• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    2014-04-26 10:54:49LIJunfengLIHongfangZHANGYuanyuanDUANXiaohuiandLIUJie
    Journal of Ocean University of China 2014年6期

    LI Junfeng, LI Hongfang, ZHANG Yuanyuan, DUAN Xiaohui, and LIU Jie

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    Characterization of a Bacteriocin-Like Substance Produced from a Novel Isolated Strain of Bacillus subtilis SLYY-3

    LI Junfeng1),*, LI Hongfang1), ZHANG Yuanyuan1), DUAN Xiaohui2), and LIU Jie1)

    1) College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

    2) Yantai Entry-Exit Inspection and Quarantine Bureau, Yantai 264000, P. R. China

    In the present research, the strain SLYY-3 was isolated from sediments of Jiaozhou Bay, Qingdao, China. The strain SLYY-3, which produced a bacteriocin-like substance (BLS), was characterized to be a strain of Bacillus subtillis by biochemical profiling and 16S rDNA sequence analysis. It is the first time to report that Bacillus subtilis from Jiaozhou Bay sediments could produce a BLS. The BLS of B. subtillis SLYY-3 exhibited strong inhibitory activity against gram-positive bacteria (including Staphylococcus aureus and B. subtillis) and some fungi (including Penicillium glaucum, Aspergillus niger and Aspergillus flavus). The antimicrobial activity was detected from culture in the exponential growth phase and reached its maximum when culture entered into stationary growth phase. It was thermo-tolerant even when being kept at 100℃ for 60 min without losing any activity and stable over a wide pH range from 1.0 to 12.0 while being inactivated by proteolytic enzyme and trypsin, indicating the proteinaceous nature of the BLS. The BLS was purified by precipitation with hydrochloric acid (HCl) and gel filteration (Sephadex G-100). SDS-PAGE analysis of the extracellular peptides of SLYY-3 revealed a bacteriocin-like protein with a molecular mass of 66 kDa. Altogether, these characteristics indicate the potential of the BLS for food industry as a protection against pathogenic and spoilage microorganisms.

    bacteriocin-like substance; Bacillus subtillis SLYY-3; antimicrobial activity; food protection; purification

    1 Introduction

    Antimicrobial substances are widespread among bacteria. Bacteriocins and bacteriocin-like substances (BLS) are antimicrobial peptides produced by a number of different bacteria that are usually effective against closely related species (Baugher and Klaenhammer, 2011). Bacteriocins have received increasing attention due to their potential use as natural preservatives in food industry, as probiotics in the human health, and as therapeutic agents against pathogenic microorganisms (Riley and Wertz, 2002). Although most research efforts were mainly focused on bacteriocins produced by lactic acid bacteria, bacteriocins from other various species have also been characterized (Turgis et al., 2012; McAulife et al., 2001).

    Bacillus is a genus that has been investigated for antimicrobial activity since Bacillus species produce a large number of peptide antibiotics representing several different basic chemical structures (von D?hren, 1995). The production of bacteriocins or bacteriocin-like substances has been already described for B. thuringiensis, B. subtilis, B. amyloliquefaciens, B. licheniformis, B. megaterium and B. cereus (Balciunas, 2013; Gray et al., 2006; Liu et al., 2012; He et al., 2006; Senbagam et al., 2013).

    The objective of this study is to evaluate the potential antimicrobial activity of a bacteriocin-like substance produced by a Bacillus subtilis SLYY-3 isolated from sediments of Jiaozhou Bay, Qingdao, China. The antimicrobial spectrum and some properties of this bacteriocin-like substance are investigated.

    2 Materials and Methods

    2.1 Isolation of Microorganisms

    The samples (5 g moist weight) collected from Jiaozhou Bay sediments were mixed with sterile water (1:1 w/v), homogenized for 5 min, and 1 mL of this suspension was inoculated into 50 mL of nutrient medium. After microbial growth was observed by turbidity, aliquots were inoculated onto nutrient agar plates incubated at 28℃, and single colonies were isolated and screened for antimicrobial activity.

    2.2 Indicator Bacterial Strains

    The indicator strains Enterobacter aerogenes, Proteus vulgaris and Pseudomonas aeruginosa were kindly offered by UNESCO Chinese Center of Marine Biotechnology. Bacillus subtilis, Escherichia coli, Staphylococcus aureus ATCC 6538, Penicillium glaucum, Aspergil-lus niger, and Aspergillus flavus were the collections of our laboratory.

