• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cavity filling water control below aerator devices*

    2014-06-01 12:30:01QIANShangtuo錢尚拓WUJianhua吳建華MAFei馬飛CollegeofWaterConservancyandHydropowerEngineeringHohaiUniversityNanjing210098Chinamailqshttc163comXUJianrong徐建榮PENGYu彭育WANGZhen汪振HydraulicStructuresdesigndivisionHydrochinaHuadong
    水動力學研究與進展 B輯 2014年3期
    關鍵詞:馬飛建華

    QIAN Shang-tuo (錢尚拓), WU Jian-hua (吳建華), MA Fei (馬飛)College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China,E-mail: qshttc@163.comXU Jian-rong (徐建榮), PENG Yu (彭育), WANG Zhen (汪振)Hydraulic Structures design division, Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    Cavity filling water control below aerator devices*

    QIAN Shang-tuo (錢尚拓), WU Jian-hua (吳建華), MA Fei (馬飛)
    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China,
    E-mail: qshttc@163.com
    XU Jian-rong (徐建榮), PENG Yu (彭育), WANG Zhen (汪振)
    Hydraulic Structures design division, Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    (Received February 20, 2014, Revised May 30, 2014)

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aerator. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some suitable geometries of the local slope are designed.

    low Froude number, dragon-drop-tail spillway tunnel, filling water, local slope

    Introduction

    The dragon-drop-tail spillway tunnel consists of a short pressure inlet, a long mild-slope section, a steep slope section (named as the dragon-drop-tail section) and an outlet with energy dissipation effect. Comparing with the traditional dragon-raise-head section, it enjoys the advantages of small working head and pressure on the intake gate and most of the tunnel region[1], thus, it becomes a preferred choice of the spillway tunnel arrangement for the high dam projects like Baihetan and Jinping in recent years. Because of the high water head concentrating on the dragon-droptail section and the resulting large velocity of the flow in this section, it is necessary to place aerator devices for this kind of tunnels[2-4].

    For the device placed in the initial position of thedragon-drop-tail section, however, the cavity filling water easily appears due to the low flow Froude number. The cavity and then the ventilation shaft may be drown out and the aerator device will lose its effect and even becomes a cavitation generator if there is enough filling water. Therefore, it is important to investigate the geometry of the aerator device for a suitable cavity regime and an effective filling water control under the conditions of the low flow Froude number.

    In order to control the filling water inside a cavity, some new types of aerator devices are considered, like the dent-form ramp[5], the U-shaped ramp[6]and the V-shaped ramp[7], through which the flow is divided into several pieces impinging different sections of the bottom downstream and pushing the filling water into the mainstream[8]. These measures are adopted for the improvement of their ramps. Furthermore, others focus their attention on the bottom downstream of the aerator devices such as increasing a local slope downstream of the aerator in order to decrease the impact angle of the jet flow to the bottom. With regard to the local slope form, better effects on the filling water control are shown for a mild, even a flat bottom slope[9].

    In fact, the occurrence of the filling water is affected by many factors, to which should be paid a careful attention, according to the performance of the flow. For the aerator on the bottom of the different release structures, different hydraulic characteristics are shown. For example,Fr(H) of the flow decreases through the aerator near the inlet of a spillway,Fr(H) increases first and then decreases when the aerator is placed downstream of this spillway, andFr(H) keeps to increase for a discharge tunnel[10], where =o/FrV(gh)2is the flow Froude number through the aerator,oVoandhoare the velocity and the flow depth, respectively,g=9.81m/s3is the gravitational acceleration, andHis the working head of the release structure.

    Besides, for the aerator with a local slope form, the operation conditions of the release structure should be considered and the impact points of the upper and lower jet trajectories through the aerator to the bottom move forward whenHincreases. Therefore, the position and the length of the local slope section should be reasonably designed to meet the needs of those operations so that the impact points of the upper and lower jet trajectories could fall on the bottom of the local slope section.

    In this paper, the aerator device in the initial position of the dragon-drop-tail section of the spillway tunnel for the Baihetan hydropower project is taken as the research object, and on the basis of the theoretical analysis of the aerator form effect on the filling water, the geometries of the aerator, especially the position and the length of the local slope section are experimentally investigated for the filling water control.

    1. Theoretical consideration

    It is well-known that the characteristics of the cavity and the filling water below an aerator are related to the impact angle of the lower trajectory of the flow to the bottom, and the larger the impact angle is, the more adverse the filling water and the cavity regime are[11-13].

