楊晨++黃濤
摘要:為了探究源于玉米的抗穗發(fā)芽基因Vp-1改良小麥(Triticum aestivum L.)抗穗發(fā)芽性狀的可行性,以pmi及bar為篩選標(biāo)記基因,通過(guò)基因槍介導(dǎo)法將Vp-1基因?qū)胄←溤耘嗥贩N鄭麥9023 幼胚愈傷組織中,用甘露糖和雙丙氨磷(Bialaphos)2種不同的篩選劑篩選得到抗性植株并對(duì)其進(jìn)行PCR鑒定。結(jié)果顯示,通過(guò)pmi/甘露糖篩選體系得到53 株抗性植株,其中5株為轉(zhuǎn)基因小麥植株,轉(zhuǎn)化率為0.29%;通過(guò)bar/Bialaphos篩選體系得到152 株抗性植株,其中11株為轉(zhuǎn)基因小麥植株,轉(zhuǎn)化率為0.78%。
關(guān)鍵詞:小麥(Triticum aestivum L.);基因槍轉(zhuǎn)化;Vp-1基因;pmi基因;bar基因
中圖分類號(hào):S512.1;Q781 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)02-0265-03
Obtaining and Detecting Wheat with Transformed Vp-1 Gene via
Particle Bombardment
YANG Chena,b,HUANG Taoa,c
(a.Molecular Biotechnology Laboratory of Triticeae Crops; b.College of Life Sciences and Technology; c.College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China)
Abstract: To assess the possibility of Vp-1 gene isolated from maize against pre-harvest sprouting of wheat(Triticum aestivum L.),the target gene Vp-1 and selective marker gene pmi or bar was transferred into callus derived from immature embryos of Zhengmai 9023 via particle bombardment. The resistance was identified by mannose or bialaphos and PCR. The results showed 5 transgenic wheat plants were obtained from 53 regenerated plants by pmi/mannose selective system with the transformation efficiency of 0.29%, and 11 transgenic wheat plants were obtained from 152 regenerated plants by bar/bialaphos selective system with the transformation efficiency of 0.78%.
Key words: wheat (Triticum aestivum L.); particle bombardment; Vp-1 gene; pmi gene; bar gene
小麥(Triticum aestivum L.)穗發(fā)芽(Pre-harvest sprouting)是指小麥在收獲前遇到陰雨或在潮濕環(huán)境下的穗上發(fā)芽現(xiàn)象,是一種世界性的自然災(zāi)害[1]。Vp-1(Viviparous-1)是玉米體內(nèi)控制穗發(fā)芽的重要調(diào)節(jié)基因,該基因編碼種子特異性轉(zhuǎn)錄因子,通過(guò)影響植物脫落酸ABA信號(hào)的傳導(dǎo)促進(jìn)與胚成熟相關(guān)基因Em的表達(dá),抑制α-淀粉酶活性,從而對(duì)種子休眠和發(fā)芽起著重要的調(diào)控作用[2]。小麥中存在Vp-1基因的同源序列TaVp-1,但TaVp-1不能正確拼接,導(dǎo)致大部分成熟mRNA不能編碼全長(zhǎng)VP-1蛋白質(zhì),從而失去調(diào)節(jié)功能[3]。將有功能的Vp-1基因?qū)氲叫←溨斜磉_(dá),可能會(huì)增強(qiáng)小麥的穗發(fā)芽抗性。
自1992年Vasil等[4]首次成功地將gus和bar基因通過(guò)基因槍法導(dǎo)入胚性愈傷組織,獲得第一株轉(zhuǎn)基因小麥以來(lái),小麥的遺傳轉(zhuǎn)化已取得較大的突破[5-7]?;驑尫ㄒ蚱渚哂袩o(wú)宿主限制、靶受體類型廣泛、可控度高、操作簡(jiǎn)便快速等優(yōu)點(diǎn)在世界范圍內(nèi)得到廣泛的應(yīng)用[8-10]。
標(biāo)記基因在植物的遺傳轉(zhuǎn)化過(guò)程中的作用是區(qū)分轉(zhuǎn)化細(xì)胞和非轉(zhuǎn)化細(xì)胞,是篩選和鑒定轉(zhuǎn)化細(xì)胞、組織和轉(zhuǎn)基因植株的有效方法。小麥轉(zhuǎn)化中最常使用的篩選標(biāo)記是具有除草劑或抗生素抗性的基因,包括草丁膦抗性基因(bar)[11]及潮霉素磷酸轉(zhuǎn)移酶基因(nptⅡ)等。近年來(lái),研究者傾向于使用生物安全標(biāo)記基因[12],如糖類代謝酶基因(pmi)、干擾氨基酸代謝酶基因(dapA)、綠色熒光蛋白基因(gfp)等。
本研究利用pmi基因和bar基因2種不同的篩選標(biāo)記基因,通過(guò)基因槍法將Vp-1基因轉(zhuǎn)入小麥幼胚愈傷中,試圖獲得含Vp-1基因的轉(zhuǎn)基因小麥,旨在探索利用Vp-1基因改良小麥抗穗發(fā)芽性狀的可行性。
1 材料與方法
1.1 材料
試驗(yàn)所用小麥品種鄭麥9023以及質(zhì)粒pXJC-VP1、pPMI、pBar均由華中農(nóng)業(yè)大學(xué)麥類作物分子生物技術(shù)實(shí)驗(yàn)室提供。
1.2 試驗(yàn)方法
參考文獻(xiàn):
[1] GROOS C, GAY G, PERRETANT M R, et al. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross[J]. Theoretical and Applied Genetics,2002,104(1):39-47.