    2.3 Taxonomical Studies

    Strain SLYY-3 was identified based on 16S rDNA sequence analyses and the characterization of bacteria recorded in Bergey’s Manual of Determinative Bacteriology. Genomic DNA of strain was isolated as described by Edwards et al. (1989), 16S rDNA gene was amplified via PCR and then amplicon was sequenced. The primers used for amplification were: F (5’-AGAGTTTGATCCTG GCTCAG-3’) and R (5’-ACGGCTACCTTGTTACG ACT-3’). Alignment of different 16S rDNA nucleotide sequences was carried out by CLUSTAL W program (Thompson et al., 1994). Phylogenetic trees for 16S rRNA genes were constructed by the NJ method (Saitou and Nei, 1987) using the MEGA4.0 program (Tamura et al., 2007).

    2.4 Activity Assay

    To determine the activity spectrum of BLS, strain SLYY-3 was cultured in LB broth for 24 h at 28℃ in a rotary shaker at 150 r min-1. The cells were harvested (10000 r min-1, 15 min, 4℃), and the cell-free supernatant (CFS) was obtained by filtering through a Milipore filtre with 0.22 μm pore size. Pre-poured agar media plates were spread with 107CFU of the respective indicator microorganism and allowed to dry. The sterile Oxford-cups (8 mm×10 mm) were placed on the plates. 200 μL of CFS was added to each cup and incubated at optimal temperature of the test organism for 24 h and the diameter of the inhibition zone was determined (Li et al., 2008).

    2.5 Characterization of Bacteriocin-Like Substances

    To determine the thermal stability, the BLS samples were heated at 100℃ for 0 (control), 10, 20, 30, 40, 50 and 60 min, cooled and assayed for activity. The effect of trypsin on activity of BLS was also tested by the following method: 0.2 mL phosphate buffer as Control I (C1); 0.1 mL CFS containing BLS + 0.1 mL phosphate buffer as Control II (C2); 1 mg of enzyme-Trypsin (Sigma Chemicals) was dissolved in 1 mL of 0.1 molL-1phosphate buffer, pH 7.0 and then added to CFS of B. subtilis in the ratio of 1:1 as Enzyme reaction (ER). The activities of enzyme reaction and control I and II were assayed on the indicator plates. To test the sensitivity of the BLS to pH, each of aliquots was adjusted to 1.0-12.0 with 0.1 mol L-1HCl or 0.1 mol L-1NaOH and incubated for 30 min at 37℃. Then each sample was adjusted back to pH 7.0 and assayed for the residual activity. After each treatment, the samples were tested for antibacterial activity against S. aureus ATCC 6538 using diffusion method.

    2.6 Purification of BLS and Molecular Weight Determination by SDS-PAGE

    Precipitation of the BLS was induced by acidification using 6 mol L-1hydrochloric acid (HCl). The BLS was extracted from the pellet with 100 mL methanol. After evaporation, the light brown viscous extract was resuspended in 20 mL of 10 mol L-1sodium phosphate. This extract was loaded on a Sephadex G-100 column (2.6 cm × 80 cm, Pharmacia, Uppsala Sweden), equilibrated with 10 mmol L-1sodium phosphate, pH 7.2 and eluted with the same phosphate buffer. The elution with bactericidal activity was used to determine the molecular size of BLS by SDS-PAGE according to the method described by Laemmli (1970). The apparent molecular masses of proteins were estimated by co-electrophoresis of marker proteins (Biorad, Hercules, CA, USA) with masses ranging from 14.4 to 116 kDa. One half of the gel was stained with Coomassie Blue R250, and the position of the active bacteriocin was determined on the other unstained gel. S. aureus ATCC 6538 (107CFU mL-1) suspended in 1% nutrient agar was used to overlay the gel and cleared zone due to inhibition was examined after overnight incubation at 37℃.

    3 Results and Discussion

    3.1 Isolation and Identification of BLS-Producing Strain

    In this study strain SLYY-3 was isolated from sediments which produced the highest inhibition zones using B. subtilis and S. aureus as indicator strains. The microorganism is Gram-positive, aerobic, endospore forming and strongly catalase positive. The morphological and physiological characteristics (data not shown) and the phylogenetic analysis of strain SLYY-3 confirmed that the strain belonged to B. subtillis. The 16S rDNA sequence of SLYY-3 showed a high similarity (99%) to B. subtillis. The cluster formed by SLYY-3 and B. subtillis was supported by high bootstrap values (Fig.1).

    Fig.1 Phylogenetic tree of the SLYY-3 and related type species based on the 16S rDNA domain sequences.