    Fig.1 Sketch of traditional aerator device

    Figure 1 shows the sketch of a traditional aerator device, in whichαis the ramp angle,tris the ramp height,tsis the offset height andφis the bottom slope to the horizontal plane. The velocity of the approach flow isVo, and, therefore, the velocity components alongx-axis andy-axis directions at the edge of the ramp areVox=VocosαandVoy=Vosinα, respectively.

    The jet jumps away from the aerator with the accelerations alongx-axis andy-axis directions asgsinφand -gcosφ, respectively. Supposing that the jet is a rigid body, the timeT1leaving the aerator to impact the bottom downstream can be computed from the following path equation, based on the theory of free projectile

    According to Eq.(1),T1can be solved as

    The velocity componentsVtx1andVty1alongx-axis andy-axis directions at the impact point are expressed as:

    respectively. Therefore, the jet impact angle 1θfor the traditional aerator device is expressed as

    Figure 2 is the sketch of the aerator device with a local slope form downstream and the computation of the impact angle. The local slope form is placed in the impact zone of the jet to insure that the jet always falls within its scope. In order to permit the arrangement of the slope as steep as possible, a flat platform is set upto connect the local slope form with the bottom below the aerator.βis the angle of the local slope to the bottom,L1andL2are the lengths of the flat platform and the local slope section, respectively.

    Fig.2 Sketch of aerator device with local slope form (a) and computation of impact angle (b)

    It is assumed that the entire jet falls within the local slope section. Thus, the velocity at the edge of the ramp is the same as that in the traditional aerator device, in this way, the timeT2that the jet takes from leaving the aerator to the local slope section can be computed as

    wherefis the thickness of the local slope form at the impact point of the lower jet trajectory. According to Eq.(7), we have

    The velocity componentsVtx2andVty2alongx-axis andy-axis directions at the impact point are expressed as:

    respectively. Thus, the jet impact angle2θfor a local slope form is expressed as:

    Comparing Eq.(3) with Eq.(9), sinceB<A, obviously, we have

    It indicates that the impact angle of the lower jet trajectory for the aerator device with a local slope is smaller than that for the traditional aerator device. Equation (12) shows that2θdecreases significantly whenβincreases, which theoretically indicates that arranging a local slope form below an aerator is effective in decreasing the impact angle and for the filling water control.

    2. Experimental setup and methodology

    2.1Experimental setup

    The experiments were conducted in the Highspeed Flow Laboratory of Hohai University (Nanjing, China). Figure 3 shows the experimental setup and the physical model, which consists of a pump, an approach conduit, a large feeding basin, a model of the dragon-drop-tail spillway tunnel with aerator devices and a flow return system. The physical model, made of perspex, is designed at a scale of 1/40 for the spillway tunnel for the Baihetan hydropower project, based on the Froude similarity criterion.

    Fig.3 Experimental setup and aerator device (AD) studied

    The spillway tunnel for the Baihetan hydropower project is 2 170.00 m long, 15.00 m wide and with 180.00 m drop as a prototype. The bottom slope of the dragon-drop-tail section is 1:4.0, connected to the long mild-slope section with a smoothed curve. The aeratordevice (AD) in this paper is placed in the initial position of the dragon-drop-tail section (shown in Fig.3) as the first aerator device of this spillway tunnel. The horizontal and vertical distances from the aerator to the initial position of the dragon-drop-tail section are 78.87 m and 12.30 m, respectively.

    Table 1 Experimental cases and parameters of the aerator and the local slope forms

    2.2Experimental methodology

    Table 1 lists the experimental cases and the geometric parameters of the aerator and the local slope forms. These cases are named as M1 through M9 and designed to investigate the influences of the impact angle of the lower jet trajectory as well as the position and the length of the local slope form on the cavity and the filling water. Here M1 is the case of the traditional aerator without a local slope form downstream, and the other cases can be divided into three groups to investigate the effects of the angleβ(M2-M5), the lengthL2(M6-M8)and the lengthL1(M9), respectively.

    The hydraulic characteristics of the aerator are investigated under different conditions. There are 3 operation heads, i.e., the model heads,HM=0.375 m, 0.875 m and 1.375 m, corresponding toHP=15.0 m, 35.0 m and 55.0 m, in the prototype. Thus, the approach Froude numbers are 4.54, 3.85 and 3.61, respectively, for the heads mentioned above. This means thatFrdecreases when the head of the reservoir increases, especially,Fr=3.61 is very low under the operation condition of the normal water level, i.e.,Hp=55.0 m. The parameters of the jet length (Lj), the filling water length (Lf) and the net cavity length (Ln) in Fig.2(a) are measured by a steel ruler. The impact angle of the lower jet trajectory is defined as tanθ2=tan-1(Δy/ Δx) with Δx=0.10 m in the model and Δyas the distance from the local slope bottom to the tangent line of the jet impact point (see Fig.2(b)).

