• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scale analysis of turbulent channel flow with varying pressure gradient*

    2014-06-01 12:30:00QIUXiang邱翔
    關(guān)鍵詞:劉宇

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Scale analysis of turbulent channel flow with varying pressure gradient*

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    (Received May 6, 2013, Revised December 16, 2013)

    In this paper orthogonal wavelet transformations are applied to decompose experimental velocity signals in fully developed channel flows with varying pressure gradient into scales. We analyze the time series from turbulent data, to obtain the statistical characteristics, correlations between the adjacent scales and the principal scale of coherent structures in different scales by wavelet transformations. The results show that, in the counter gradient transport (CGT) region, skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution on certain scales. PDFs on each scale confirm this observation. Scale-scale correlations show further that the fluctuations on some certain special scales are more intermittent than nearby. Principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. These features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    turbulence, counter gradient transport (CGT), wavelet analysis, pressure gradient, channel flow

    Introduction

    Nowadays, the problem of turbulence, which cover a wide range of scales, is one of the most important issues in classical physics and has been studied in the past years by many authors[1]. About turbulent transport, we consent that stronger transport capacity is one of fundamental characteristics of turbulence compared with laminar flows[1]. In most of turbulent models, the Fourier law is underlying, therefore gradient transport assumption is applied, which assumes that momentum, scalar and energy flux are transferred with mean quantities decreasing[1,2]. However it is well known in laboratory and engineering that we may also see the examples of counter gradient transport (CGT) phenomena[3]. For instance, there is a region near the central part of the channel where the Reynolds stress and mean strain possess the same sign, which means that momentum is transported under counter gradient. Traditional cascade theory cannot present reasonable explanation on these phenomena.

    The classical theory of Kolmogorov’s postulates that turbulence is space-filling at all scales, from the largest scales with which the kinetic energy is input, to the smallest scales with which the kinetic energy is converted into the thermal energy. Since more valuable information for the individual scales should be obtained to study turbulence problem, more rigorous space-scale decompositions of the velocity data are required to proceed further.

    The mechanism of CGT remains open, but it is believed that turbulent counter gradient transport is an essential cause why turbulence (the strong dissipative complex system) last for so long time period. Results obtained so far only show that coherent structures may be one of the important causes of the CGT[3]. Therefore more details about interactions between differentscales of eddies at different temporal and spatial positions should be investigated.

    In the last 20 years, the wavelet transform has been used to analyze the multi-scale properties in finance[4], biological issues[5]and fluid mechanics[6]. Also because of the similarity between wavelets and eddies, wavelet analysis has been widely applied in turbulence experimental data processing, computation and turbulent models[7-9]. Jiang et al.[2]found that at some scales momentum is inversely transported, although total momentum is gradient-transported. However a lot of questions remain to answer. For example, what is the difference of turbulent scale properties in favorable pressure gradient region and adverse pressure gradient when counter gradient transport phenomena occur?

    In the present work, we concentrate ourselves in the experimental data analysis using orthogonal wavelet transformations in turbulent channel flow with a wing on the bottom, following our previous work[2]. Compared to continuous wavelets, orthogonal wavelets are mutually orthogonal to each other and can maintain the original information. Therefore orthogonal wavelets are more reliable to consider the statistical characteristics of turbulent flows[9,10]. We started by performing a non-extensive statistical analysis at several scales from which time series, and we also got structural properties on different scales. Finally, the comparison of turbulent characteristics in favorable pressure gradient region and adverse pressure gradient region is carried out. The contents are arranged as below.

    Fig.1 Schematic of asymmetric plane channel flow with a wing. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively

    1. Experiments

    The experiments were carried out in the water tunnel of the experimental center of Shanghai Jiao Tong University[2]. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively. Two glasses, which are 0.02 m apart, are added between the top wall and bottom wall to construct the new channel flow, as shown in Fig.1. A symmetric wing, which is 0.4m distance from the inlet, is set on the bottom to generate a flow with varying pressure gradient. The wing is 0.07 m in length and 0.009 m in thickness on the center. The mean velocity at the inlet is 2.0 m/s. The measuring instrument is a TSI9100-9 laser Doppler velocimetry (LDV) of TSI. Data collection and analysis are completed by the accompany software flow information display (FIND).

