• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于時頻原子灰色關(guān)聯(lián)的小電流接地故障選線方法

      2014-06-07 05:55:20王曉衛(wèi)侯雅曉李玉東魏向向
      煤炭學(xué)報 2014年10期
      關(guān)鍵詞:選線暫態(tài)零序

      王曉衛(wèi),侯雅曉,田 書,李玉東,高 杰,魏向向

      (河南理工大學(xué)電氣工程與自動化學(xué)院,河南焦作 454000)

      基于時頻原子灰色關(guān)聯(lián)的小電流接地故障選線方法

      王曉衛(wèi),侯雅曉,田 書,李玉東,高 杰,魏向向

      (河南理工大學(xué)電氣工程與自動化學(xué)院,河南焦作 454000)

      提出一種時頻原子灰色關(guān)聯(lián)的小電流接地故障選線方法。根據(jù)當(dāng)前小電流接地系統(tǒng)分支線路數(shù)目,計算故障線與非故障線的線路基準(zhǔn)值;以Gabor原子庫為索引,利用匹配追蹤法將各分支線路故障后首個1/4周期內(nèi)的暫態(tài)零序電流進(jìn)行時頻原子分解,求得表征各分支線路故障特征信息的衰減正弦量原子;采用改進(jìn)灰色關(guān)聯(lián)分析對各衰減正弦量原子進(jìn)行關(guān)聯(lián)度分析,求得各分支線路的特征值;將各特征值分別與故障線和非故障線的基準(zhǔn)值求歐式距離并比較大小,通過所求歐式距離大小的比較,可實現(xiàn)準(zhǔn)確選線。仿真結(jié)果表明,該方法計算量小,選線精度高,尤其適用于多分支線路的小電流接地系統(tǒng)。

      匹配追蹤;衰減正弦量原子;灰色關(guān)聯(lián);歐氏距離;區(qū)間域

      目前,對于小電流接地系統(tǒng)故障選線問題,眾多學(xué)者提出了多種故障選線方法。主要采用S變換[1]、希爾伯特-黃變化(HHT)[2]、普羅尼(Prony)算法[3]、分形理論[4]、經(jīng)驗?zāi)B(tài)分解(EMD)[5]、遺傳算法[6]等信號處理工具提取信號,然后采用神經(jīng)網(wǎng)絡(luò)[7]、支持向量機(jī)[8]、貝葉斯分類法[9]、信息熵[10]、Hough變換[11]等建立選線判據(jù)。

      S變換是對連續(xù)小波變換和短時傅里葉變化的發(fā)展,具有良好的時頻特性,但分解后信息量太多。HHT與Prony算法能夠得到解析的信號分解形式,但這2種算法均不能表達(dá)不連續(xù)的信號。分形理論需要選擇恰當(dāng)?shù)姆中尉S數(shù)以描述其特征,分形維數(shù)選擇不當(dāng)時,會增加運(yùn)算量,增大誤差。EMD適合分析非線性、非平穩(wěn)時間序列信號,但當(dāng)信號的采樣頻率過低時,容易造成虛假模態(tài)和模態(tài)混疊頻繁出現(xiàn)等問題。遺傳算法具有自適應(yīng)性,其魯棒性強(qiáng),便于并行處理,但退化現(xiàn)象明顯,可變的靈活程度較小。神經(jīng)網(wǎng)絡(luò)存在局部最優(yōu)問題,且收斂性較差,訓(xùn)練時間較長,可靠性有限。支持向量機(jī)在解決小樣本、非線性及高維模式識別問題中具有優(yōu)勢,但識別能力易受自身參數(shù)的影響。貝葉斯分類法需要已知確切的分布概率,而實際上并不能給出確切的分布概率。信息熵可用來描述一個變量的不確定性,但需有足夠多的數(shù)據(jù)作為依據(jù),才能有效判別信號所具有的特征。Hough變換在參數(shù)空間不超過2維的情況下,有優(yōu)異的表現(xiàn),但若參數(shù)空間增大,其計算量急劇上升,同時耗費(fèi)巨大的存儲空間,耗時也隨之猛增。

