• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      灰霉病菌侵染墊生長在不同介質(zhì)表面上的超微結構

      2014-05-04 10:56曹劍波等
      湖北農(nóng)業(yè)科學 2014年4期
      關鍵詞:玻璃紙灰霉病聚乙烯

      曹劍波等

      摘要:果蔬等經(jīng)濟作物生產(chǎn)中的重要病害——灰霉病是由真菌灰霉病菌(Botrytis cinerea Pers. Fr)引起,灰霉病菌的侵染墊是病菌侵染植物所必需的,試驗研究了侵染墊的侵入機制。結果表明,灰霉病菌的侵染墊能在再生纖維素膜(玻璃紙)上生長并能降解該膜,然后侵入其中,在聚乙烯膜上不能生長亦不降解該膜。侵染墊在再生纖維素膜上的生長方式和侵入過程同在植物細胞表面完全一致,可見,植物中的纖維素是誘導灰霉病菌侵染墊形成和生長的重要因素。試驗結果為進一步探討灰霉病菌的侵染機制提供了線索。

      關鍵詞:灰霉病菌(Botrytis cinerea Pers. Fr);侵染墊;玻璃紙;聚乙烯膜;超微結構

      中圖分類號:TQ450.2 文獻標識碼:A 文章編號:0439-8114(2014)04-0814-04

      Ultrastructural Studies on the Penetration Process of Botrytis cinerea Infection Cushion on Different Substrate Surfaces

      CAO Jian-bo1a,ZHANG Jing1b,ZHANG Lei2,CHEN Qian-si3,QIN Li-hong1a,LI Guo-qing1b

      (1.Huazhong Agricultural University,a.Public Laboratory of Electron Microscopy; b. Plant Science and Technology College, Wuhan 430070,China; 2.Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066,China; 3.Gene Research Center of Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001,China)

      Abstract: Gray mould disease caused by Botrytis cinerea is an important disease in cash crop production. The infection cushion is necessary for Botrytis cinerea penetrating into plants, but the mechanism of infection cushion penetrating into plants should be studied. The results showed that the infection cushion of Botrytis cinerea could grow on cellophane then penetrate into and degrade the cellophane composed of cellulose, but it could not grow on polyethylene membrane. The development and penetration process of Botrytis cinerea infection cushion on cellophane was identical to that on the plant surface. It is indicated that the cellulose in plant played an important role in inducing the development and penetration of Botrytis cinerea dicated cushion and provided clues for explaining pathogenicity of Botrytis cinerea.

      Key words: Botrytis cinerea Pers. Fr; infection cushion; cellophane; polyethylene; ultrastructure

      灰霉病(Gray mould disease)是由灰霉病菌(灰葡萄孢,Botrytis cinerea Pers. Fr)引起的真菌性病害?;颐共【鷮儆趬乃佬停∟ecrotrophic)病原真菌,能侵染200多種植物,造成植物腐爛、減產(chǎn),給農(nóng)業(yè)生產(chǎn)帶來重大經(jīng)濟損失[1]。灰霉病菌侵染植物可通過無性狀態(tài)和孢子傳播兩種方式進行,菌絲頂端形成多細胞的爪狀結構——侵染墊(Infection cushion)或孢子萌發(fā)管頂端形成類附著胞(Appressorium-like)結構侵入宿主,也可通過傷口直接進入宿主[2]?;颐共【谇秩舅拗鞯倪^程中,侵染墊起著侵入和破壞組織細胞的作用,是病菌在宿主中擴散所需的必不可少的結構[3]。

      已有研究表明,稻瘟病菌(Magnaporthe oryzae)的特化侵染結構——附著胞通過菌絲細胞的滲透壓產(chǎn)生巨大的機械壓力刺入植物表皮或其他堅硬的物質(zhì)表面[4]。棉花下胚軸表面的拓撲結構是促進紋枯病菌(Rhizoctonia solani)侵染墊形成的主要因素,同時宿主的滲出液也會影響紋枯病菌侵染墊的形成[5]?;颐共【稍阡佊胁AЪ垼–ellophane)的培養(yǎng)基上生長,玻璃紙是由側鏈被化學修飾的纖維素分子構成的再生纖維素膜[6]。為探討灰霉病菌在玻璃紙上的生長情況和在聚乙烯膜上形成侵染墊的能力等問題,試驗研究了灰霉病菌的侵染墊在玻璃紙、聚乙烯膜(Polyethylene)和油菜葉片上的超微結構及變化,確定纖維素和聚乙烯分子對灰霉病菌侵染墊的形成和生長的影響,為闡明灰霉病菌侵染墊的形成機理提供了線索。