    Fig.2 CGT region and the measurement points

    2. Methodlogy

    The waveletφi,j(x) is created by translation and dilation of generating wavelet functionφ(x), and they are localized both in space and scale. The mother wavelet has a zero mean and thus extracts variations of a signal. The scaling function, the integral of which from -∞ to ∞ is unity, is an averaging function, shown as follows

    where ,i jrepresent the scale and position of wavelets, respectively. It is very similar to the scaling function

    Fig.3 Wavelets (solid lines) and scaling functions (dotted lines) with =N13, ==jJ9, and =k256. Their power spectra in the wavenumber domain are shown in the right column

    So, any square integrable function ()u xcan be reconstructed as

    3. Results and discussions

    3.1Flatness factor, skewness factor and probability density function (PDF)

    The experimental data are analyzed with four families of wavelets: Haar, Db20, Meyer and Harmonic wavelets. The mean velocity is subtracted from the original signals, and the signals are divided into 1 200 segments of 4 096 points (=M1 200, =N12). The wavelet transformations are applied to each segment.

    By using the orthogonal wavelet analysis, we could investigate the turbulent statistical quantities in each scale. Flatness factors, skewness factors and PDFs are important statistical quantities in turbulent fluctuations. These quantities defined in each scales are as follows

    The flatness factor represents the peakedness or flatness of the probability distribution. For Gaussian distribution, the flatness factor in each scale is equal to 3 while the skewness factor is zero. But for turbulence, its PDF deviates from Gaussian distribution. A higher value means that the tail of the distribution is more pronounced than that of a Gaussian one. Thus the flatness factor grows as the distribution becomes more intermittent. The results of Jiang et al.[2]showed that the intermittency in the CGT region is stronger than that nearby. The magnitude of spatial fluctuations of the wavelet transforms is studied in each scale using the flatness factors, skewness factors and PDFs.

    Fig.4 Flatness factors for each scale

    Fig.5 Skewness factors for each scale

    Figure 4 illustrates the scale dependence of the flatness factors in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) of streamwise velocity by using the Db20 wavelet. It should be noted that the other three wavelets usually give similar results, and will not be shown here. In large scales, the flatness factor is close to the Gaussian value of 3. As the scaledecreases, the flatness factor begins to increase. It should be mentioned that the present results are quite different from those of Lord et al.[9]and Li et al.[12]. The flatness factor begins to increase locally and reach the maximum at scale 10. From scale 11, it decreases again. This observations show that the intermittency between scales 8 and 10 is increased.

    Figure 5 shows the skewness factor of velocity fluctuations in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) in each scale. It is clearly seen that the values of skewness factors in each scale are vibrating around zero. It should be emphasized that the skewness factors in scale 11 deviates from zero more than any other scales. This result can be compared to the results of Jiang et al.[2]who found the special scale of 10 in fully developed asymmetric channel flow over ribs. And also we have detected that the values of skewness factors at locations B and D have different signs in almost all scales, and this result has not been reported in previous related articles and should be tested numerically and experimentally in future.

    Fig.6 PDFs for each scale (1-6)

    The results of PDFs (see Figs.6 and 7) at location B (results of location D, which is not shown here, are approximate with B) for each scale also indicate that the intermittency increases with the scale. Furthermore, the PDFs approach Gaussian distribution with the increase of scale. But scales 9, 10, 11 and 12 need to be paid more attention, and scales 9 and 12 are closer to Gaussian distribution than scales 10 and 11. From the results for the skewness and flatness factors, it could be found that the intermittency of small scalesare generally stronger than large scales, but intermediate scales more intermittent than nearby. In fact, the results indicate that smaller scales are more intermittent than larger scales, which is consistent that of boundary flow[13], and channel flow[12].