      本文提出一種時頻原子(time-frequency atom decomposition,TFAD)灰色關(guān)聯(lián)(greycorrelation analysis,GCA)的小電流接地故障選線方法[12-16],該方法將測得的暫態(tài)零序電流進(jìn)行時頻原子分解,構(gòu)建出表征暫態(tài)零序電流的衰減正弦量原子,再經(jīng)改進(jìn)灰色關(guān)聯(lián)分析求得各線路的特征值,與計算好的線路基準(zhǔn)值進(jìn)行歐氏距離求解,最后,通過比較歐式距離大小,判定故障發(fā)生線路。

      1 暫態(tài)零序電流分析

      單相接地暫態(tài)零序等值電路如圖1所示,其中, C0為線路零序電容;L0為線路零序等值電感;Rg為接地點(diǎn)的過渡電阻;Rp和Lp分別為消弧線圈的等效電阻和電感;e(t)為零序電壓。

      在補(bǔ)償電網(wǎng)中發(fā)生故障的瞬間,由圖1可得流過故障點(diǎn)的暫態(tài)零序電流為

      式中,i0L.t為暫態(tài)零序電流中的電感電流分量;i0C.t為暫態(tài)零序電流的電容電流分量;ILm和ICm分別為電感電流和電容電流的初值;ω為工頻角頻率;ωf和δ分別為暫態(tài)零序電流容性分量的振蕩角頻率和衰減系數(shù);τL為電感電流的衰減時間常數(shù);φ為接地時故障線路相電壓的初始相位。

      圖1 單相接地暫態(tài)零序等值電路Fig.1 Transient zero sequence equivalent circuit of single-phase to ground

      振蕩角頻率ωf和衰減系數(shù)δ分別為

      由式(1)可以得知,暫態(tài)零序電流由正弦函數(shù)分量組合而成,并且其波形具有衰減特性。由式(2),(3)分別可知,振蕩角頻率ωf受L0,C0,Rg的影響,衰減系數(shù)δ受L0,Rg影響,并且可以得出,隨著過渡電阻Rg數(shù)值的增大,ωf減小,δ增大,反映在實際中,表現(xiàn)為暫態(tài)零序電流波形振蕩趨勢變緩,衰減較快,暫態(tài)過程將很快結(jié)束并進(jìn)入到穩(wěn)態(tài)。因此,能在大電阻接地故障時準(zhǔn)確提取出暫態(tài)分量并實現(xiàn)精確選線,將是檢驗故障選線方法適用性的重要指標(biāo)。

      圖2為某實際配電網(wǎng)架空線路1單相接地故障時測得的各條線路的暫態(tài)零序電流,從圖2可以看出,不管是架空線路,電纜線路,還是纜線混合線路,其暫態(tài)零序電流均具備振蕩衰減特征。

      2 理論分析

      2.1 TFAD原理

      傳統(tǒng)的信號分解算法主要有傅里葉變換和小波變換,但這2種算法所表示信號的能力和范圍具有一定的局限性。針對此現(xiàn)狀,本文引入TFAD算法[18],該算法能夠?qū)⒐收蠒r各分支線路的暫態(tài)零序電流信號進(jìn)行自適應(yīng)分解,最后用一系列時頻原子的線性疊加來表示暫態(tài)零序電流。它可用于提取信號中的瞬態(tài)沖擊響應(yīng)特征[19]。

      圖2 暫態(tài)零序電流Fig.2 Transient zero sequence current

      設(shè)信號為X,D為過完備的原子庫,g為原子庫中經(jīng)歸一化的原子(‖g‖=1),信號分解時,在過完備原子庫D中選擇與信號X最匹配的原子,其選擇原則為內(nèi)積最大,設(shè)第1個最匹配原子為g1。則

      式中,〈·,·〉表示兩者的內(nèi)積。

      已知原子滿足歸一化條件,因此,信號X可以分解為2部分:原子g1上的分量和殘差c1,即

      接著對每次匹配的殘差進(jìn)行分解,直到達(dá)到終止條件為止,若對信號分解了M次,則信號可以表示成

      為達(dá)到信號稀疏分解的目的,將暫態(tài)零序電流分解成一系列原子信號的線性組合,而這些原子是從一個冗余的原子庫中選取的。為了使選取的原子最佳地匹配原始信號的特征,TFAD算法采取一種自適應(yīng)的分解策略。