    3.2 Bacteriocin-Like Substances Production

    SLYY-3 was grown in flasks with 50 mL LB medium at 28℃ on a rotary shaker. The optical density (OD) of the culture was determined at 600 nm at an interval of 2 h with a Hitachi U-1100 spectrophotometer (Hitachi, Tokyo, Japan). Cells reached the stationary phase after 12 h ofcultivation (Fig.2). Kinetics of BLS production showed that its synthesis and ? or secretion started at the early exponential phase, and reached to its maximum antibacterial activity at the stationary phase. Afterward, the inhibitory activity slowly decreased (Fig.2). Similar results have been reported with other bacteriocins (Samy et al., 2010; Cladera-Olivera et al., 2004), the antibacteria activity was detected at the middle exponential growth phase and the maximum activity was obtained at the early stage of the stationary growth phase.

    Fig.2 Growth and BLS of SLYY-3: (◆) OD600 and (■) inhibitory zone diameter.

    The cell-free supernatant of SLYY-3 exhibited a broad spectrum of antagonistic activities against all indicator strains of Gram-positive bacteria and some fungal pathogens, but not against the strains of Gram-negative bacteria (Table 1). These findings are consistent with bacteriocins or BLS by other Bacillus species reported. Although some bacteriocin are active against a narrow spectrum of bacteria (Lee et al., 2001), several strains produce bacteriocins with a broad range of activity against important pathogens (Khochamit et al., 2013, Cherif et al., 2001). The BLS produced by SLYY-3 was able to inhibit the growth of A. flavus, a very important pathogen in food safety. Therefore, the BLS may be useful for controlling several important pathogenic and spoilage microorganisms.

    3.3 Characterization of Bacteriocin-Like Substances

    3.3.1 Effect of temperature on BLS activity

    Cell-free supernatant of SLYY-3 was assayed for the thermal stability. The activity of BLS produced from SLYY-3 showed 100% activity even after exposure to 100℃ for 60 min (Fig.3), the same as reported for the low-molecular-weight bacteriocin from B. licheniformis MKU3 (Kayalvizhi and Gunasekaran, 2008). The results are characteristic of other bacteriocins reported, such as thuricin 7, being stable after exposure to 90℃ for 30 min, and losing all activity after exposure to 121℃ for 20 min (Cherif et al., 2001). The bacteriocin produced from Bacillus sp. strain 8 A was reported to be heat-stable only up to 80℃ and the activity disappeared dramatically after incubation at 100℃ only for 15 min (Bizani and Brandelli, 2002). Therefore, this superior thermostability of BLS from B. subtillis SLYY-3 is a remarkable property for biopreservation of food.

    Fig.3 Effect of temperature on activity of BLS of SLYY-3.

    3.3.2 Effect of pH on BLS activity

    Taking S. aureus as indicator strain, BLS produced from B. subtillis SLYY-3 retained its activity between pH 1.0 to 12.0. There was a very small difference in the zone of inhibitions formed after interaction of indicators with different pH treated BLS (Fig.4). Similar studies have been reported for bacteriocin of Bacillus sp., such as thuricin 7, which was stable between pH 3.0 and 9.0 (Cherif et al., 2001). The bacteriocin from strain 8A remained active between pH 5.0 and 8.0 (Bizani and Brandelli, 2002). When the pH was higher than 9.25, the biological activity of thuricin 17 disappeared (Gray et al., 2006). The activity of low molecular weight bacteriocin from the strain MKU3 was found to be stable under a pH range of 3.0-10.0 (Kayalvizhi and Gunasekaran, 2008). As a result, this wide range pH property of BLS in our study further recommends its application in biopreservation of acidic and alkaline food.

    Fig.4 Effect of pH on activity of BLS of SLYY-3.

    3.3.3 Effect of Proteolytic Enzyme-Trypsin on BLS Activity

    Cell free supernatant containing the BLS from SLYY-3 pretreated with trypsin (ER) did not show any zone of inhibition against the S. aureus, with the sample as similar as the negative control by using phosphate bufferalone (C1), whereas the CFS mixed with phosphate buffer (C2) resulted in an inhibition zone at a diameter of 22 mm (Fig.5). This result showed that enzyme trypsin had completely inactivated the BLS of B. subtillis SLYY-3. This sensitivity to proteolytic enzyme trypsin reveals its proteinaceous nature and further supports its use as food biopreservative since it can be easily degraded in the digestive system of human beings.

    Fig.5 Effect of trypsin on activity of bacteriocin-like substances of SLYY-3.