      1 材料與方法

      1.1 材料

      灰霉病菌菌株CanBC-2,分離自油菜葉片[7], 20 ℃培養(yǎng), 4 ℃保存。實驗室溫室中種植感病油菜品種中油雜2號,取60 d苗齡植株中部的幼嫩葉片用于接種試驗。玻璃紙、聚乙烯膜購買于國藥集團化學試劑有限公司。

      1.2 方法

      1.2.1 灰霉病菌接種 采用離體葉片接種法[3],菌株CanBC-2在馬鈴薯葡萄糖(PDA)瓊脂固體培養(yǎng)基上培養(yǎng),取菌落邊緣含有菌絲的瓊脂塊,分別接種到新采下的油菜葉片、鋪有玻璃紙和聚乙烯膜的鐵片上,保濕環(huán)境下20 ℃培養(yǎng), 2 d后取葉片、玻璃紙和聚乙烯膜供試。

      1.2.2 掃描電鏡觀察 將葉片剪成0.2 cm×0.2 cm,2.5%戊二醛固定4 h,0.1 mol/L磷酸緩沖液清洗3次,每次10 min,梯度乙醇溶液(30%、50%、70%、80%、90%、100%、100%)脫水各10 min,乙醇與乙酸異戊酯1∶1、1∶2混合液和乙酸異戊酯各置換10 min。HITACHI HCP-2型臨界點干燥儀干燥。

      玻璃紙和聚乙烯膜剪成0.2 cm×0.2 cm方形,部分放入水中超聲波處理10 min以去除附著的菌絲,自然干燥。

      將經(jīng)超聲波處理的和未處理的玻璃紙、聚乙烯膜以及干燥好的油菜葉片在JEOL JFC-160型離子濺射儀上濺射5 min,置于JEOL JEM-6390LV型掃描電鏡下掃描拍照[8]。

      1.2.3 透射電鏡觀察 將長有菌絲的葉片和玻璃紙剪成0.2 cm×0.2 cm塊狀,2.5%戊二醛固定并抽真空沉底4 h后,用0.1 mol/L磷酸緩沖液清洗3次,每次30 min。用1%鋨酸后固定2 h,再用梯度丙酮溶液(30%、50%、70%、80%、90%、100%、100%)脫水各30 min,SPI-812樹脂與丙酮混合液滲透、包埋。包埋塊聚合后,用Leica UC6型超薄切片機切片,醋酸鈾-檸檬酸鉛染色,各染色30 min,HITACHI H-7650型透射電鏡觀察,Gatan 832型數(shù)字成像系統(tǒng)記錄、拍照[9]。

      2 結果與分析

      2.1 侵染墊在玻璃紙和聚乙烯膜上呈現(xiàn)不同形態(tài)結構

      灰霉病菌菌絲塊接種到玻璃紙上2 d,玻璃紙上有大量菌絲出現(xiàn)由頂端分支膨大而形成的侵染墊(圖1A),侵染墊的頂端陷入玻璃紙中,玻璃紙上的菌絲邊緣出現(xiàn)膠狀物。接種到聚乙烯膜上2 d,侵染墊形成很少,侵染墊中菌絲纏繞并未緊貼在膜的表面(圖1B),菌絲頂端分支但不膨大而且未陷入膜中,菌絲邊緣無膠狀物。

      2.2 侵染墊在玻璃紙和油菜葉片上的形態(tài)結構一致

      灰霉病菌的菌絲塊接種到玻璃紙和油菜葉片上2 d,菌絲頂端分支膨大形成侵染墊(圖2A),侵染墊的頂端陷入玻璃紙中,邊緣出現(xiàn)膠狀物質(zhì),侵染墊后端的菌絲緊貼玻璃紙的部位也出現(xiàn)膠狀物質(zhì),玻璃紙出現(xiàn)裂痕;侵染墊侵入玻璃紙并在侵入邊緣形成膠狀物質(zhì)(圖2B),超聲波去除菌絲后的玻璃紙上出現(xiàn)質(zhì)地松散、顆?;?、有裂縫的區(qū)域(圖2C)。油菜葉片表面形成的侵染墊侵入葉片表皮細胞,侵染墊邊緣的葉片表面出現(xiàn)膠狀物質(zhì)(圖2D)。