      在處理信號的過程中,TFAD算法有它特定的級聯(lián)原子庫,只有選擇合適的級聯(lián)原子庫才能對所分析的信號進(jìn)行精確分析。本文采用最基本的Gabor原子庫來分析信號,Gabor原子表達(dá)式為

      式中,g(t)=21/4e-πt2為高斯窗函數(shù);定義索引γ=(s, τ,ξ,φ),其中,s為尺度參數(shù),τ為位移參數(shù),ξ為頻率因子,φ為相位因子。

      由于式(7)是一個連續(xù)函數(shù),故所得到的原子空間庫是無窮的,在實際中不可能搜索一個無窮的空間,所以對原子庫進(jìn)行離散處理。令

      式中,K是信號幅值歸一化的系數(shù)。

      可見,Gabor原子實質(zhì)上是由正弦函數(shù)調(diào)制后的高斯窗函數(shù)構(gòu)成的。令待分析暫態(tài)零序電流信號的長度為N,則對索引γ=(s,τ,ξ,φ)進(jìn)行離散化處理后可得γ=(2λ,p2λ,kπ21-λ,φ),其中,λ,p,k∈Z,φ∈R,且參數(shù)λ,p,k可滿足如下關(guān)系

      通過對Gabor原子庫進(jìn)行時頻分析可以發(fā)現(xiàn), Gabor原子庫的時頻分布為一橢圓[20],其時頻聚集性相對較弱。而在電力系統(tǒng)中,暫態(tài)零序電流的特征頻帶會隨著電網(wǎng)結(jié)構(gòu)、故障模式等因素而處于不同區(qū)域,且特征頻帶內(nèi)不同頻率暫態(tài)電流信號在時間段上的分布也各不相同[21]。故不能直接由Gabor原子庫來分析暫態(tài)零序電流,需要和其他原子相互配合。因此,為能夠?qū)簯B(tài)零序電流進(jìn)行分析與處理,還需建立一個符合電網(wǎng)暫態(tài)零序電流的原子。

      2.2 暫態(tài)零序電流衰減正弦量原子求解

      由上文可知,暫態(tài)零序電流經(jīng)Gabor原子庫分解之后,需建立一個適合分析電網(wǎng)信號的暫態(tài)零序電流衰減正弦量原子,并對其做進(jìn)一步分析。

      由暫態(tài)零序電流的特性可知,其波形具備振蕩衰減的趨勢,因此,本文采用衰減正弦量原子來擬合故障后的暫態(tài)零序電流,暫態(tài)零序電流衰減正弦量原子的構(gòu)造為

      式中,每一個衰減分量都有固定的時間支撐區(qū)且包含6個參數(shù)(Aq,fq,αq,φq,ts,te),其中,Aq為最大幅值; fq為頻率;αq為衰減因子;φq為相位;ts與te分別為暫態(tài)零序電流的起始時刻和終止時刻;u(t)為單位階躍函數(shù)。

      以Gabor原子庫為索引,按匹配追蹤(matching pursuit,MP)算法對暫態(tài)零序電流進(jìn)行分析處理之后,可得到其最佳原子gγ和最優(yōu)4參變量(s,τ,ξ, φ)[22],進(jìn)而可求得暫態(tài)零序電流衰減正弦量原子的基本參數(shù),具體實現(xiàn)過程如下。

      (1)利用MP算法將暫態(tài)零序電流在Gabor過完備原子庫中進(jìn)行稀疏分解,得到第一個最匹配原子gγ0。

      (2)每次迭代時將新原子與殘差信號做內(nèi)積計算,同時對4參變量(s,τ,ξ,φ)按順序進(jìn)行優(yōu)化。

      (3)當(dāng)內(nèi)積增加值不足當(dāng)前的1%,或當(dāng)前參變量的增加值不足自身值的10%時,迭代終止。

      (4)程序運(yùn)行結(jié)束,得到最佳原子gγ以及其最優(yōu)4參變量(s,τ,ξ,φ)。

      (6)根據(jù)“從大到小”的排序方法,尋找最佳原子gγ幅值的最大值,即為衰減正弦量原子gi(t)的最大幅值A(chǔ)q。

      由以上6步可求得原子的最大幅值A(chǔ)q、衰減因子αq,以及暫態(tài)零序電流的最優(yōu)4參變量(s,τ,ξ, φ)。由暫態(tài)零序電流的最優(yōu)4參變量(s,τ,ξ,φ),可求得暫態(tài)零序電流衰減正弦量原子參數(shù)中的頻率因子fq和相位因子φq(fq=ξ,φq=φ)。