    3.3.4 Partial Purification and Molecular Weight Determination of BLS

    The inhibitory antibacterial component was isolated from the cell free culture supernatant by a combination of acid precipitation and gel filtration chromatography as shown by the results presented in Fig.6. Gel filtration resulted in fractions exhibiting antibacterial activity corresponding to peak II. Since antibacterial activity was present over a wide range of elution tube (Nos.15-19) and proteins in these fractions were not well resolved, it was difficult to determine precisely the elution tube for proteins having antibacterial activity. However, as the maximum zone of inhibition (23 mm) was observed at No.18 tube of elution, this point was considered arbitrary for determination of molecular weight of the antibacterial protein. SDS-PAGE followed by Coomassie blue R250 staining indicated that the peak consisted of a single peptide with an estimated molecular mass of 66 kDa (Fig.7) that exhibited antibacterial activity against S. aureus ATCC 6538. Some other bacteriocins with high (>10 kDa) molecular weight produced by Bacillus spp. had been previously studied in detail, such as bacteriocins (150 and 20 kDa) from B. licheniformis P40 (Cladera-Olivera et al., 2004); entomocin 9 (12.4 kDa) from B. thuringiensis ssp. entomocidus HD9 (Cherif et al., 2003); and thuricin 7 (11.6 kDa) from B. Thuringiensis BMG17 (Cherif et al., 2001). However, no bacteriocins with the same characteristics as the peptide described here have been reported from B. subtilis SLYY-3.

    Fig.6 Elution profile of BLS from gel-filtration column.

    Fig.7 Molecular weight of BLS estimated by SDS-PAGE.

    4 Conclusion

    In this study, we have successfully isolated a strain Bacillus subtilis SLYY-3 from sediments of Jiaozhou Bay, Qingdao, China. It is the first time to report the production of bacteriocin-like substance of Bacillus subtilis from this source. The bacteriocin-like substance (66 kDa) from B. subtilis SLYY-3 shows strong antimicrobial activity against most challenging and serious food pathogens such as Aspergillus flavus and S. Aureus. It is active over a wide range of temperatures and pH, which is a common characteristic of a number of bacteriocins produced by Lactobacilli (Anacarso et al., 2014). In addition, this BLS is more heat-stable when compared with other antimicrobial proteins produced by different species of Bacillus and Lactobacillus. As B. subtilis SLYY-3 produces a higher activity of BLS with a broad spectrum of activity and stability, this BLS can effectively be used as a biopreservative to prevent the growth of spoilage bacteria. It could also be proposed as a potential product used as medicine, natural biopreservative in the food processing industry, and pesticide for plant diseases control.

    Acknowledgements

    This work was supported by the National Science and Technology Support Program (No. 2011BAD14B04), Project of Shandong Province Higher Educational Science and Technology Program (J14LE59), Applied & Basic Research Foundation of Qingdao (No. 12-1-4-3-(3)-jch), and Science & Technology Project of AQSIQ (No. 2012IK176).

    Anacarso, I., Messi, P., Condò, C., Iseppi, R., Bondi, M., Sabia, C., and de Niederh?usern, S., 2014. A bacteriocin-like substance produced from Lactobacillus pentosus 39 is a natural antagonist for the control of Aeromonas hydrophila and Listeria monocytogenes in fresh salmon fillets. Food Science and Technology, 55: 604-611.

    Balciunas E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A., and de Souza Oliveira, R. P., 2013. Novel biotechnological applications of bacteriocins: A review. Food Control, 32: 134-142.

    Baugher, J. L., and Klaenhammer, T. R., 2011. Application of omics tools to understanding probiotic functionality. Journal of Dairy Science, 94: 4753-4765.

    Bizani, D., and Brandelli, A., 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8A. Journal of Applied Microbiology, 93: 512-519.

    Cherif, A., Ouzari, H., Daffonchio, D., Cherif, H., Ben Slama, K., Hassen, A., Jaoua, S., and Boudabous, A., 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG17, a new strain isolated from soil. Letters in Applied Microbiology, 32: 243-247.

    Cherif, A., Chehimi, S., Limen, F., Hansen, B. M., Hendriksen, N. B., Daffonchio, D., and Boudabous, A., 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95: 990-1000.

    Cladera-Olivera, F., Caron, G. R., and Brandelli, A., 2004. Bacteriocin-like peptide production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38: 251-256.

    Edwards, U., Rogall, T., Bocker, H., Emde, M., and Bottger, E., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA. Nucleic Acids Research, 17: 7843-7853.

    Gray, E. J., Lee, K. D., Souleimanov, A. M., Di Falco, M. R., Zhou, X., Ly, A., Charles, T. C., Driscoll, B. T., and Smith, D. L., 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. Journal of Applied Microbiology, 100: 545-554.