    3. Results and discussions

    3.1Influence of the jet impact angle

    The construction of the local slope form is controlled by three parameters: the angleβ, the initial positionL1(corresponding to the length of the flat platform) and the lengthL2. According to the theoretical consideration, the impact angle of the lower jet trajectory2θis mainly influenced byβand the hydraulic parameters of the approach flow, if the construction of the aerator is fixed.

    Table 2 Jet impact angle2θ(o)

    Table 2 gives the experimental results of the jet impact angles for the cases listed in Table 1, whereFr=3.61, corresponds to the normal water level of the reservoir, and it could be noticed that this aerator for the project works with the low Froude number.

    For cases M1-M5, obviously, the impact angle 2θdecreases as eitherFrorβincreases for eachtest group. Comparing the experimental flow regimes, it is shown that, the small2θhelps to decrease and control the filling water inside the cavity. Comparing the traditional aerator device (M1), it can be seen that those with the local slope forms (M2-M5) perform better in controlling the filling water.

    Meanwhile, it is noticed that, the increase of the angleβis not directly equal to the decrease of the impact angleθ2. Whenβ=12.00o, the decrease ofθ2is about 6.26o-3.64oforFr=3.61-5.45.

    Figure 4 shows the variation ofLj/hoagainstFrfor M1-M5, wherehois the flow depth through the aerator. It indicates clearly that the jet length of the low trajectoryLj/hoincreases asFrincreases, and they have an approximate linear relationship. Considering thatLj/hois mainly dominated by the geometries of the ramp and the condition of the approach flow, each case would be similar, andLj/hoslightly decreases with the increase ofβdue to the increase off.

    Fig.4 Variation ofLj/hoagainstFrfor M1-M5

    Fig.5 Variation ofLf/hoagainstθ2for M1-M5

    Figure 5 shows the variation ofLf/hoagainstθ2for M1-M5 under different operation conditions. Firstly, the length of the filling waterLf/hohas a linear relationship with the impact angle when the jet trajectory2θis less thano11.50. Secondly, when2θ≥11.50o, there is no clear trend, in fact, the filling water becomes severe comparing with the jet length of the low trajectory. Lastly, the condition of no filling water could be achieved when

    This means that

    That is to say, the filling water could be controlled ifθ2≤θ2c.

    Fig.6 Variation ofLn/hoagainstFrfor M1-M5

    Fig.7 Comparisons of cavity flow regimes withFr=3.61

    Figure 6 is the variation ofLn/hoagainstFrfor M1-M5. The net cavity lengthLn/hoalso influencesthe performance of the air entrainment to the flow. It could be seen thatLn/hoincreases asFrincreases. Meanwhile, comparing cases M1 to M5, it is clearly seen that with the increase ofβ, the impact angle2θdecreases, and thenLn/hoincreases.

    Figure 7 shows a comparison of the flow regimes through the aerator devices for M1 and M5 whenFr=3.61.

    With respect to M1 without the local slope section, it could be seen that the filling water submerges the ventilation shaft and the net cavity is very small. While the local slope section is placed downstream of the aerator, the filling water is effectively controlled, such as in the case of M5.

    3.2Influence of initial position and length

    For the aerators with a mild slope and/or a low Froude number, the placement of the local slope forms downstream is a preferred choice for the cavity filling water control[9,10,14,15]. In fact, the effectiveness of this geometry is closely related to the operation conditions of the release structure. So in the designs of the aerator device and the local slope section, at least two factors should be considered, i.e., the initial position (L1) and the length (L2) of the local slope section.

    Firstly, the length (Lj) of the low trajectory of the flow should be larger than the initial position (L1) to keep the flow falling on the local slope section.

    Secondly, let the points A and B be the positions of the lower and upper trajectories of the flow at the bottom of the local slope section, we can have the distance from A to B alongx-axis direction denoted asL3(see Fig.2(a)). In any operation situation, the entire jet flow can fall within the local slope section whenL1+L2≥Lj+L3andLj>L1.

