• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      W糾纏輔助下的熵測不準(zhǔn)關(guān)系

      2014-05-13 10:02:58倪順利姚春梅
      關(guān)鍵詞:衰減系數(shù)振幅阻尼

      倪順利,賀 志,姚春梅

      ?

      W糾纏輔助下的熵測不準(zhǔn)關(guān)系

      倪順利,賀 志,姚春梅*

      (湖南文理學(xué)院 物理與電子科學(xué)學(xué)院, 湖南 常德, 415000)

      利用弱測量與反弱測量技術(shù), 研究了基于W糾纏輔助的熵測不準(zhǔn)關(guān)系在振幅阻尼噪聲下的演化行為. 分別對單粒子和雙粒子經(jīng)歷噪聲的情況進(jìn)行了模擬計(jì)算, 發(fā)現(xiàn)弱測量與反弱測量技術(shù)對雙粒子經(jīng)歷噪聲的糾纏恢復(fù)優(yōu)于單粒子噪聲情況. 在雙粒子噪聲情況下, 2個(gè)不對易的力學(xué)量在同一個(gè)體系中的測不準(zhǔn)量會明顯減少, 計(jì)算發(fā)現(xiàn)該測不準(zhǔn)量與弱測量和反弱測量強(qiáng)度、阻尼衰減系數(shù)等因素有關(guān). 阻尼衰減系數(shù)在一定的范圍內(nèi), 弱測量與反弱測量技術(shù)有效地提高了W糾纏態(tài)抵御噪聲的能力, 本文給出了關(guān)于不確定量更緊的束縛.

      W糾纏; 弱測量; 熵測不準(zhǔn)關(guān)系; 振幅阻尼通道

      1 單粒子經(jīng)歷AD噪聲通道熵的演化情況

      設(shè)體系中有3個(gè)qubit處在W態(tài)時(shí), 體系的波函數(shù)能表示成:

      弱測量:

      AD噪聲通道(振幅阻尼噪聲通道):

      反弱測量:

      讓粒子依次經(jīng)過弱測量、振幅阻尼噪聲通道、反弱測量, 計(jì)算得到:

      其中:

      等價(jià)地, 可將寫成密度矩陣的形式為:

      ()為的von Neumann entropy, 通過計(jì)算得到:

      令()為的馮若依曼熵, 計(jì)算得到:

      ()為的馮若依曼熵:

      文中和U是關(guān)于弱測量與反弱測量強(qiáng)度及AD通道系數(shù)的函數(shù), 將通道系數(shù)轉(zhuǎn)化為振幅阻尼噪聲系數(shù),與的關(guān)系為= 1-e-,為振幅阻尼衰減系數(shù).

      從圖1以及通過程序篩選可知其最大糾纏是在= 0.93,= 0.99取得的.

      圖2為沒有用弱測量和反弱測量, 即= 0,= 0時(shí)測不準(zhǔn)量(用、U表示)隨阻尼衰減系數(shù)的變化曲線. 從圖2發(fā)現(xiàn), 在較小的一段范圍內(nèi)測不準(zhǔn)量隨的增加而增加, 并且和U接近程度越好. 當(dāng)增大到某一值時(shí), 測不準(zhǔn)量、U達(dá)到一個(gè)穩(wěn)定值.

      圖1 rAB糾纏度隨弱測量和反弱測量強(qiáng)度的變化曲線

      圖3為利用弱測量和反弱測量當(dāng)= 0.93,= 0.99(最大糾纏)時(shí), 測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖3發(fā)現(xiàn), 在趨近于0時(shí),U相比= 0,= 0時(shí)要小, 而有所增加. 測不準(zhǔn)量的變化趨勢與= 0,= 0的情況相當(dāng).

      圖2 p = 0, q = 0 時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)的變化

      圖3 p = 0.93, q = 0.99 時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)的變化

      圖4為利用弱測量和反弱測量= 0.5,= 0.9時(shí)測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖4可發(fā)現(xiàn), 由于、的取值變化, 測不準(zhǔn)量和U有所下降.

      圖5為=0.5,= 0.4時(shí)測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖4可知,很小時(shí), 測不準(zhǔn)量接近程度要優(yōu)于=0,= 0時(shí)的測不準(zhǔn)量的接近程度, 并且相應(yīng)的測不準(zhǔn)量有所下降.

      從以上分析可知, 在單粒子情況下, 使用弱測量與反弱測量技術(shù)較不使用相比熵測不準(zhǔn)關(guān)系吻合得要好, 并且相應(yīng)的測不準(zhǔn)量也會降低; 與兩體糾纏經(jīng)歷振幅阻尼噪聲通道相比, 相應(yīng)的測不準(zhǔn)量有所降低, 說明使用弱測量與反弱測量提高了W糾纏態(tài)抵御噪聲的能力.