    Fig.7 PDFs for each scale (7-12)

    3.2Adjacent scales correlations

    The orthogonal wavelets offer a unique opportunity to investigate a correlation in space between variations of different scales. Here we only consider the correlation between adjacent scales, such as correlation between scale 1j- andj. The correlation coefficients between the adjacent scales are defined as[2]

    Fig.8 Ccorrelations between adjacent scales

    As was pointed out by Jiang et al.[2], the correlation between 2j- andjis similar. Figure 8 showsthe results of scale-scale relations at two different points, B and D, employing Meyer’s and Harmonic bases because the other wavelets, Haar and Db20, will give the spurious correlations.

    It is evident that the correlation is the function of scales. It is observed that with the increase of scales, the correlation decreases and correlations between larger scales are very weak for all the points considered here. Similar results are observed in isotropic flow. But at point B in the CGT region, it should be noted that there exists a pulse in scale 10 in the correlations between the adjacent scales. This phenomenon is absent at another point D and points mentioned above.

    3.3Principal scale of coherent structures

    There are many different methods to study principal scale of coherent structures, including the maximal energy method[14], energy method[15], and de-noising method presented by Guo et al.[6]. The energy methods stated above adopt continuous wavelet while de-noising method adopts discrete wavelets. In fact, the de-noising method is the extension of maximal energy method from continuous wavelet transform (CWT) to discrete wavelet transform (DWT). In this section, we extend the maximal energy method from CWT to DWT. In fact, the differences between CWT to DWT are scales and interpretation, i.e., CWT is theoretically defined in each scale and positions while DWT is in dyadic scales and positions.

    It is well known that the larger wavelet coefficients in wavelet analysis indicate more intense coherent structures[12]. The following equation is adopted to estimate contributions of coherent structures in each scale to turbulent kinetic energy

    whereωm[j] is the wavelet coefficients on scalem, andjis time factor, andpmis the ratio of contribution by coherent structures with scaled=2m+1to turbulent kinetic energy.

    Fig.9 The principle scale of coherent structures

    In fact, the number of wavelet coefficients in different scales means that the number of eddies depends on the scales. So we could determine the principal scale of coherent structures by considering the average energy in each scale. More specifically, it is determined by the following relationship

    Here the maximal value ofmp*corresponds to the principal scale of coherent structures. It could be easily observed that this method is in essence the maximal energy method. The number of wavelet coefficients in each scale could be considered as constant.

    By using the method presented above, we find that the ratio is constant in all scales for white noise. Figure 9 shows the principal scale of coherent structures at different points. Here only the results for Db20 are given. It is observed that the principal scales are scale 11 at point B, 10 at point C and 11 at point D, respectively. It should be noted that principal scale is 11 at B and D in the CGT region, partly coincident to the results of the flatness factors and skewness factors.

    4. Conclusions

    It is well known that randomness, multiple scales and coherent structures are the most essential features of turbulence. The wavelet analysis is a suitable tool to investigate turbulence. In this paper the orthogonal wavelets are applied to study the scale properties in turbulent counter gradient transport region in fully developed asymmetric channel flows with a wing on the bottom. We study for each scale the flatness factors, skewness factors, probability density functions, and scale-scale correlations. Then we calculate the principal scale of coherent structures.

    The results show that in the CGT region, the skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution in some certain scales. The PDFs in each scale confirm this observation. The scale-scale correlations show further that fluctuation in some special scales is more intermittent than nearby. The principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. Most of these features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    [1] STEPHEN B. P. Turbulent flows[M]. Cambirdge, UK: Cambridge University Press, 2000.

    [2] JIANG Jian-bo, QIU Xiang and LU Zhi-ming et al. Othogonal wavelet analysis of counter gradient transport phenomena in turbulent asymmetric channel flow[J]. Acta Mechanica Sinica, 2005, 21(2): 133-141.