      2.3 侵染墊侵入玻璃紙和油菜葉片的方式相同

      灰霉病菌的菌絲塊接種到玻璃紙和油菜葉片上2 d,玻璃紙上侵染墊菌絲頂端緊貼玻璃紙表面,菌絲頂端的細胞壁變薄,有的菌絲細胞壁破裂形成小孔,菌絲的細胞質(zhì)形成液滴狀進入玻璃紙內(nèi)部(圖3A);菌絲間有膠狀物質(zhì)存在,玻璃紙內(nèi)部靠近菌絲的區(qū)域有大量高電子密度的顆粒(圖3A)。在油菜葉片上,侵染墊的菌絲穿透表皮細胞的細胞壁,菌絲的細胞質(zhì)形成液滴狀進入表皮細胞的細胞壁,菌絲侵入部位表皮細胞的細胞壁失去了紋理狀結構(圖3B)。未接種灰霉病菌的玻璃紙內(nèi)部結構均勻,無高電子密度顆粒存在(圖3C)。

      3 小結與討論

      真菌常形成附著胞和侵染墊2種特化的結構穿透植物表面,從而侵入植物體內(nèi)進行增殖[3,10,11]。灰霉病菌會形成3種侵染源——孢子、菌核和宿主組織包裹的菌絲侵染物,孢子通過分泌角質(zhì)酶、果膠酶、脂肪酶等酶類降解植物細胞表面的角質(zhì)層而非依靠機械壓力進入植物細胞[12,13]。這3種侵染源侵染植物都是以菌絲的形式并依靠菌絲實現(xiàn)在植物組織中擴散,菌絲侵染過程中會形成侵染墊侵入植物,因此侵染墊在灰霉病菌生長繁殖中起重要作用[1,14-16]。稻瘟病菌的附著胞通過細胞內(nèi)產(chǎn)生的滲透壓形成巨大的機械壓力刺入堅硬的物質(zhì)如聚乙烯膜、聚酯薄膜以及植物表皮細胞[4]。然而,灰霉病菌的侵染墊不能侵入聚乙烯膜,說明侵染墊的菌絲不能通過機械壓力侵入堅硬的物質(zhì)表面及植物表皮細胞?;颐共【那秩緣|能夠侵入由再生纖維素構成的玻璃紙中并在侵入部位產(chǎn)生膠狀物質(zhì),而且破壞了玻璃紙的結構,造成玻璃紙表面顆?;俺霈F(xiàn)裂紋,說明灰霉病菌的侵染墊同孢子一樣,通過降解纖維素等細胞壁成分來穿透植物表皮細胞,從而進入植物組織內(nèi)部增殖擴散。

      紋枯病菌侵染墊的形成受到棉花下胚軸表面的拓撲結構和宿主的滲出液影響,甲基葡萄糖(Methyl glucose)不能影響侵染墊的形成[5]。然而,本研究發(fā)現(xiàn)在誘導灰霉病菌形成侵染墊方面,表面均光滑的聚乙烯膜和玻璃紙卻起著不同的作用。在這兩種膜上生長的灰霉病菌都由含馬鈴薯葡萄糖培養(yǎng)基的瓊脂塊提供營養(yǎng)。玻璃紙上產(chǎn)生了大量的侵染墊,侵染墊頂端菌絲膨大,侵入玻璃紙而且在侵入位點處產(chǎn)生膠狀物質(zhì);聚乙烯膜上只有少量侵染墊,侵染墊的頂端未膨大亦無膠狀物質(zhì)產(chǎn)生;而灰霉病菌的侵染墊侵入玻璃紙的方式與侵入植物表皮細胞完全一致。這些說明,物體表面的拓撲結構并不能影響灰霉病菌的侵染墊形成,而是物體表面的分子成分影響了侵染墊的形成和生長。聚乙烯分子不能誘導灰霉病菌侵染墊的形成和生長,纖維素分子同植物表皮中的分子一樣能夠誘導灰霉病菌侵染墊的形成和生長,而且纖維素分子側鏈羥基被化學修飾并不影響纖維素分子誘導侵染墊的形成和生長。植物細胞中含有大量的纖維素[17],本研究說明植物中的纖維素是誘導灰霉病菌的侵染墊形成和灰霉病侵入植物體內(nèi)的因素之一,而且纖維素分子的主鏈結構可能起著重要作用。

      參考文獻:

      [1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

      [2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

      [3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

      [4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

      [5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

      [6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

      [7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

      [8] 秦利鴻,曹建波,易偉松.綠茶多糖的掃描電鏡制樣新方法及原子力顯微鏡觀察[J]. 電子顯微學報,2009,28(2):162-167.

      [9] 曹劍波,李 彬,陳煥春,等.高致病性豬繁殖與呼吸障礙綜合征病毒感染豬主要臟器的超微結構變化[J].華中農(nóng)業(yè)大學學報,2009,28(3):330-333.