    Fig.8 Variation ofLf/hoagainstFrfor M6-M9

    Figure 8 shows the variation ofLf/hoagainstFrfor cases M6-M9. In the cases of M6-M8, we have the sameβandL1, i.e.,β=9.00oandL1= 0.225 m, butL2=0.375 m, 0.413 m and 0.450 m. We can see thatLf/hodecreases with the increases ofFr. Much more important is the fact thatLf/hosignificantly decreases when the length of the local slope section increases, which means that the jet flow falls wholly in the length ofL2with the increase of it.

    However, the filling water will become severe if the impact point of the lower jet trajectory can not fall

    on the local slope section, such as whenLf/hois equal to 3.22 for the case of M9 whereL1=0.300 m andFr=4.54. Therefore, it is important to properly adjust the lengthL1, or the initial position for the filling water control.

    Fig.9 Comparisons of flow regimes whenFr=3.61

    Figure 9 shows the flow regimes on the aerator devices atFr=3.61 for cases M6-M8. It could be seen that, the lengths of the filling water are similar for M6 and M7, while that for M8 is obviously short.

    As stated above, the two criteria of the design of the aerator device with a local slope form placed could be proposed as

    4. Conclusions

    With respect to placing a local slope form downstream of an aerator device for the filling water control, the impact angle of the lower trajectory of the flow is theoretically analyzed, and compared with the case without this form.

    The performance of the cavity filling water is experimentally investigated. The relationship between the filling water and the impact angle could be expressed by Eq.(14), and the filling water could be controlled if the impact angle is less thano8.56.

    For the aerator devices with the low Froude number, it is a good choice to place a local slope section, but there are two criteria that need to be satisfied when this form is designed and they are expressed by Eqs.(16) and (17).

    [1] GUO Jun, ZHANG Dong and LIU Zhi-ping et al. Achievements on hydraulic problems in large spillway tunnel with a high head and large discharge flow and its risk analysis[J].Journal of Hydraulic Engineering,2006, 37(10): 1193-1198(in Chinese).

    [2] CHANSON H. Study of air entrainment and aeration devices[J].Journal of Hydraulic Research,1989, 27(3): 301-319.

    [3] HAGER W. H., PFISTER M. Historical advance of chute aerators[C].33rd IAHR Congress.Vancouver, Canada, 2009, 5827-5834.

    [4] PFISTER M. Chute aerators: Steep deflectors and cavity subpressure[J].Journal of Hydraulic Engineering, ASCE,2011, 137(10): 1208-1215.

    [5] ZHI Shuan-xi, YAN Jin-yuan. Hydraulic characteristics of aerators with dent-form ramp[J].Journal of Hydraulic Engineering,1991, (2): 42-46(in Chinese).

    [6] SUN Shuang-ke, YANG Jia-wei and LIU Hai-tao. Optimistic study on the layout of aeration facilities under mild gradient[J].Water Resources and Hydropower Engineering,2004, 35(11): 26-29(in Chinese).

    [7] WANG Hai-yun, DAI Guang-qing and YANG Qing et al. Experimental study on V-type aerator for spillway tunnel with inlet raised[J].Journal of Hydraulic Engineering,2005, 36(11): 1371-1378(in Chinese).

    [8] WU Jian-hua, MA Fei and DAI Hui-chao. Influence of filling water on air concentration[J].Journal of Hydrodynamics,2011, 23(5): 601-606.

    [9] SU Pei-lan, LIAO Hua-sheng and QIU Yue et al. Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow[J].Journal of Hydrodynamics,2009, 21(3): 415-422.

    [10] WU Jian-hua, MA Fei. Cavity flow regime for spillway aerators[J].Science China Technological Sciences,2013, 56(4): 818-823.

    [11] PFISTER M., HAGER W. H. Chute aerators. I: Air transport characteristics[J].Journal of Hydraulic Engineering, ASCE,2010, 136(6): 352-359.

    [12] PFISTER M., HAGER W. H. Numerical computation of slit-type supercritical flows[J].Journal of Hydraulic Engineering, ASCE,2010, 136(6): 360-367.

    [13] PFISTER M. Jet impact angle on chute downstream of aerator[C].4rd IAHR International Symposium on Hydraulic Structures.Porto, Portugal, 2012, 1-8.

    [14] QI Li-jian, LIAO Hua-sheng and LI Gui-ji et al. Numerical simulation of backwater downstream of aerators in spillway with low Froude number flow[J].Journal of Hydraulic Engineering,2007, 38(7): 819-825(in Chinese).

    [15] SU Pei-lan, LIAO Hua-sheng and LI Lian-xia et al. Application of aerator with a trapezoidal-shaped slot on a steep slope to the spillway tunnel of Pubugou hydropower project[J].Journal of Hydroelectric Engineering,2010, 29(2): 168-175(in Chinese).