    He, L. L., Chen, W. L., and Liu, L., 2006. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiological Research, 161: 321-326.

    Kayalvizhi, N., and Gunasekaran, P., 2008. Production and characterization of a low molecular weight bacteriocin from Bacillus licheniformis MKU3. Letters in Applied Microbiology, 47: 600-607.

    Khochamit, N., Siripornadulsil, S., Sukon, P., and Siripor nadulsil, W., 2013. Characterization of bacteriocin-producing Bacillus subtilis KKU213 and its potential as a probiotic strain. Current Opinion in Biotechnology, 24: S36.

    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

    Lee, K. H., Jun, K. D., Kim, W. S., and Paik, H. D., 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 32: 146-151.

    Li, J. F., Chi, Z. M., Li, H. F., and Wang, X. H., 2008. Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. Journal of Ocean University of China, 7 (1): 55-59.

    Liu, Q. L., Gao, G., Xu, H. J., and Qiao, M. Q., 2012. Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Research in Microbiology, 163: 470-478.

    McAulife, O., Ross, R. P., and Hill, C., 2001. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25: 285-308.

    Riley, M. A., and Wertz, J. E., 2002. Bacteriocins: Evolution, ecology and application. Annual Review of Microbiology, 56: 117-137.

    Saitou, N., and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.

    Samy, R. P., Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., and Chow, V. T. K., 2010. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie, 92: 1854-1866.

    Senbagam, D., Gurusamy, R., and Senthilkumar, B., 2013. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pacific Journal of Tropical Medicine, 12: 934-941

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24: 1596-1599.

    Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.

    Turgis, M., Vu, K. D., Dupont, C., and Lacroix, M., 2012. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48: 696-702.

    von D?hren, H., 1995. Peptides. In: Genetics and Biochemistry of Antibiotic Production. Vining, L. C., and Stuttard, C., eds., Studtard, Boston, 129-171.

    (Edited by Ji Dechun)

    (Received December 4, 2013; revised March 28, 2014; accepted April 11, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-84023030