    [3] JIANG Jian-bo, LIU Yu-lu and LU Zhi-ming. Experimental and theoretical studies on negative transport phenomena in turbulent flows[J]. Advances in Mechanics, 2000, 30(2): 1-8(in Chinese).

    [4] GALLEGATI M. Wavelet analysis of stock returns and aggregate economic activity[J]. Computational Statistics and Data Analysis, 2008, 52(6): 3061-3074.

    [5] JAN Y. K., BRIENZA D. M. and GEYER M. J. Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms[J]. Clinical Physiology and Functional Imaging, 2005, 25(5): 253-262.

    [6] GUO Xin-lei, YANG Kai-lin and GUO Yong-xin. Hydraulic pressure signal denoising using threshold selflearning wavelet algorithm[J]. Journal of Hydrodynamics, 2008, 20(4): 433-439.

    [7] JACOBITZ F., LIECHTENSTEIN L. and SCHNEIDER K. et al. On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction[J]. Physics of Fluids, 2008, 20(4): 045103.

    [8] SCHNEIDER K., VASILYEV O. V. Wavelet methods in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42: 473-503.

    [9] LORD J. W., RAST M. P. and MCKINLAY C. et al. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold[J]. Physics of Fluids, 2012, 24(2): 025102.

    [10] SCHNEIDER K., FARGE M. and PELLEGRINO G. et al. Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets[J]. Journal of Fluid Mechanics, 2005, 534: 39-64.

    [11] QIU Xiang, JIANG Jian-bo and LIU Yu-lu. Effects of pressure-gradient on turbulent counter-gradient transport[J]. Acta Mechanica Sinica, 2004, 36(2): 163-170(in Chinese).

    [12] LI Li, XU Chun-xiao and ZHANG Zhao-shun. Study of burst phenomena in wall turbulence by wavelet analysis[J]. Acta Mechanica Sinica, 2001, 33(2): 153-162(in Chinese).

    [13] CHEN Jiong, HU Fei. Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China[J]. Boundary-Layer Meteorology, 2003, 107(2): 429-444.

    [14] OKAMOTO N., YOSHIMATSU K. and SCHNEIDER K. et al. Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint[J]. Physics of Fluids, 2007, 19(11): 115109.

    [15] FARGE M., PELLEGRINO G. and SCHNEIDER K. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets[J]. Physical Review Letters, 2001, 87(5): 054501.

    10.1016/S1001-6058(14)60015-9

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11102114, 11172179) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ124).