    10.1016/S1001-6058(14)60048-2

    * Project supported by the National Natural Science Foundation of China (Grant No. 51179114).

    Biography: QIAN Shang-tuo (1988-), Male, Ph. D. Candidate

    WU Jian-hua,

    E-mail: jhwu@hhu.edu.cn

    猜你喜歡
    馬飛建華
    倒立奇奇
    變來變去的樹
    Air entrainment of hydraulic jump aeration basin *
    米沙在書里
    可怕的事
    Energy dissipation of slot-type flip buckets *
    Standing wave at dropshaft inlets*
    變變變
    阿嗚想做貓
    A new design of ski-jump-step spillway*
    高清毛片免费观看视频网站 | 91精品三级在线观看| 国产91精品成人一区二区三区 | 曰老女人黄片| 午夜福利欧美成人| 国产精品自产拍在线观看55亚洲 | 国产精品美女特级片免费视频播放器 | 一夜夜www| 新久久久久国产一级毛片| 怎么达到女性高潮| 久久精品国产99精品国产亚洲性色 | 在线观看人妻少妇| 国产视频一区二区在线看| 中文字幕高清在线视频| 天堂8中文在线网| www日本在线高清视频| 大型黄色视频在线免费观看| av有码第一页| 热99re8久久精品国产| 精品一区二区三区av网在线观看 | 精品久久久久久久毛片微露脸| 国产精品偷伦视频观看了| www.精华液| 夜夜骑夜夜射夜夜干| 亚洲全国av大片| 高清视频免费观看一区二区| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 久久精品亚洲精品国产色婷小说| 在线观看人妻少妇| 国产免费福利视频在线观看| 婷婷丁香在线五月| 亚洲色图av天堂| 亚洲欧美色中文字幕在线| 考比视频在线观看| 欧美在线一区亚洲| 一级毛片电影观看| 侵犯人妻中文字幕一二三四区| 免费少妇av软件| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色 | 12—13女人毛片做爰片一| kizo精华| 欧美成狂野欧美在线观看| 伦理电影免费视频| 在线观看www视频免费| 久久久精品免费免费高清| 亚洲国产精品一区二区三区在线| 成年女人毛片免费观看观看9 | 黄色怎么调成土黄色| 日韩免费高清中文字幕av| 亚洲欧美精品综合一区二区三区| 涩涩av久久男人的天堂| 亚洲av第一区精品v没综合| 国产一区二区在线观看av| 丁香六月欧美| 极品少妇高潮喷水抽搐| 高清黄色对白视频在线免费看| 成人国产av品久久久| 午夜福利在线免费观看网站| 少妇的丰满在线观看| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 夜夜爽天天搞| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 大香蕉久久成人网| 我的亚洲天堂| 乱人伦中国视频| 90打野战视频偷拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| kizo精华| av福利片在线| 久久青草综合色| 熟女少妇亚洲综合色aaa.| 午夜日韩欧美国产| 欧美日韩福利视频一区二区| 久久精品亚洲av国产电影网| 日韩人妻精品一区2区三区| 三级毛片av免费| 欧美久久黑人一区二区| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| 午夜福利,免费看| 国产精品久久久久久人妻精品电影 | 午夜久久久在线观看| 精品久久蜜臀av无| 午夜免费鲁丝| 黄色成人免费大全| 亚洲av成人不卡在线观看播放网| 久久国产精品男人的天堂亚洲| 亚洲av美国av| 久久久久精品人妻al黑| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 美女扒开内裤让男人捅视频| 亚洲国产欧美网| 日韩欧美国产一区二区入口| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| √禁漫天堂资源中文www| 亚洲色图av天堂| 国产精品98久久久久久宅男小说| 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清 | 亚洲一区二区三区欧美精品| 性少妇av在线| 久久99热这里只频精品6学生| 亚洲五月色婷婷综合| 国产精品影院久久| 90打野战视频偷拍视频| 欧美日韩福利视频一区二区| 国产高清videossex| 午夜福利影视在线免费观看| 在线观看免费视频日本深夜| 乱人伦中国视频| 国产91精品成人一区二区三区 | 欧美中文综合在线视频| 久久久久精品国产欧美久久久| 