      2.3 改進(jìn)的GCA

      傳統(tǒng)的灰色關(guān)聯(lián)度只考慮事物間靜態(tài)差值之間的關(guān)聯(lián)[24],若從動態(tài)的角度來衡量,如波形曲線的變化率和斜率,則需利用曲線的幾何形狀變化趨勢來計算關(guān)聯(lián)度。因此,本文定義一種適合分析暫態(tài)零序電流關(guān)聯(lián)度的計算式。

      設(shè)有2個暫態(tài)零序電流信號Xi(t)(代表參考信號),Xj(t)(代表比較信號)。這樣,在關(guān)聯(lián)分析中,參考信號Xi(t)和比較信號Xj(t)的關(guān)聯(lián)度計算如下

      式中,X′i(t),X′j(t)分別為信號Xi(t)和Xj(t)對時間t的導(dǎo)數(shù)。

      假設(shè)小電流接地系統(tǒng)具有n條分支線路,線路編號分別為1,2,…,n,當(dāng)系統(tǒng)發(fā)生故障時,通過采樣裝置獲得各分支線路的暫態(tài)零序電流,然后利用式(10)可計算各分支線路間的灰色關(guān)聯(lián)度rij。其中,n條分支線路共計算次,即可獲得該小電流接地系統(tǒng)的關(guān)聯(lián)度矩陣R[25]為

      關(guān)聯(lián)度矩陣R中的每一元素rij均表示第i條線路和第j條線路之間暫態(tài)零序電流的關(guān)聯(lián)程度,據(jù)此,可計算出第i條線路與其余的n-1條線路的平均關(guān)聯(lián)度為

      3 分支線路基準(zhǔn)值求解

      暫態(tài)零序電流特征:對于實際的小電流接地系統(tǒng),各條非故障線路之間的暫態(tài)零序電流波形相似,而故障線與非故障線之間的暫態(tài)零序電流波形差異大[26]。故得出:

      (1)任意2條非故障線路間的暫態(tài)零序電流關(guān)聯(lián)度數(shù)值相似度極高,即近似相等;

      (2)故障線路與任1條非故障線路間的暫態(tài)零序電流關(guān)聯(lián)度數(shù)值相似度極高,即近似相等;

      (3)故障線路與非故障線路間暫態(tài)零序電流關(guān)聯(lián)度數(shù)值與任2條非故障線路間的暫態(tài)零序電流關(guān)聯(lián)度數(shù)值相似度差,即不相等。

      由此,式(13)中具備如下關(guān)系其中,rbn表示任意2個非故障線路之間的關(guān)聯(lián)度;rab表示1條故障線與1條非故障線之間的關(guān)聯(lián)度。當(dāng)小電流接地系統(tǒng)的分支線路數(shù)n確定時,影響式(14)結(jié)果的僅有2個變量rbn和rba,由上述設(shè)定可知,rbn和rab的值不隨n和b的變化而變化,故可得各條非故障線路的平均關(guān)聯(lián)度的大小與b無關(guān)。

      因此,各分支線路的平均關(guān)聯(lián)度具有以下關(guān)系

      由此,根據(jù)式(12),可得

      (1)故障線路的平均關(guān)聯(lián)度差值之和為

      (2)非故障線路的平均關(guān)聯(lián)度差值之和為

      因此,故障線路與非故障線路的平均關(guān)聯(lián)度差值之和滿足如下關(guān)系

      式中,0≤a,b≤n。

      為量化各線路的固有特性,本文提出線路基準(zhǔn)值概念,定義:將分支線路i的平均關(guān)聯(lián)度差值和與其他分支線路平均關(guān)聯(lián)度差值和的比值稱之為線路i的基準(zhǔn)值,其計算式如下