      圖4 p = 0.5, q = 0.9 時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)的變化

      2 兩粒子經(jīng)歷AD噪聲通道熵的演化情況

      設(shè)體系中有3個(gè)qubit處在W態(tài)時(shí), 體系的波函數(shù)能表示成(1)式的開式. 弱測量為:

      雙粒子經(jīng)歷AD噪聲通道(振幅阻尼噪聲通道)與單粒子情況計(jì)算公式相同, 單考慮到通道對2個(gè)粒子的作用可能不一樣, 所以設(shè)定了1和2系數(shù). 反弱測量:

      讓、粒子依次經(jīng)過弱測量、振幅阻尼噪聲通道、反弱測量, 計(jì)算得到:

      等價(jià)地, 可將它寫成密度矩陣的形式為:

      令()為的馮若依曼熵, 計(jì)算得到:

      密度算子rAB為X型矩陣, 它的糾纏度是關(guān)于弱測量與反弱測量的函數(shù), 其函數(shù)關(guān)系用matlab繪出. 從圖6及通過程序篩選其最大糾纏在p1= p2 = 0.01, q1 = q1 = 0.99取得.

      圖7為沒有用弱測量和反弱測量, 即1=2= 0,1=1= 0時(shí), 測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖7可知, 在較小的一段范圍內(nèi)測不準(zhǔn)量隨的增加而增加, 并且和U減小, 其接近程度越好; 當(dāng)增大到某一值時(shí),、U逐漸減小.

      圖8為利用弱測量和反弱測量1=2= 0.01,1=1=0.99(最大糾纏)時(shí), 測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖8可知, 現(xiàn)在趨近于0時(shí),U比在1=2= 0,1=1= 0時(shí)要小得多, 而有所增加; 隨著阻尼衰減系數(shù)的增加測不準(zhǔn)量、U趨于穩(wěn)定.

      圖7 沒有用弱測量和反弱測量(p1 = p2 = 0, q1 = q2 = 0)時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)?的變化

      圖8 利用弱測量和反弱測量p1 =p2 = 0.01, q1 = q2 = 0.99(最大糾纏)時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)?的變化

      圖9為利用弱測量和反弱測量1=2= 0.99,1=2=0.01時(shí), 測不準(zhǔn)量(、U)隨阻尼衰減系數(shù)的變化曲線. 從圖9可知,1、2、1、2取其它值時(shí), 測不準(zhǔn)量和U有所下降, 并且測不準(zhǔn)量接近程度更好, 相應(yīng)的熵測不準(zhǔn)關(guān)系更吻合.

      從以上分析可知, 使用了弱測量與反弱測量技術(shù)之后, 熵測不準(zhǔn)關(guān)系吻合得更好, 并且相應(yīng)的測不準(zhǔn)量也會降低; 與單粒子的情況相比, 雙粒子經(jīng)歷振幅阻尼噪聲的糾纏恢復(fù)要優(yōu)于單粒子; 與兩體糾纏的情況相比, W糾纏態(tài)經(jīng)歷振幅阻尼噪聲的糾纏恢復(fù)要優(yōu)于兩體糾纏. 以上說明雙粒子經(jīng)歷噪聲時(shí)使用弱測量與反弱測量提高了W糾纏態(tài)抵御噪聲的能力.

      圖9 弱測量和反弱測量p1= p2 = 0.99, q1 = q2 = 0.01時(shí), 測不準(zhǔn)量隨阻尼衰減系數(shù)的變化

      3 結(jié)論

      在W糾纏經(jīng)歷振幅阻尼噪聲的熵測不準(zhǔn)關(guān)系的研究中, 本文采取了對單粒子和雙粒子分別經(jīng)歷振幅阻尼噪聲通道, 對比使用與不使用弱測量與反弱測量技術(shù)時(shí)的測不準(zhǔn)量的變化關(guān)系, 發(fā)現(xiàn)弱測量與反弱測量技術(shù)會提高W糾纏態(tài)抵御噪聲的能力, 并且, W糾纏態(tài)在雙粒子經(jīng)歷振幅阻尼噪聲通道使用弱測量與反弱測量技術(shù)的糾纏恢復(fù)要優(yōu)于兩體糾纏的情況. 該研究結(jié)果對W糾纏經(jīng)歷幺正噪聲通道有借鑒意義.

      [1] 周世勛. 量子力學(xué)教程[M]. 2版. 北京: 高等教育出版社, 2009: 79—81.

      [2] 李承祖. 量子糾纏在量子信息處理中的應(yīng)用[M]. 長沙: 國防科技大學(xué)出版社, 2000: 77—99.

      [3] 姚春梅, 顧永建, 聶建軍, 等. 量子糾纏在量子信息處理中的應(yīng)用[M]. 長沙: 中南大學(xué)出版社, 2010: 2—20.

      [4] Xu Z Y, Yang W L, Feng M. Quantum-memory-assisted entropic uncertainty principle under noise [J]. Phys Rev A, 2012, 86: 012113.