    E-mail: lijf1999@qust.edu.cn

    国产成人欧美在线观看 | 成人国产av品久久久| 亚洲欧美一区二区三区久久| 在线观看www视频免费| 男女无遮挡免费网站观看| www.av在线官网国产| 久久久水蜜桃国产精品网| 久久中文看片网| 亚洲国产精品一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| 99精品欧美一区二区三区四区| 久久精品国产亚洲av高清一级| 亚洲国产av新网站| 国精品久久久久久国模美| 丰满饥渴人妻一区二区三| 欧美黑人精品巨大| 视频在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 高清在线国产一区| 9色porny在线观看| 日日夜夜操网爽| 精品卡一卡二卡四卡免费| 热99国产精品久久久久久7| 老熟女久久久| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 天堂8中文在线网| 老司机在亚洲福利影院| 另类亚洲欧美激情| tocl精华| 高潮久久久久久久久久久不卡| 国产日韩欧美视频二区| 国产欧美日韩精品亚洲av| 国产成人影院久久av| 亚洲欧洲日产国产| 国产视频一区二区在线看| 成年动漫av网址| 最近最新中文字幕大全免费视频| 国产精品免费大片| 黑人巨大精品欧美一区二区mp4| 亚洲国产看品久久| 国产精品二区激情视频| 成人免费观看视频高清| 肉色欧美久久久久久久蜜桃| 丝袜美腿诱惑在线| 亚洲九九香蕉| av网站免费在线观看视频| 国产不卡av网站在线观看| 男人添女人高潮全过程视频| kizo精华| 久久亚洲国产成人精品v| 日韩熟女老妇一区二区性免费视频| 亚洲人成77777在线视频| 日韩有码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 久久女婷五月综合色啪小说| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲 | 美女高潮到喷水免费观看| 欧美成狂野欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 搡老乐熟女国产| 秋霞在线观看毛片| 日本黄色日本黄色录像| 亚洲人成电影免费在线| 少妇猛男粗大的猛烈进出视频| 国产高清视频在线播放一区 | 国产在视频线精品| 一区福利在线观看| 成人手机av| xxxhd国产人妻xxx| 好男人电影高清在线观看| 亚洲精品国产精品久久久不卡| 亚洲天堂av无毛| 黄色怎么调成土黄色| 飞空精品影院首页| 成在线人永久免费视频| 老司机福利观看| 五月天丁香电影| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 欧美日韩亚洲国产一区二区在线观看 | 母亲3免费完整高清在线观看| 亚洲综合色网址| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 桃红色精品国产亚洲av| 久久 成人 亚洲| 亚洲 国产 在线| 午夜福利免费观看在线| 久久久久久亚洲精品国产蜜桃av| 亚洲专区国产一区二区| 久久中文看片网| 国产av又大| 国产99久久九九免费精品| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 老司机福利观看| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 操出白浆在线播放| 99久久综合免费| av天堂在线播放| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 五月天丁香电影| 国产xxxxx性猛交| 久久中文字幕一级| 波多野结衣一区麻豆| 免费av中文字幕在线| 97精品久久久久久久久久精品| 国产不卡av网站在线观看| 如日韩欧美国产精品一区二区三区| 一级毛片女人18水好多| 精品亚洲成国产av| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 中文字幕制服av| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 精品人妻熟女毛片av久久网站| bbb黄色大片| 午夜91福利影院| 美女午夜性视频免费| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| 在线观看www视频免费| 国产在线免费精品| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 成人av一区二区三区在线看 | 国产成人啪精品午夜网站| 下体分泌物呈黄色| 1024香蕉在线观看| 精品国产乱码久久久久久小说| 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 成人国语在线视频| 亚洲 欧美一区二区三区| 精品高清国产在线一区| 婷婷色av中文字幕| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 一区在线观看完整版| 美女扒开内裤让男人捅视频| 亚洲成人手机| 精品一品国产午夜福利视频| av福利片在线| 免费日韩欧美在线观看| 99国产精品免费福利视频| 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 国产不卡av网站在线观看| 欧美日韩一级在线毛片| 男人爽女人下面视频在线观看| 他把我摸到了高潮在线观看 | 免费在线观看日本一区| 亚洲三区欧美一区| 国产又爽黄色视频| 国产免费现黄频在线看| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 欧美性长视频在线观看| 国产成人欧美| 十八禁网站免费在线| 黄色视频,在线免费观看| 亚洲美女黄色视频免费看| √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 亚洲七黄色美女视频| 五月开心婷婷网| 在线观看免费午夜福利视频| 狂野欧美激情性bbbbbb| 在线天堂中文资源库| 性少妇av在线| 一区二区三区激情视频| 狠狠婷婷综合久久久久久88av| 国产人伦9x9x在线观看| 好男人电影高清在线观看| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女 | 亚洲一区二区三区欧美精品| 中文字幕色久视频| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 亚洲第一av免费看| 五月开心婷婷网| 91国产中文字幕| 欧美另类一区| 