      上述基準(zhǔn)值只與線路分支數(shù)n有關(guān),因此,只要知道小電流接地系統(tǒng)中的線路條數(shù),即可求得表征故障線路與非故障線路物理特征的基準(zhǔn)值Ja,Jb。

      4 故障選線機(jī)制及流程

      4.1 選線機(jī)制

      為分析分支線路的屬性及其動態(tài)特征,本文提出線路特征值和區(qū)間域的概念。

      (1)特征值。將各分支線路衰減正弦量原子gi(t),gj(t)對應(yīng)的平均關(guān)聯(lián)度差值和之比定義為線路特征值Ti。具體的求解如圖3所示。

      圖3 特征值Ti的求解Fig.3 Calculation of proper value Ti

      (2)區(qū)間域。將在水平數(shù)軸上屬于基準(zhǔn)值Ja,Jb的所有特征值的集合分別定義為Ja,Jb的區(qū)間域,也即故障線與非故障線區(qū)間域。以線路n=3,4為例,由式(16),(17)可得:當(dāng)n=3時,Ja=4,Jb=1.5;當(dāng)n=4時,Ja=9,Jb=2.33,則各自的區(qū)間域如圖4所示。

      圖4 區(qū)間域Fig.4 Interval domain

      如圖4所示,若所求分支線路特征值Ti的數(shù)值落于故障線路基準(zhǔn)值Ja的區(qū)間域,則判定第i條分支線路具備故障線路屬性,反之,則具備非故障線路屬性。

      另外,隨著小電流接地系統(tǒng)中分支線路數(shù)的增多,故障線與非故障線區(qū)間域總體覆蓋范圍Δ顯著增大,如圖4所示:當(dāng)n=3時,總體覆蓋范圍:Δ=(4-1.5)×2=5;當(dāng)n=4時,總體覆蓋范圍:Δ=(9-2.33)×2=13.34,反映在實際的故障選線系統(tǒng)中,總體覆蓋范圍的增大,使得所求得的特征值Ti落在各自基準(zhǔn)值Ja,Jb區(qū)間域的概率大大增加,更利于實現(xiàn)準(zhǔn)確選線,也即,隨著小電流接地系統(tǒng)中分支線路數(shù)的增多,該選線方法更有利于準(zhǔn)確選線。

      歐氏距離可度量分類對象之間的接近與相似程度。在此,為分析各條分支線路的特征值與基準(zhǔn)值之間的關(guān)系,將Ti與Ja,Jb分別求歐氏距離,具體計算為

      式中,Via,Vib分別為第i條線路的特征值Ti與線路基準(zhǔn)值Ja,Jb之間的歐氏距離。

      實際應(yīng)用中,通過比較Via和Vib的大小以實現(xiàn)故障線路的精確判斷,具體如下:若Via<Vib,則Ti落到了Ja的區(qū)間域,由此判定第i條線路為故障線路;若Via≥Vib,則Ti落到了Jb的區(qū)間域,判定第i條線路為非故障線路。

      4.2 選線步驟及流程

      為實現(xiàn)小電流接地系統(tǒng)的故障選線,本文方法的具體步驟如下。

      (1)當(dāng)系統(tǒng)零序電壓大于0.15倍的母線額定電壓時,分別檢測TV與消弧線圈是否發(fā)生斷線與串聯(lián)諧振,若TV未發(fā)生斷線,且消弧線圈也未發(fā)生串聯(lián)諧振,則判定小電流接地系統(tǒng)發(fā)生故障,同時啟動采樣裝置,記錄各分支線路故障發(fā)生時刻起首個1/4周期內(nèi)的暫態(tài)零序電流信號。

      (2)根據(jù)當(dāng)前小電流接地系統(tǒng)分支線路數(shù)目,計算故障線與非故障線的線路基準(zhǔn)值Ja,Jb。

      (3)以Gabor原子庫為索引,利用MP算法對各分支線路的暫態(tài)零序電流進(jìn)行時頻原子分解,獲得各分支線路對應(yīng)的最優(yōu)4參變量(s,τ,ξ,φ)和最佳原子gγ。

      (4)利用4參變量(s,τ,ξ,φ)和gγ確定暫態(tài)零序電流衰減正弦量原子參數(shù),進(jìn)而求得該小電流接地系統(tǒng)中第i條線路與其余n-1條線路的衰減正弦量原子關(guān)聯(lián)度rij。