国产高清videossex| 国产一区二区 视频在线| 操美女的视频在线观看| 99精品久久久久人妻精品| 一个人免费在线观看的高清视频| 久热这里只有精品99| 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 国产亚洲欧美精品永久| 女人精品久久久久毛片| 十分钟在线观看高清视频www| 久久人人爽av亚洲精品天堂| 久久精品国产综合久久久| 999精品在线视频| 飞空精品影院首页| 国产精品麻豆人妻色哟哟久久| 在线观看一区二区三区激情| 精品亚洲成a人片在线观看| 涩涩av久久男人的天堂| 97在线人人人人妻| 国产精品二区激情视频| 久久久久久久久久久久大奶| 中文字幕色久视频| 国产免费视频播放在线视频| 999久久久精品免费观看国产| avwww免费| 十八禁网站网址无遮挡| 母亲3免费完整高清在线观看| 国产淫语在线视频| 欧美亚洲日本最大视频资源| 99re在线观看精品视频| 91av网站免费观看| 在线观看免费午夜福利视频| 国产精品一区二区免费欧美| 亚洲精品成人av观看孕妇| 在线观看免费视频网站a站| 精品免费久久久久久久清纯 | 亚洲精品国产精品久久久不卡| 夜夜爽天天搞| 国产精品亚洲av一区麻豆| 亚洲av片天天在线观看| 欧美亚洲日本最大视频资源| 亚洲欧美色中文字幕在线| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 少妇 在线观看| 日本欧美视频一区| 亚洲九九香蕉| 欧美日韩成人在线一区二区| svipshipincom国产片| 日本av手机在线免费观看| 9191精品国产免费久久| 一区二区三区激情视频| 国产欧美日韩一区二区三区在线| 色在线成人网| 一二三四社区在线视频社区8| 亚洲av第一区精品v没综合| 欧美人与性动交α欧美精品济南到| 中文字幕人妻熟女乱码| 国产成人欧美在线观看 | 肉色欧美久久久久久久蜜桃| 亚洲一区二区三区欧美精品| 99久久精品国产亚洲精品| 久久热在线av| 欧美日韩国产mv在线观看视频| 午夜激情av网站| 久久久久久久大尺度免费视频| 男女午夜视频在线观看| 亚洲男人天堂网一区| 99精品欧美一区二区三区四区| 亚洲熟妇熟女久久| 亚洲av日韩在线播放| 日本wwww免费看| 国产高清国产精品国产三级| 国产成人精品久久二区二区免费| 国产成+人综合+亚洲专区| 免费日韩欧美在线观看| 一区二区三区国产精品乱码| 一本久久精品| 香蕉久久夜色| 黑人巨大精品欧美一区二区mp4| 免费在线观看影片大全网站| 国产亚洲精品第一综合不卡| 欧美黄色片欧美黄色片| av欧美777| 91成年电影在线观看| 久久精品成人免费网站| 亚洲成国产人片在线观看| 视频区图区小说| 亚洲国产欧美在线一区| 男女高潮啪啪啪动态图| 欧美国产精品一级二级三级| 精品国内亚洲2022精品成人 | 国产成人av教育| 久久ye,这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看 | 日日摸夜夜添夜夜添小说| 在线观看舔阴道视频| 亚洲精品在线美女| 亚洲国产看品久久| 国产伦理片在线播放av一区| 亚洲欧美一区二区三区黑人| 汤姆久久久久久久影院中文字幕| 久久久国产一区二区| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 亚洲中文日韩欧美视频| 99国产精品99久久久久| 亚洲午夜精品一区,二区,三区| 麻豆乱淫一区二区| 丝瓜视频免费看黄片| 精品乱码久久久久久99久播| 精品一区二区三卡| 高清欧美精品videossex| 女人爽到高潮嗷嗷叫在线视频| 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久99热这里只频精品6学生| 日日爽夜夜爽网站| 国产精品久久电影中文字幕 | 国产一区二区三区视频了| 精品福利观看| 国产精品1区2区在线观看. | 日韩一卡2卡3卡4卡2021年| a在线观看视频网站| 日本av免费视频播放| 少妇被粗大的猛进出69影院| 国产91精品成人一区二区三区 | 国产区一区二久久| 国产av又大| 国产成人一区二区三区免费视频网站| av天堂久久9| 一本综合久久免费| 美女视频免费永久观看网站| 日韩成人在线观看一区二区三区| 老汉色av国产亚洲站长工具| 欧美激情 高清一区二区三区| 国产淫语在线视频| 久久人妻福利社区极品人妻图片| 90打野战视频偷拍视频| 91国产中文字幕| 精品久久蜜臀av无| 丰满人妻熟妇乱又伦精品不卡| 脱女人内裤的视频| 国产在视频线精品| 成年版毛片免费区| 在线观看免费视频日本深夜| 纯流量卡能插随身wifi吗| 国产不卡一卡二| 91av网站免费观看| 色婷婷av一区二区三区视频| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 又紧又爽又黄一区二区| 成年动漫av网址| 免费在线观看完整版高清| 99精国产麻豆久久婷婷| 国产成人精品在线电影| 日韩人妻精品一区2区三区| 法律面前人人平等表现在哪些方面| 亚洲av成人一区二区三| 99国产精品一区二区三区| 日韩免费av在线播放| 