      [5] Berta M, Christandl M, Colbeck R, et al. The uncertainty principle in the presence of quantum memory [J]. Nature Physics, 2010, 6: 659–662.

      [6] Winter A.Quantum information: Coping with uncertainty [J]. Nature Physics, 2010, 6: 640–641.

      [7] Pati A K, Wilde M M, Usha Devi A R, et al. Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory [J]. Phys Rev A, 2012, 86: 042105.

      [8] Prabhu R, Pati A K, Sen De A, et al. Conditions for monogamy of quantum correlations: Greenberger-Horne-Zeilinger versus W states [J]. Phys Rev A, 2012, 85: 040102.

      [9] Kim Y S, Lee J C, Kwon O, et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal [J]. Nature Physics, 2012, 8: 117–120.

      [10] Agrawal P, Pati A. Perfect teleportation and superdense coding with W states [J]. Phys Rev A, 2006, 74: 062320.

      [11] Li C F, Xu J S, Xu X Y, et al. Experimental investigation of the entanglement-assisted entropic uncertainty principle [J]. Nature Physics, 2011, 7: 752–756.

      [12] Yao C M, Ma Z H, Chen Z H, et al. Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal [J]. Phys Rev A, 2012, 86: 022312.

      [13] Renes J M, Boileau J C. Conjectured Strong Complementary Information Tradeoff [J]. Phys Rev Lett, 2009, 103: 020402.

      [14] Yu T, Eberly J H. Sudden Death of Entanglement: Classical Noise Effects [J]. Phys Rev Lett, 2004, 93: 140404.

      [15] Tomamichel M, Renner R. Uncertainty relation for smooth entropies [J]. Phys Rev Lett, 2011, 106: 110506.

      [16] Streltsov A, Kampermann A, Bruss D. Behavior of Quantum Correlations under Local Noise [J]. Phys Rev Lett, 2011, 107: 170502.

      [17] Mazzola L, Piilo J, Maniscalco S. Sudden Transition between Classical and Quantum Decoherence [J]. Phys Rev Lett, 2010, 104: 200401.

      Entropic uncertainty principle with W state-assisted

      NI ShunLi, HE Zhi, YAO ChunMei

      (College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000, China )

      By the weak quantum measurement and quantum measurement reversal, the entropic uncertainty principle with W state-assisted via amplitude-damping channel noise was studied and the situations of single-particle and two-particle via the noises respectively were calculated. The results show that the capability of entanglement recovery of two-particle through the noises was superior to that of single-particle by using of the technology of weak quantum measurement and it ws reversal. Furthermore, the uncertainties about the outcomes of two incompatible measurements on a particle would reduce obviously with the strengths of weak measurement and quantum measurement reversal, the damping rate etc.. For a certain values of the damping rate, a lower bound on the uncertainties was put forward, which depends on the amount of entanglement between the particle and the quantum memory.

      W state; weak measurements; entropic uncertainty principle; amplitude-damping channel

      O 431.2

      1672-6146(2014)02-0007-06

      10.3969/j.issn.1672-6146.2014.02.002

      通訊作者email: yyccmei@sina.com.

      email: 854815310@qq.com.

      2014-05-08

      光電信息集成與光學(xué)制造技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目; 科技廳計(jì)劃項(xiàng)目(No 2010FJ3147); 湖南文理學(xué)院重點(diǎn)學(xué)科光學(xué)建設(shè)項(xiàng)目.

      (責(zé)任編校: 江 河)

      猜你喜歡
      衰減系數(shù)振幅阻尼
      N維不可壓無阻尼Oldroyd-B模型的最優(yōu)衰減
      關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
      具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
      復(fù)合材料孔隙率的超聲檢測衰減系數(shù)影響因素
      無損檢測(2018年11期)2018-11-28 08:27:42
      近岸及內(nèi)陸二類水體漫衰減系數(shù)的遙感反演研究進(jìn)展
      對《電磁波衰減系數(shù)特性分析》結(jié)果的猜想
      十大漲跌幅、換手、振幅、資金流向
      十大漲跌幅、換手、振幅、資金流向
      HT250材料超聲探傷中的衰減性探究
      中國測試(2016年3期)2016-10-17 08:54:04
      十大漲跌幅、換手、振幅、資金流向
      彰化县| 磴口县| 吴桥县| 沂源县| 怀来县| 高台县| 芒康县| 长沙县| 卢氏县| 蛟河市| 那曲县| 长白| 哈密市| 金塔县| 万载县| 邵武市| 民权县| 桐柏县| 社会| 西宁市| 延庆县| 白玉县| 朝阳区| 廊坊市| 黄梅县| 屏边| 尉氏县| 左云县| 蓬莱市| 哈巴河县| 洛阳市| 台州市| 阿拉尔市| 华安县| 四子王旗| 高尔夫| 政和县| 井研县| 南靖县| 广元市| 夏邑县|