    Biography: QIU Xiang (1978-), Male, Ph. D.,

    Associate Professor

    LUO Jian-ping,

    E-mail: jp_luo@163.com

    猜你喜歡
    劉宇
    最有耐心的兔子
    媽媽的最愛(ài)
    下大雪了
    快樂(lè)的事
    不怕打針
    我長(zhǎng)大了
    發(fā)現(xiàn)了一個(gè)秘密
    給媽媽送花
    我沒(méi)有不聽(tīng)話
    變幻莫測(cè)的守恒問(wèn)題
    久久久久网色| 黑人猛操日本美女一级片| 精品一区二区三卡| 一本久久精品| 一级片'在线观看视频| 九草在线视频观看| 国产老妇伦熟女老妇高清| 美女国产视频在线观看| 插逼视频在线观看| 天天影视国产精品| 国产在视频线精品| 深夜精品福利| 内地一区二区视频在线| 在线免费观看不下载黄p国产| 成人影院久久| 深夜精品福利| 丝袜脚勾引网站| 一区二区av电影网| 久久久国产欧美日韩av| 男男h啪啪无遮挡| 69精品国产乱码久久久| 高清毛片免费看| 午夜福利视频精品| 人成视频在线观看免费观看| 青春草视频在线免费观看| 妹子高潮喷水视频| 日本欧美国产在线视频| 久久精品久久精品一区二区三区| 国产精品人妻久久久影院| 国产 一区精品| 精品人妻偷拍中文字幕| 免费人成在线观看视频色| 又黄又粗又硬又大视频| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| 波多野结衣一区麻豆| 伊人亚洲综合成人网| 最近中文字幕2019免费版| 久热这里只有精品99| 自线自在国产av| 欧美3d第一页| 欧美丝袜亚洲另类| 午夜91福利影院| 色婷婷久久久亚洲欧美| 国产片内射在线| 免费观看a级毛片全部| 日日撸夜夜添| 天美传媒精品一区二区| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 精品卡一卡二卡四卡免费| 国精品久久久久久国模美| 日韩免费高清中文字幕av| 五月天丁香电影| 美女视频免费永久观看网站| 少妇的逼水好多| 美女脱内裤让男人舔精品视频| 一区在线观看完整版| 一级毛片电影观看| 一本久久精品| 观看美女的网站| 热re99久久精品国产66热6| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人 | 五月天丁香电影| 侵犯人妻中文字幕一二三四区| 黑人猛操日本美女一级片| 少妇人妻久久综合中文| 91国产中文字幕| 最近中文字幕2019免费版| 精品亚洲成国产av| 国产一区二区激情短视频 | 国产熟女欧美一区二区| 亚洲国产av新网站| 午夜免费鲁丝| 99热全是精品| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 黄色 视频免费看| 亚洲在久久综合| 99热全是精品| 色哟哟·www| 国产熟女欧美一区二区| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| av视频免费观看在线观看| av不卡在线播放| 99香蕉大伊视频| 在线精品无人区一区二区三| 免费女性裸体啪啪无遮挡网站| av在线观看视频网站免费| 精品国产乱码久久久久久小说| 成人国语在线视频| 黄色毛片三级朝国网站| 在线免费观看不下载黄p国产| 亚洲五月色婷婷综合| 高清在线视频一区二区三区| 日韩视频在线欧美| 久久狼人影院| 在线天堂最新版资源| 亚洲精品视频女| 色婷婷av一区二区三区视频| 男女边吃奶边做爰视频| av电影中文网址| 99热这里只有是精品在线观看| 亚洲精品456在线播放app| 中文字幕制服av| 亚洲精品一区蜜桃| kizo精华| 一级毛片黄色毛片免费观看视频| 满18在线观看网站| 国产 一区精品| 十分钟在线观看高清视频www| 777米奇影视久久| 极品人妻少妇av视频| 爱豆传媒免费全集在线观看| 日日爽夜夜爽网站| 国产在视频线精品| 在现免费观看毛片| 香蕉精品网在线| 国产一级毛片在线| 久久婷婷青草| 亚洲成色77777| 成人毛片a级毛片在线播放| 波多野结衣一区麻豆| 少妇的丰满在线观看| 亚洲欧洲日产国产| 国产国语露脸激情在线看| 大码成人一级视频| 天美传媒精品一区二区| 日本欧美国产在线视频| 午夜精品国产一区二区电影| 少妇的逼水好多| 久久女婷五月综合色啪小说| 男人操女人黄网站| 免费不卡的大黄色大毛片视频在线观看| 成人影院久久| 啦啦啦视频在线资源免费观看| 成年人午夜在线观看视频| 婷婷色av中文字幕| 十八禁高潮呻吟视频| 免费少妇av软件| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 亚洲欧美精品自产自拍| 人人妻人人澡人人看| 国产激情久久老熟女| 