久久精品熟女亚洲av麻豆精品| 久久久久精品人妻al黑| 纯流量卡能插随身wifi吗| 超碰97精品在线观看| 日日爽夜夜爽网站| 婷婷成人精品国产| 中文字幕人妻丝袜一区二区| 亚洲人成电影观看| 青草久久国产| 国产精品一区二区免费欧美| 久久久精品区二区三区| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 亚洲专区国产一区二区| 99九九在线精品视频| 老熟妇乱子伦视频在线观看| 老熟妇仑乱视频hdxx| 亚洲全国av大片| 考比视频在线观看| 欧美激情高清一区二区三区| 一区在线观看完整版| 黑人猛操日本美女一级片| 中文字幕高清在线视频| 自线自在国产av| 久久精品人人爽人人爽视色| 日韩视频一区二区在线观看| 久久久精品国产亚洲av高清涩受| 看免费av毛片| 妹子高潮喷水视频| 国产精品99久久99久久久不卡| avwww免费| 91av网站免费观看| 美女扒开内裤让男人捅视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| av免费在线观看网站| 午夜精品国产一区二区电影| 国产成人系列免费观看| 黑丝袜美女国产一区| 人妻久久中文字幕网| 欧美日韩精品网址| 精品乱码久久久久久99久播| 久9热在线精品视频| 淫妇啪啪啪对白视频| 老熟女久久久| 国产三级黄色录像| 免费在线观看黄色视频的| 精品久久久久久电影网| 久久人妻av系列| 欧美成人午夜精品| 丝袜喷水一区| av网站免费在线观看视频| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美网| 亚洲成人免费电影在线观看| 丝袜在线中文字幕| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| 国产精品偷伦视频观看了| 美女主播在线视频| 多毛熟女@视频| 女人爽到高潮嗷嗷叫在线视频| 999精品在线视频| 国产淫语在线视频| 亚洲七黄色美女视频| www.精华液| 国产精品国产高清国产av | 麻豆成人av在线观看| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 99久久国产精品久久久| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 啦啦啦 在线观看视频| 日本wwww免费看| 精品人妻1区二区| 视频区欧美日本亚洲| 操出白浆在线播放| 一本综合久久免费| 久久久欧美国产精品| 嫁个100分男人电影在线观看| 日日夜夜操网爽| 国产日韩欧美亚洲二区| 18禁美女被吸乳视频| 亚洲欧洲日产国产| 美女视频免费永久观看网站| 国产精品自产拍在线观看55亚洲 | 亚洲伊人久久精品综合| 国产精品1区2区在线观看. | 热re99久久精品国产66热6| 黄色视频不卡| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 在线 av 中文字幕| 精品人妻1区二区| 国产男女超爽视频在线观看| 亚洲综合色网址| 国产精品熟女久久久久浪| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲 | www.999成人在线观看| 青草久久国产| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 精品国产国语对白av| 国产免费av片在线观看野外av| 亚洲国产av影院在线观看| 人人妻人人添人人爽欧美一区卜| 黄色成人免费大全| 捣出白浆h1v1| 久久久久国产一级毛片高清牌| 97人妻天天添夜夜摸| 精品少妇黑人巨大在线播放| 热99re8久久精品国产| 美女国产高潮福利片在线看| av视频免费观看在线观看| 99riav亚洲国产免费| 成人国产av品久久久| 在线 av 中文字幕| 国产精品免费一区二区三区在线 | 悠悠久久av| 捣出白浆h1v1| 亚洲人成电影免费在线| 成年版毛片免费区| 亚洲av电影在线进入| 亚洲免费av在线视频| 女同久久另类99精品国产91| 女性生殖器流出的白浆| 日本wwww免费看| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 日韩免费av在线播放| 国产福利在线免费观看视频| www.熟女人妻精品国产| 激情视频va一区二区三区| 露出奶头的视频| 久久久精品94久久精品| 免费看a级黄色片| 久久久久国内视频| 天天躁日日躁夜夜躁夜夜| 三上悠亚av全集在线观看| a级片在线免费高清观看视频| 中国美女看黄片| 久久青草综合色| 精品亚洲乱码少妇综合久久| 人成视频在线观看免费观看| 久久久久久久久免费视频了| 韩国精品一区二区三区| 国产av精品麻豆| 国产高清国产精品国产三级| 免费在线观看影片大全网站| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 高清欧美精品videossex| 两个人免费观看高清视频| av超薄肉色丝袜交足视频| 天堂8中文在线网| 女人高潮潮喷娇喘18禁视频| av超薄肉色丝袜交足视频| 国产成人系列免费观看| 