[2] MCCARTY D R, CARSON C B, STINARD P S,et al. Molecular analysis of viviparous-1: An abscisic acid insensitive mutant of maize[J]. The Plant cell,1989,1(5):523-532.
[3] MCKIBBIN R S, WILKINSON M D, BAILEY P C, et al. Transcripts of Vp-1 homologues are mis-spliced in modern wheat and ancestral species[J]. PNAS,2002,99:10203-10208.
[4] VASIL V, CASTILLO A M, FROMM M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Bio Technology,1992,10:667-674.
[5] JONES H D. Wheat transformation: Current technology and applications to grain development and composition[J]. Journal of Cereal Science,2005,41(2):137-147.
[6] VASIL I K. Molecular genetic improvement of cereals: transgenic wheat(Triticum aestivum L.)[J]. Plant Cell Rep,2007, 26:1133-1154.
[7] SPARKS C A,JONES H D. Biolistics transformation of wheat[J]. Methods in Molecular Biology,2009,478:71-88.
[8] SCHMIDT M A, LAFAYETTE P R, ARTELT B A. A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment[J]. Biol Plant,2008,44:162-168.
[9] ALTPETER F, BAISAKH N, BEACHY R, et al. Particle bombardment and the genetic enhansment of crops: Myths and realities[J]. Mol Breeding,2005,15:305-327.
[10] YAO Q, CONG L, CHANG J L, et al. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment [J]. J Experimental Botany,2006,57:3737-3746.
[11] SPENCER T M,DAINES R J,LEMAUX P G,et al. Bialaphos selection of stable transformants from maize cell culture[J]. Theor Appl Genet,1990,79:625-631.
[12] GADALETA A, GIANCASPRO A, BLECHL A, et al. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation[J]. J Cereal Science,2006,43: 31-37.
[13] MURASHIGE T, SKOOG F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiol Plant,1962,15:473-497.
[14] ALTPETER F, VASIL V, VASIL I K, et al. Accelerated production of transgenic wheat (Triticum aestivum L.) plants [J]. Plant Cell Reports,1996,16:12-17.
[15] REED J, PRIVALLE L, WRIGHT M, et al. Phosphomannose isomerase: An efficient selectable marker for plant transformation[J]. In Vitro Cell Dev Biol,2001,37:127-132.
[16] LI H P, ZHANG J B, SHI R P, et al. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide[J]. Mol Plant Microbe Interact,2008,21:1242-1248.
[17] DELLAPORTA S L, WOOD J, HICKS J B. A plant DNA minipreparation: Version II[J]. Plant Molecular Biology Reporter,1983,1:19-21.
[18] STOYKOVA P, STOEVA P P. PMI(manA) as a nonantibiotic selectable marker gene in plant biotechnology[J]. Plant Cell Tissue Organ Cult,2011,105:141-148.
[19] HUANG T, LI H P, LIAO Y C, et al. A maize viviparous- 1 gene increases seed dormancy and pre-harvest sprouting tolerance transgenic wheat[J]. Journal of Cereal Science,2012, 55:166-173.
[2] MCCARTY D R, CARSON C B, STINARD P S,et al. Molecular analysis of viviparous-1: An abscisic acid insensitive mutant of maize[J]. The Plant cell,1989,1(5):523-532.
[3] MCKIBBIN R S, WILKINSON M D, BAILEY P C, et al. Transcripts of Vp-1 homologues are mis-spliced in modern wheat and ancestral species[J]. PNAS,2002,99:10203-10208.
[4] VASIL V, CASTILLO A M, FROMM M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Bio Technology,1992,10:667-674.
[5] JONES H D. Wheat transformation: Current technology and applications to grain development and composition[J]. Journal of Cereal Science,2005,41(2):137-147.
[6] VASIL I K. Molecular genetic improvement of cereals: transgenic wheat(Triticum aestivum L.)[J]. Plant Cell Rep,2007, 26:1133-1154.
[7] SPARKS C A,JONES H D. Biolistics transformation of wheat[J]. Methods in Molecular Biology,2009,478:71-88.
[8] SCHMIDT M A, LAFAYETTE P R, ARTELT B A. A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment[J]. Biol Plant,2008,44:162-168.