日日摸夜夜添夜夜爱| 女性被躁到高潮视频| 免费黄网站久久成人精品| 亚洲第一av免费看| 性高湖久久久久久久久免费观看| 肉色欧美久久久久久久蜜桃| 日本av免费视频播放| 国产精品国产三级国产av玫瑰| 欧美日韩视频高清一区二区三区二| 午夜福利影视在线免费观看| 在现免费观看毛片| 伊人久久国产一区二区| 久久久久久久久久久免费av| 亚洲av男天堂| www日本在线高清视频| 久久久久久久亚洲中文字幕| 亚洲av电影在线进入| 免费播放大片免费观看视频在线观看| 91在线精品国自产拍蜜月| 一二三四在线观看免费中文在 | 草草在线视频免费看| 丝袜脚勾引网站| 建设人人有责人人尽责人人享有的| 97精品久久久久久久久久精品| 我要看黄色一级片免费的| 亚洲欧美中文字幕日韩二区| 国产高清国产精品国产三级| 少妇猛男粗大的猛烈进出视频| 国产一级毛片在线| videosex国产| 女性被躁到高潮视频| 国产在线一区二区三区精| 久热久热在线精品观看| 国产成人午夜福利电影在线观看| 国产精品成人在线| 久久人人爽av亚洲精品天堂| av卡一久久| 国国产精品蜜臀av免费| 国产国语露脸激情在线看| 亚洲国产欧美在线一区| 如日韩欧美国产精品一区二区三区| 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 又黄又爽又刺激的免费视频.| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 国产激情久久老熟女| 亚洲精品日本国产第一区| 老熟女久久久| 一级,二级,三级黄色视频| av一本久久久久| 啦啦啦啦在线视频资源| 久久av网站| 日本色播在线视频| 亚洲精品日本国产第一区| 精品亚洲成国产av| 99香蕉大伊视频| 国产精品嫩草影院av在线观看| 亚洲精品国产av蜜桃| 国产亚洲精品第一综合不卡 | 中文天堂在线官网| 一区二区av电影网| 久久精品国产自在天天线| 男女无遮挡免费网站观看| 中文字幕亚洲精品专区| av线在线观看网站| 国产精品国产av在线观看| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品古装| 内地一区二区视频在线| 人妻一区二区av| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 久久人人爽人人爽人人片va| 成人影院久久| 美女福利国产在线| av国产精品久久久久影院| 午夜影院在线不卡| 99re6热这里在线精品视频| 全区人妻精品视频| 一级,二级,三级黄色视频| 国产男人的电影天堂91| 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 亚洲美女搞黄在线观看| 涩涩av久久男人的天堂| 午夜免费观看性视频| 免费观看在线日韩| 一边亲一边摸免费视频| 欧美3d第一页| 免费女性裸体啪啪无遮挡网站| √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 亚洲精品久久成人aⅴ小说| 成人国产麻豆网| www日本在线高清视频| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 亚洲国产精品一区二区三区在线| 天美传媒精品一区二区| 国产免费又黄又爽又色| 国产一区二区在线观看av| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 亚洲成色77777| 国产精品免费大片| 51国产日韩欧美| 黄色配什么色好看| 国产成人精品婷婷| 狠狠精品人妻久久久久久综合| 久久人妻熟女aⅴ| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡 | 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 亚洲久久久国产精品| 久久久久精品久久久久真实原创| a级毛片黄视频| 热99久久久久精品小说推荐| 国产麻豆69| 欧美3d第一页| 边亲边吃奶的免费视频| 亚洲 欧美一区二区三区| 国产日韩欧美亚洲二区| 香蕉丝袜av| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 十八禁网站网址无遮挡| 少妇人妻久久综合中文| 婷婷成人精品国产| 在线看a的网站| 欧美另类一区| 9热在线视频观看99| 国产一区二区三区综合在线观看 | 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 校园人妻丝袜中文字幕| 宅男免费午夜| 色婷婷av一区二区三区视频| 久久99热6这里只有精品| 老司机影院毛片| 日韩伦理黄色片| 国内精品宾馆在线| 国产精品麻豆人妻色哟哟久久| av免费观看日本| 又黄又粗又硬又大视频| 国产欧美亚洲国产| 免费在线观看黄色视频的| 