国产亚洲精品久久久久5区| 人人澡人人妻人| 久久久久久久国产电影| 欧美在线一区亚洲| 久久久久久久久免费视频了| 少妇精品久久久久久久| 久久九九热精品免费| 久久久久网色| 91成年电影在线观看| 国产精品一区二区免费欧美| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| 久久国产精品影院| 91精品三级在线观看| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 国产av又大| 麻豆成人av在线观看| 一夜夜www| 国产免费视频播放在线视频| 两个人免费观看高清视频| 最新在线观看一区二区三区| 老熟妇仑乱视频hdxx| 最新的欧美精品一区二区| 超碰成人久久| 国产三级黄色录像| 制服人妻中文乱码| 男女无遮挡免费网站观看| 国产麻豆69| 欧美成人午夜精品| 黑丝袜美女国产一区| av网站在线播放免费| 亚洲精品在线观看二区| 制服诱惑二区| 精品少妇一区二区三区视频日本电影| 中文字幕av电影在线播放| 亚洲精品久久成人aⅴ小说| 99久久精品国产亚洲精品| 不卡一级毛片| 亚洲av国产av综合av卡| a级毛片黄视频| 一个人免费在线观看的高清视频| 91老司机精品| 少妇被粗大的猛进出69影院| 十分钟在线观看高清视频www| 老司机靠b影院| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频 | 久久久国产成人免费| 亚洲欧美激情在线| 夜夜爽天天搞| 99国产精品一区二区三区| 国产成人精品在线电影| 国产在线精品亚洲第一网站| 久热这里只有精品99| 精品午夜福利视频在线观看一区 | 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 成人三级做爰电影| 自线自在国产av| 中文欧美无线码| 天堂俺去俺来也www色官网| av超薄肉色丝袜交足视频| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 国产一卡二卡三卡精品| 亚洲av日韩在线播放| 亚洲av成人一区二区三| 捣出白浆h1v1| 黄片播放在线免费| 久久久欧美国产精品| svipshipincom国产片| 男女午夜视频在线观看| 中文字幕av电影在线播放| 性色av乱码一区二区三区2| 国产高清videossex| 久久狼人影院| 精品欧美一区二区三区在线| 99久久人妻综合| 在线观看免费午夜福利视频| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 天堂8中文在线网| 色在线成人网| 视频在线观看一区二区三区| 精品久久久精品久久久| 日本黄色日本黄色录像| √禁漫天堂资源中文www| 亚洲美女黄片视频| 日本wwww免费看| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| e午夜精品久久久久久久| 亚洲伊人色综图| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 天天操日日干夜夜撸| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区 | 精品卡一卡二卡四卡免费| 免费在线观看完整版高清| 搡老乐熟女国产| 国产免费av片在线观看野外av| 午夜成年电影在线免费观看| videos熟女内射| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡| 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽 | 色94色欧美一区二区| 国产激情久久老熟女| 91麻豆精品激情在线观看国产 | 少妇精品久久久久久久| 三级毛片av免费| 国产男靠女视频免费网站| 成人国语在线视频| 免费少妇av软件| 91麻豆av在线| 少妇被粗大的猛进出69影院| 搡老乐熟女国产| 日本精品一区二区三区蜜桃| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| 免费观看av网站的网址| 水蜜桃什么品种好| 成年人黄色毛片网站| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 美女视频免费永久观看网站| 国产国语露脸激情在线看| 丁香六月天网| 人妻久久中文字幕网| 两个人免费观看高清视频| 国产高清videossex| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 国产成人av激情在线播放| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av高清一级| av不卡在线播放| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 中文字幕人妻熟女乱码| 人人妻,人人澡人人爽秒播| e午夜精品久久久久久久| 亚洲精品在线观看二区| 18禁观看日本| 亚洲av成人不卡在线观看播放网| 新久久久久国产一级毛片|