又黄又粗又硬又大视频| 亚洲 国产 在线| 国产精品二区激情视频| 一级,二级,三级黄色视频| 高清av免费在线| 岛国在线观看网站| 天天影视国产精品| 久久人妻福利社区极品人妻图片| 最新在线观看一区二区三区| 国产免费一区二区三区四区乱码| 久久久精品区二区三区| 亚洲成人免费av在线播放| 老汉色av国产亚洲站长工具| 亚洲精品自拍成人| 精品久久蜜臀av无| netflix在线观看网站| 婷婷成人精品国产| 欧美黄色片欧美黄色片| 亚洲一码二码三码区别大吗| 成人国语在线视频| netflix在线观看网站| 男人舔女人的私密视频| 久久av网站| 两性夫妻黄色片| 91大片在线观看| 亚洲精品在线美女| 日韩三级视频一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲av片天天在线观看| 国产在线观看jvid| 国产成人一区二区三区免费视频网站| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 国产片内射在线| 免费在线观看影片大全网站| 天天添夜夜摸| 亚洲欧美成人综合另类久久久| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| 国产精品 欧美亚洲| 老熟女久久久| 如日韩欧美国产精品一区二区三区| 不卡av一区二区三区| 国产男女内射视频| 精品第一国产精品| 91九色精品人成在线观看| 亚洲专区字幕在线| 午夜福利视频在线观看免费| 天天添夜夜摸| bbb黄色大片| 精品一区二区三区av网在线观看 | 久久久久国产一级毛片高清牌| 曰老女人黄片| 国产三级黄色录像| 成人影院久久| 一区福利在线观看| 久久久久视频综合| 97在线人人人人妻| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 日本a在线网址| 国产成人免费无遮挡视频| 日韩电影二区| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 在线看a的网站| 久久 成人 亚洲| 另类亚洲欧美激情| 免费久久久久久久精品成人欧美视频| 一个人免费看片子| 性少妇av在线| 亚洲 国产 在线| 免费高清在线观看视频在线观看| 亚洲一区中文字幕在线| 国产伦人伦偷精品视频| 91精品国产国语对白视频| av视频免费观看在线观看| 99久久精品国产亚洲精品| 超碰97精品在线观看| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 国产精品麻豆人妻色哟哟久久| 国产av又大| 亚洲精品一卡2卡三卡4卡5卡 | 国产免费视频播放在线视频| 捣出白浆h1v1| 精品第一国产精品| 亚洲精品一二三| 可以免费在线观看a视频的电影网站| 久久久久久久国产电影| 欧美人与性动交α欧美精品济南到| 狂野欧美激情性bbbbbb| 人成视频在线观看免费观看| 欧美人与性动交α欧美软件| 美女脱内裤让男人舔精品视频| 国产成人av激情在线播放| 人妻 亚洲 视频| 中文字幕色久视频| 国产在线观看jvid| 亚洲精品乱久久久久久| 在线观看人妻少妇| 少妇人妻久久综合中文| 亚洲伊人色综图| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 黑人操中国人逼视频| 亚洲精品美女久久久久99蜜臀| 多毛熟女@视频| 国产日韩欧美在线精品| 久久久久久亚洲精品国产蜜桃av| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 欧美日韩黄片免| 亚洲国产欧美一区二区综合| 男人爽女人下面视频在线观看| 国产精品av久久久久免费| 脱女人内裤的视频| 国产不卡av网站在线观看| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 国产一区二区三区av在线| 国产精品1区2区在线观看. | 国产一卡二卡三卡精品| 中文字幕最新亚洲高清| 国产一卡二卡三卡精品| 国产精品免费大片| 人妻 亚洲 视频| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 久久久久久亚洲精品国产蜜桃av| 在线观看人妻少妇| 免费不卡黄色视频| 亚洲少妇的诱惑av| 亚洲伊人久久精品综合| 男女午夜视频在线观看| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| 国产精品成人在线| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 亚洲欧美一区二区三区黑人| 欧美老熟妇乱子伦牲交| 超色免费av| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| av有码第一页| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| av片东京热男人的天堂| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 免费不卡黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 色综合欧美亚洲国产小说| 国产在线观看jvid| 午夜激情久久久久久久| 亚洲精品久久成人aⅴ小说| av网站在线播放免费| 国产野战对白在线观看| 成年女人毛片免费观看观看9 | 国产亚洲午夜精品一区二区久久| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 搡老岳熟女国产| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| 欧美中文综合在线视频| 国产av一区二区精品久久| 美女扒开内裤让男人捅视频| 国产精品久久久人人做人人爽| 国产激情久久老熟女| 国产真人三级小视频在线观看| 91麻豆av在线| 久久狼人影院| 午夜成年电影在线免费观看| kizo精华| 亚洲 欧美一区二区三区| 亚洲国产日韩一区二区| 9191精品国产免费久久| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 老鸭窝网址在线观看| av免费在线观看网站| 母亲3免费完整高清在线观看| 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 久热爱精品视频在线9| 18在线观看网站| 狂野欧美激情性bbbbbb| 国产色视频综合| 999精品在线视频| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 成人国产av品久久久| 在线精品无人区一区二区三| 免费在线观看日本一区| 久久女婷五月综合色啪小说| 久久精品亚洲熟妇少妇任你| 国产免费福利视频在线观看| 狂野欧美激情性bbbbbb| 两性夫妻黄色片| 黄色 视频免费看| 69精品国产乱码久久久| 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 国产精品99久久99久久久不卡| 一级,二级,三级黄色视频| 麻豆乱淫一区二区| 99香蕉大伊视频| 久久久久久久国产电影| 成人国产av品久久久| 国产精品.