[9] ALTPETER F, BAISAKH N, BEACHY R, et al. Particle bombardment and the genetic enhansment of crops: Myths and realities[J]. Mol Breeding,2005,15:305-327.
[10] YAO Q, CONG L, CHANG J L, et al. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment [J]. J Experimental Botany,2006,57:3737-3746.
[11] SPENCER T M,DAINES R J,LEMAUX P G,et al. Bialaphos selection of stable transformants from maize cell culture[J]. Theor Appl Genet,1990,79:625-631.
[12] GADALETA A, GIANCASPRO A, BLECHL A, et al. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation[J]. J Cereal Science,2006,43: 31-37.
[13] MURASHIGE T, SKOOG F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiol Plant,1962,15:473-497.
[14] ALTPETER F, VASIL V, VASIL I K, et al. Accelerated production of transgenic wheat (Triticum aestivum L.) plants [J]. Plant Cell Reports,1996,16:12-17.
[15] REED J, PRIVALLE L, WRIGHT M, et al. Phosphomannose isomerase: An efficient selectable marker for plant transformation[J]. In Vitro Cell Dev Biol,2001,37:127-132.
[16] LI H P, ZHANG J B, SHI R P, et al. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide[J]. Mol Plant Microbe Interact,2008,21:1242-1248.
[17] DELLAPORTA S L, WOOD J, HICKS J B. A plant DNA minipreparation: Version II[J]. Plant Molecular Biology Reporter,1983,1:19-21.
[18] STOYKOVA P, STOEVA P P. PMI(manA) as a nonantibiotic selectable marker gene in plant biotechnology[J]. Plant Cell Tissue Organ Cult,2011,105:141-148.
[19] HUANG T, LI H P, LIAO Y C, et al. A maize viviparous- 1 gene increases seed dormancy and pre-harvest sprouting tolerance transgenic wheat[J]. Journal of Cereal Science,2012, 55:166-173.
[2] MCCARTY D R, CARSON C B, STINARD P S,et al. Molecular analysis of viviparous-1: An abscisic acid insensitive mutant of maize[J]. The Plant cell,1989,1(5):523-532.
[3] MCKIBBIN R S, WILKINSON M D, BAILEY P C, et al. Transcripts of Vp-1 homologues are mis-spliced in modern wheat and ancestral species[J]. PNAS,2002,99:10203-10208.
[4] VASIL V, CASTILLO A M, FROMM M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Bio Technology,1992,10:667-674.
[5] JONES H D. Wheat transformation: Current technology and applications to grain development and composition[J]. Journal of Cereal Science,2005,41(2):137-147.
[6] VASIL I K. Molecular genetic improvement of cereals: transgenic wheat(Triticum aestivum L.)[J]. Plant Cell Rep,2007, 26:1133-1154.
[7] SPARKS C A,JONES H D. Biolistics transformation of wheat[J]. Methods in Molecular Biology,2009,478:71-88.
[8] SCHMIDT M A, LAFAYETTE P R, ARTELT B A. A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment[J]. Biol Plant,2008,44:162-168.
[9] ALTPETER F, BAISAKH N, BEACHY R, et al. Particle bombardment and the genetic enhansment of crops: Myths and realities[J]. Mol Breeding,2005,15:305-327.
[10] YAO Q, CONG L, CHANG J L, et al. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment [J]. J Experimental Botany,2006,57:3737-3746.
[11] SPENCER T M,DAINES R J,LEMAUX P G,et al. Bialaphos selection of stable transformants from maize cell culture[J]. Theor Appl Genet,1990,79:625-631.
[12] GADALETA A, GIANCASPRO A, BLECHL A, et al. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation[J]. J Cereal Science,2006,43: 31-37.
[13] MURASHIGE T, SKOOG F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiol Plant,1962,15:473-497.
[14] ALTPETER F, VASIL V, VASIL I K, et al. Accelerated production of transgenic wheat (Triticum aestivum L.) plants [J]. Plant Cell Reports,1996,16:12-17.
[15] REED J, PRIVALLE L, WRIGHT M, et al. Phosphomannose isomerase: An efficient selectable marker for plant transformation[J]. In Vitro Cell Dev Biol,2001,37:127-132.
[16] LI H P, ZHANG J B, SHI R P, et al. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide[J]. Mol Plant Microbe Interact,2008,21:1242-1248.
[17] DELLAPORTA S L, WOOD J, HICKS J B. A plant DNA minipreparation: Version II[J]. Plant Molecular Biology Reporter,1983,1:19-21.
[18] STOYKOVA P, STOEVA P P. PMI(manA) as a nonantibiotic selectable marker gene in plant biotechnology[J]. Plant Cell Tissue Organ Cult,2011,105:141-148.
[19] HUANG T, LI H P, LIAO Y C, et al. A maize viviparous- 1 gene increases seed dormancy and pre-harvest sprouting tolerance transgenic wheat[J]. Journal of Cereal Science,2012, 55:166-173.