      [10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

      [11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

      [12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

      [13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

      [14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

      [15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

      [16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

      [17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

      參考文獻:

      [1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

      [2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

      [3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

      [4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

      [5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

      [6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

      [7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

      [8] 秦利鴻,曹建波,易偉松.綠茶多糖的掃描電鏡制樣新方法及原子力顯微鏡觀察[J]. 電子顯微學報,2009,28(2):162-167.

      [9] 曹劍波,李 彬,陳煥春,等.高致病性豬繁殖與呼吸障礙綜合征病毒感染豬主要臟器的超微結構變化[J].華中農(nóng)業(yè)大學學報,2009,28(3):330-333.

      [10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

      [11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

      [12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

      [13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

      [14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

      [15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

      [16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

      [17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

      參考文獻:

      [1] WILLIAMSON B,TUDZYNSKI B, TUDZYNSKI P,et al. Botrytis cinerea: The cause of grey mould disease[J]. Mol Plant Pathol,2007,8(5):561-580.

      [2] VIRET O, KELLER M, JAUDZEMS V G, et al. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites[J]. Phytopathology,2004,94(8):850-857.

      [3] ZHANG L, WU M D, GUO Q L, et al. Effect of mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology,2010,75(2):71-80.

      [4] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proc Natl Acad Sci USA,1991,88(24):11281-11284.

      [5] ARMENTROUT V N, DOWNER A J, GRASMICK D L, et al. Factors affecting infection cushion development by Rhizoctonia solani on cotton[J]. Phytopathology,1987,77(4):623-630.

      [6] Cellophane[ED/OL]. http://targetstudy.com/knowledge/invention/140/cellophane.html.2013-06-07.

      [7] GUO Q L, HUANG H, ERICHSON R S, et al. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions[J]. Plant disease,88(11):1246-1251.

      [8] 秦利鴻,曹建波,易偉松.綠茶多糖的掃描電鏡制樣新方法及原子力顯微鏡觀察[J]. 電子顯微學報,2009,28(2):162-167.

      [9] 曹劍波,李 彬,陳煥春,等.高致病性豬繁殖與呼吸障礙綜合征病毒感染豬主要臟器的超微結構變化[J].華中農(nóng)業(yè)大學學報,2009,28(3):330-333.

      [10] SHARMAN S, HEALE J B. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers.ex Pers [J]. Pysiology Plant Pathology,1977,10(1):63-71.

      [11] DEISING H B, WERNER S, WERNITZ M. The role of fungal appressoria in plant infection [J]. Microbes and Infection, 2000,2(13):1631-1641.

      [12] GARCIA-ARENAL F, SAGASTA E M. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls [J]. Phytopathology,1980,99(1):37-42.

      [13] REIS H,PFIFFI S,HAHN M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea[J]. Molecular Plant Pathology,2005,6(3):257-267.

      [14] MCKEEN W. Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea[J]. Phytopathology,1973,64(1):461-467.

      [15] QINH S Q, JOYCE D C, IRVING D E, et al. Histology of waxflower(Chamelaucium spp.) flower infection by Botrytis cinerea[J]. Plant Pathology,2011,60(2):278-287.

      [16] BACKHOUSE D, WILLETS H J. Development and structure of infection cushions of Botrytis cinerea[J]. Trans Br Mycol Soc,1987,89(1):89-95.

      [17] RICHMOND T.Higher plant cellulose synthases[J]. Genome Biol,2000,1(4):3001-3005.

      猜你喜歡
      玻璃紙灰霉病聚乙烯
      番茄灰霉病巧防治
      后吸收法交聯(lián)聚乙烯制備及存儲性研究
      會哭的玻璃紙
      玻璃紙的怪脾氣
      如何防治棚室番茄灰霉病
      葡萄灰霉病的防治
      廢棄交聯(lián)聚乙烯回收利用研究進展
      占壓下埋地聚乙烯管力學響應的數(shù)值模擬
      甘肅:《聚乙烯(PE)再生料》將于9月1日實施
      荣昌县| 新绛县| 德兴市| 鹰潭市| 沧州市| 晋宁县| 尤溪县| 建水县| 遂昌县| 甘谷县| 镶黄旗| 定边县| 桐城市| 罗甸县| 永和县| 漳浦县| 贵港市| 湘西| 灵石县| 临沂市| 台中市| 伊金霍洛旗| 玛沁县| 贡山| 且末县| 抚远县| 庆元县| 全南县| 阿瓦提县| 体育| 南投市| 吉首市| 永丰县| 喀什市| 富平县| 东源县| 石狮市| 大名县| 靖远县| 桂东县| 淮北市|