      (5)由衰減正弦量原子關(guān)聯(lián)度rij,求得小電流接地系統(tǒng)的線路關(guān)聯(lián)度矩陣R,進(jìn)而求得分支線路的特征值Ti。

      (6)求出各分支線路的2個歐氏距離Via和Vib,并比較大小。若Via<Vib,判定第i條分支線路為故障線路,選線結(jié)束;若Via≥Vib,判定第i條分支線路為非故障線路,繼續(xù)檢測下一條線路。

      (7)當(dāng)所有分支線路均被判定為非故障線路時,則可判定母線發(fā)生故障。

      具體的選線流程如圖5所示。

      5 算例分析

      圖5 選線流程Fig.5 Flow chart of line selection

      線路S1,S2為架空線路,線度長度分別為13.5, 24.0 km,線路正序參數(shù)為R1=0.17 Ω/km,L1= 1.2 mH/km,C1=9.697 nF/km,零序參數(shù)為R0= 0.23 Ω/km,L0=5.48 mH/km,C0=6 nF/km。線路S4為電纜線路,長度10 km,線路正序參數(shù)為R1= 0.193 Ω/km,L1=0.442 mH/km,C1=143 nF/km;零序參數(shù)為R0=1.93 Ω/km,L0=5.48 mH/km,C0= 143 nF/km。線路3為纜線混合線路,其中電纜線長度為5 km,架空線路長度為12 km;消弧線圈L的過補(bǔ)償度為10%,消弧線圈的電感值經(jīng)計算為1.574 H。

      其中,消弧線圈的電阻值取電抗值的10%,經(jīng)計算為48.576 Ω。仿真模型如圖6所示。

      以線路S1發(fā)生單相接地故障,初相角0°,接地電阻Rf=5 Ω的情況為例進(jìn)行分析。采樣頻率f= 105Hz,仿真時長0.06 s,故障發(fā)生時刻設(shè)定為0.02~0.04 s。

      圖6 中性點(diǎn)經(jīng)消弧線圈接地系統(tǒng)故障仿真Fig.6 Fault simulation of the neutral point arc suppression coil

      5.1 衰減正弦量原子參數(shù)計算

      根據(jù)所述方法,當(dāng)S1發(fā)生故障時,利用Gabor原子庫分別求出各分支線路暫態(tài)零序電流的最優(yōu)4參變量(s,τ,ξ,φ)以及最佳原子波形分別如表1及圖7所示。

      表1 分支線路的最優(yōu)4參變量Table 1 The optimal 4 parameters of branch lines

      圖7 各條線路暫態(tài)零序電流最佳原子Fig.7 Best atoms of transient zero sequence current

      由表1數(shù)據(jù)可求出衰減正弦量原子的參數(shù)。由前文可知,衰減正弦量原子共需確定6個參數(shù)(Aq, fq,αq,φq,ms,me),其中,所需的頻率因子fq和相位因子φq與經(jīng)Gabor原子庫分解后得到ξ和φ大小相等。另外,開始與終止的采樣時刻可根據(jù)總的采樣點(diǎn)數(shù)與采樣頻率計算得出。故只需計算衰減正弦量原子參數(shù)中的幅值A(chǔ)q及衰減因子αq。

      由圖7可知,各分支線路暫態(tài)零序電流的最佳原子具有衰減特性,故采用求衰減系數(shù)αq,同時,求得暫態(tài)零序電流衰減正弦量原子的最大模值A(chǔ)q。所得暫態(tài)零序電流衰減正弦量原子的參數(shù)見表2。

      表2 暫態(tài)零序電流衰減正弦量原子參數(shù)Table 2 The decay sinusoidal atom parameters of transient zero sequence current

      根據(jù)表2數(shù)據(jù),可構(gòu)建初相角0°,接地電阻5 Ω,線路S1發(fā)生故障時,各分支線路的衰減正弦量原子表達(dá)式為

      5.2 特征值求解

      對式(20)中的每條分支線路的衰減正弦量原子求導(dǎo),并利用式(10)求出第i條線路與第j條線路之間的關(guān)聯(lián)度rij,以此為基礎(chǔ),求得算例中各線路間的衰減正弦量原子關(guān)聯(lián)度矩陣R為