观看美女的网站| 综合色丁香网| av在线观看视频网站免费| 两个人看的免费小视频| 婷婷色av中文字幕| 精品国产一区二区三区四区第35| 欧美日韩一区二区视频在线观看视频在线| 亚洲内射少妇av| 久久人人爽人人片av| 日本欧美视频一区| 免费看光身美女| 亚洲人成77777在线视频| 精品一区二区免费观看| 国产成人av激情在线播放| 国产精品一区www在线观看| 国产一区有黄有色的免费视频| 欧美日韩综合久久久久久| 免费久久久久久久精品成人欧美视频 | 午夜激情久久久久久久| 黄网站色视频无遮挡免费观看| 欧美人与善性xxx| av免费观看日本| 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 欧美变态另类bdsm刘玥| 中文天堂在线官网| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 飞空精品影院首页| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看| 曰老女人黄片| 日韩一区二区视频免费看| 国产黄色免费在线视频| 国产极品天堂在线| 免费观看a级毛片全部| 在现免费观看毛片| 欧美日韩综合久久久久久| 成人漫画全彩无遮挡| 久久毛片免费看一区二区三区| 美女主播在线视频| 成人二区视频| 汤姆久久久久久久影院中文字幕| a 毛片基地| 久久久久国产网址| 一边亲一边摸免费视频| 又黄又爽又刺激的免费视频.| 国产女主播在线喷水免费视频网站| 欧美人与性动交α欧美软件 | 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 99久国产av精品国产电影| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 欧美 日韩 精品 国产| a级毛片在线看网站| 9热在线视频观看99| 久久久国产精品麻豆| 精品少妇久久久久久888优播| 日本欧美视频一区| 99香蕉大伊视频| 欧美 日韩 精品 国产| 91午夜精品亚洲一区二区三区| 色婷婷久久久亚洲欧美| 国产在线免费精品| 国产成人免费无遮挡视频| 欧美变态另类bdsm刘玥| 中国国产av一级| 少妇精品久久久久久久| 国产亚洲欧美精品永久| 久久久久久人妻| 如日韩欧美国产精品一区二区三区| 亚洲国产色片| 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 久久av网站| 免费久久久久久久精品成人欧美视频 | 91精品三级在线观看| 亚洲av福利一区| 一级爰片在线观看| 日日撸夜夜添| 亚洲三级黄色毛片| www.色视频.com| 熟妇人妻不卡中文字幕| 丝袜人妻中文字幕| 性色av一级| 精品人妻偷拍中文字幕| 国产 精品1| 亚洲第一区二区三区不卡| 国产在视频线精品| 亚洲成人av在线免费| 美女内射精品一级片tv| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 欧美精品av麻豆av| av在线老鸭窝| 国产成人免费观看mmmm| videos熟女内射| 亚洲激情五月婷婷啪啪| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 九色亚洲精品在线播放| 最近最新中文字幕大全免费视频 | 免费黄网站久久成人精品| 国产一区二区在线观看av| 黄网站色视频无遮挡免费观看| 91aial.com中文字幕在线观看| 一级毛片我不卡| 国产一区二区激情短视频 | 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 人人妻人人澡人人爽人人夜夜| 日日爽夜夜爽网站| 久久久久久久久久人人人人人人| 最后的刺客免费高清国语| 免费观看av网站的网址| 日韩欧美精品免费久久| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 午夜老司机福利剧场| 欧美日韩一区二区视频在线观看视频在线| 午夜老司机福利剧场| 满18在线观看网站| 51国产日韩欧美| 91午夜精品亚洲一区二区三区| 激情视频va一区二区三区| 亚洲av国产av综合av卡| 如何舔出高潮| 亚洲国产精品专区欧美| 91成人精品电影| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 丝袜人妻中文字幕| 18禁观看日本| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 一级片'在线观看视频| 蜜桃在线观看..