久久久| 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸 | 女人久久www免费人成看片| 真人做人爱边吃奶动态| 大陆偷拍与自拍| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇的丰满在线观看| 久久狼人影院| 两个人看的免费小视频| 国产免费现黄频在线看| 欧美国产精品va在线观看不卡| av超薄肉色丝袜交足视频| 一区二区三区激情视频| 女警被强在线播放| 丁香六月天网| 午夜久久久在线观看| a级片在线免费高清观看视频| 久久综合国产亚洲精品| 美女高潮到喷水免费观看| netflix在线观看网站| 国产伦人伦偷精品视频| 侵犯人妻中文字幕一二三四区| 国产精品成人在线| av线在线观看网站| 老司机午夜福利在线观看视频 | 黄色视频不卡| 一本综合久久免费| 亚洲av欧美aⅴ国产| 午夜两性在线视频| 18禁黄网站禁片午夜丰满| 精品亚洲成国产av| 高清在线国产一区| 在线精品无人区一区二区三| 99九九在线精品视频| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产专区5o| 波多野结衣一区麻豆| av线在线观看网站| 亚洲国产中文字幕在线视频| 十八禁网站免费在线| 亚洲av成人一区二区三| 欧美在线一区亚洲| 不卡一级毛片| 一进一出抽搐动态| 国产真人三级小视频在线观看| 正在播放国产对白刺激| 国产欧美日韩一区二区三区在线| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久人妻精品电影 | 美女视频免费永久观看网站| 亚洲免费av在线视频| 日韩 欧美 亚洲 中文字幕| 男女国产视频网站| 国产精品.久久久| 不卡av一区二区三区| 免费高清在线观看视频在线观看| www.自偷自拍.com| 中文精品一卡2卡3卡4更新| 1024香蕉在线观看| 热re99久久国产66热| 香蕉丝袜av| 少妇 在线观看| 99热国产这里只有精品6| 日本91视频免费播放| 一级毛片电影观看| 成年人免费黄色播放视频| 亚洲专区字幕在线| 汤姆久久久久久久影院中文字幕| 韩国精品一区二区三区| www.精华液| 国产欧美日韩精品亚洲av| 美国免费a级毛片| 母亲3免费完整高清在线观看| 美女视频免费永久观看网站| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看 | 热99re8久久精品国产| 美女午夜性视频免费| 淫妇啪啪啪对白视频 | 日本av手机在线免费观看| 久久女婷五月综合色啪小说| 狂野欧美激情性bbbbbb| 精品国产一区二区久久| 少妇被粗大的猛进出69影院| 国产日韩一区二区三区精品不卡| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 亚洲精品一二三| 午夜成年电影在线免费观看| 丝袜喷水一区| 国产成人欧美在线观看 | 国产精品一区二区免费欧美 | 精品久久久精品久久久| 国产男女超爽视频在线观看| 一级毛片精品| 亚洲久久久国产精品| 国产一区二区 视频在线| 午夜福利,免费看| 欧美另类一区| 精品人妻在线不人妻| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂| 久久久久久亚洲精品国产蜜桃av| 男女无遮挡免费网站观看| 精品国内亚洲2022精品成人 | 欧美97在线视频| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 国产视频一区二区在线看| 色婷婷av一区二区三区视频| 80岁老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 亚洲av国产av综合av卡| videos熟女内射| 9色porny在线观看| 日本a在线网址| 亚洲精品中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线视频一区二区| 欧美日韩av久久| bbb黄色大片| 精品人妻在线不人妻| 男男h啪啪无遮挡| 亚洲精华国产精华精| 天天躁夜夜躁狠狠躁躁| 男女国产视频网站| 亚洲性夜色夜夜综合| 建设人人有责人人尽责人人享有的| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 在线 av 中文字幕| 一进一出抽搐动态| 国产不卡av网站在线观看| 一本久久精品| 成人黄色视频免费在线看| 日韩电影二区| 大片免费播放器 马上看| 汤姆久久久久久久影院中文字幕| 久久久国产欧美日韩av| 久久99热这里只频精品6学生| 亚洲一码二码三码区别大吗| 久久人人97超碰香蕉20202| 男女国产视频网站| 亚洲性夜色夜夜综合| 动漫黄色视频在线观看| 老司机福利观看| 性高湖久久久久久久久免费观看| 下体分泌物呈黄色| 日韩有码中文字幕| 一区二区日韩欧美中文字幕| 午夜91福利影院| 欧美精品一区二区免费开放| 青春草视频在线免费观看| 热re99久久国产66热| 嫁个100分男人电影在线观看| 国产精品麻豆人妻色哟哟久久| 日日夜夜操网爽| 精品福利永久在线观看| 韩国精品一区二区三区| 亚洲国产精品一区三区| 高清黄色对白视频在线免费看| 好男人电影高清在线观看| 国产精品一区二区在线不卡| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 高清在线国产一区| 中文字幕人妻丝袜制服| 丝袜在线中文字幕| 欧美少妇被猛烈插入视频| 国产av精品麻豆| 妹子高潮喷水视频| 一级片'在线观看视频| 女人久久www免费人成看片| 国产精品国产三级国产专区5o| 91麻豆av在线| 亚洲av电影在线进入| 激情视频va一区二区三区| 久久久久国产一级毛片高清牌| 成人免费观看视频高清| 国产亚洲一区二区精品| 国产男女内射视频| 美女脱内裤让男人舔精品视频| 飞空精品影院首页| 欧美精品av麻豆av| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 天堂8中文在线网| cao死你这个sao货| 久久精品国产a三级三级三级| 我的亚洲天堂|