看| 国产精品免费视频内射| 99久久无色码亚洲精品果冻| 日韩国内少妇激情av| 嫩草影院精品99| 国产亚洲精品综合一区在线观看 | 亚洲精品色激情综合| 中文在线观看免费www的网站 | 国产不卡一卡二| 成年女人毛片免费观看观看9| 国产av在哪里看| 午夜老司机福利片| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 不卡一级毛片| 国产欧美日韩一区二区精品| 亚洲一区二区三区色噜噜| 最近在线观看免费完整版| 亚洲成人久久性| 亚洲人成电影免费在线| 自线自在国产av| 免费在线观看成人毛片| 女人高潮潮喷娇喘18禁视频| 国产视频内射| 国产成人系列免费观看| 亚洲第一欧美日韩一区二区三区| 国产又爽黄色视频| 女人被狂操c到高潮| 天天躁狠狠躁夜夜躁狠狠躁| 国产单亲对白刺激| 成人三级黄色视频| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利一区二区在线看| 国产人伦9x9x在线观看| 99热只有精品国产| 免费在线观看日本一区| 亚洲av成人av| 窝窝影院91人妻| 亚洲av日韩精品久久久久久密| 久久久久久久精品吃奶| 手机成人av网站| a级毛片在线看网站| 中文亚洲av片在线观看爽| 久久九九热精品免费| 国产高清视频在线播放一区| 久9热在线精品视频| 欧美+亚洲+日韩+国产| xxxwww97欧美|