| 夫妻午夜视频| 国产探花极品一区二区| 国产成人av激情在线播放| 久久久久久久久久久免费av| 亚洲成人手机| 久久99一区二区三区| 老司机亚洲免费影院| 麻豆乱淫一区二区| 视频在线观看一区二区三区| 免费看av在线观看网站| 国产熟女午夜一区二区三区| 亚洲av综合色区一区| 少妇人妻 视频| 高清毛片免费看| 国产 一区精品| 国产在线一区二区三区精| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| tube8黄色片| 久久久久视频综合| 亚洲美女搞黄在线观看| 18禁裸乳无遮挡动漫免费视频| 涩涩av久久男人的天堂| 男女国产视频网站| 欧美激情 高清一区二区三区| 中国国产av一级| 久久精品人人爽人人爽视色| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 咕卡用的链子| 永久网站在线| 欧美成人午夜精品| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 亚洲美女视频黄频| av黄色大香蕉| 女人精品久久久久毛片| 夜夜爽夜夜爽视频| 久久人人爽人人爽人人片va| 久热这里只有精品99| 色视频在线一区二区三区| 亚洲国产日韩一区二区| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 在现免费观看毛片| 国产精品 国内视频| 久久久久久久大尺度免费视频| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 少妇被粗大的猛进出69影院 | 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 亚洲人与动物交配视频| 中文字幕人妻熟女乱码| 97在线人人人人妻| 精品午夜福利在线看| 亚洲,欧美,日韩| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区国产| 99香蕉大伊视频| 国产xxxxx性猛交| 日韩成人av中文字幕在线观看| 国产精品久久久久久久电影| 秋霞在线观看毛片| 少妇人妻 视频| 一区二区日韩欧美中文字幕 | kizo精华| 一区二区三区乱码不卡18| 日韩av不卡免费在线播放| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 黄色配什么色好看| 国产精品一区www在线观看| 国产一区二区在线观看日韩| 精品国产一区二区三区四区第35| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 啦啦啦在线观看免费高清www| 在线精品无人区一区二区三| 老司机亚洲免费影院| 成人黄色视频免费在线看| 国产日韩欧美在线精品| 观看美女的网站| 制服丝袜香蕉在线| 一本久久精品| 亚洲精品久久久久久婷婷小说| 亚洲国产精品国产精品| 成人影院久久| 插逼视频在线观看| 国产精品国产三级国产专区5o| 国产欧美日韩综合在线一区二区| 一区二区日韩欧美中文字幕 | 99久久精品国产国产毛片| 亚洲国产精品一区二区三区在线| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 免费看光身美女| av女优亚洲男人天堂| 日韩中字成人| 成人午夜精彩视频在线观看| 男男h啪啪无遮挡| 香蕉丝袜av| 熟女人妻精品中文字幕| 极品人妻少妇av视频| 日韩成人伦理影院| 午夜福利影视在线免费观看| a级毛片在线看网站| 亚洲国产精品国产精品| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频| 高清不卡的av网站| av网站免费在线观看视频| 飞空精品影院首页| 成人国语在线视频| 另类亚洲欧美激情| 超色免费av| 美女视频免费永久观看网站| 在线观看三级黄色| 成年动漫av网址| 久久热在线av| 黑丝袜美女国产一区| 性色av一级| 在线看a的网站| 999精品在线视频| 国产精品免费大片| 亚洲成人av在线免费| 另类精品久久| 又大又黄又爽视频免费| 18禁国产床啪视频网站| 亚洲婷婷狠狠爱综合网| 色94色欧美一区二区| 国产精品一区www在线观看| 精品一区二区免费观看| 亚洲成av片中文字幕在线观看 | 99久久综合免费| 亚洲第一区二区三区不卡| 亚洲精品国产av蜜桃| 中文字幕最新亚洲高清| 如何舔出高潮| 国产一区二区在线观看日韩| 国产午夜精品一二区理论片| 久久久精品94久久精品| 少妇高潮的动态图| 一边摸一边做爽爽视频免费| 欧美bdsm另类| a级片在线免费高清观看视频| 亚洲国产精品专区欧美| 亚洲在久久综合| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 十八禁高潮呻吟视频| 日韩av免费高清视频| 日韩在线高清观看一区二区三区| 美女福利国产在线| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 18在线观看网站| 狂野欧美激情性bbbbbb| 一区二区av电影网| 久久久久久久久久成人| 黄片播放在线免费| 熟女电影av网|