      由于算例中具有4條分支線路,即n=4,故由式(16),(17)可知:故障線路與非故障線路的基準(zhǔn)值分別為:Ja=9,Jb=2.33。

      利用式(18),(19)分別計算歐氏距離Via和Vib并比較其大小。當(dāng)Via<Vib時,判定第i條線路為故障線路;當(dāng)Via≥Vib時,判定第i條線路為非故障線路。所得結(jié)果見表3。

      表3 線路S1故障時選線結(jié)果Table 3 Selection results of line S1fault

      由表3可知,判定結(jié)果準(zhǔn)確。為全面驗證本文方法的正確性,在不同線路,不同故障初相角及接地電阻值的情況發(fā)生故障,所得各條分支線路的特征值見表4。

      表4 架空線路S1,S3,S4和母線故障Table 4 Overhead line S1,S3,S4and bus fault

      限于篇幅,以表4中S1的數(shù)據(jù)為例,求得4條分支線路在不同故障情況下的歐氏距離Via與Vib,在此,為表述方便,取縱坐標(biāo)為Via-Vib,則分析結(jié)果如圖8所示。

      圖8 架空線路S1故障時V1a與V1b關(guān)系Fig.8 The relation of V1aand V1bin overhead line S1fault

      觀察圖8可知,在不同故障條件下,線路S1的V1a-V1b<0恒成立,即V1a<V1b成立,故可判定S1為故障線路。線路S2,S3,S4的Via-Vib>0(i=2,3, 4)恒成立,即Via>Vib成立,可判定S2,S3,S4為非故障線路。同理,對表4中S3,S4的數(shù)據(jù)做同樣處理,也可準(zhǔn)確地判定出故障發(fā)生的線路。對于母線故障而言,表4所求得的歐氏距離均滿足:Via-Vib≥0(i=1,2,3,4),由此,可判定出4條分支線路均為非故障線路,那么故障此時必發(fā)生在母線上,判定結(jié)果準(zhǔn)確。

      由上述分析可知,本文方法特別適合于分支線路數(shù)目較多的小電流接地系統(tǒng),當(dāng)分支線路數(shù)目大于3條以上時,能準(zhǔn)確判定出故障發(fā)生線路。

      6 結(jié) 論

      (1)將暫態(tài)零序電流經(jīng)TFAD算法分解,構(gòu)建出的衰減正弦量原子,能精確表征各分支線路的故障特征,較之其他算法,TFAD不僅能有效提取模態(tài)參數(shù),而且具備時間量定位功能,能夠處理非連續(xù)信號。

      (2)改進(jìn)GCA理論緊緊抓住了各分支線路間的暫態(tài)零序電流特征,通過推導(dǎo),本文得出了故障線與非故障線的基準(zhǔn)值,該數(shù)值只與線路數(shù)目有關(guān),計算簡便,并且隨著線路數(shù)的增多,其區(qū)間域總體覆蓋范圍增大,更利于準(zhǔn)確選線。

      (3)歐式距離的大小可有效衡量兩個數(shù)值之間的相似程度,距離越近就越相似,通過歐式距離大小的判斷,可較好地實現(xiàn)故障線與非故障線的有效分類,歐式距離的求解,計算量小,便于在實際的選線裝置中進(jìn)行應(yīng)用。

      [1] 張 鈞,何正友,賈 勇.基于S變換的故障選線新方法[J].中國電機(jī)工程學(xué)報,2011,31(10):109-155.

      Zhang Jun,He Zhengyou,Jia Yong.Fault line identification approach based on S-transform[J].Proceedings of the CSEE,2011,31(10): 109-155.

      [2] 楊德昌,C Rehtanz,李 勇.基于改進(jìn)希爾伯特-黃變換算法的電力系統(tǒng)低頻振蕩分析[J].中國電機(jī)工程學(xué)報,2011,30(10): 102-108.

      Yang Dechang,C Rehtanz,Li Yong.Researching on low frequency oscillation in power system based on improved HHT algorithm[J].Proceedings of the CSEE,2011,30(10):102-108.

      [3] 王曉衛(wèi),吳繼維,李然月.基于Prony相對熵的故障投票選線新方法[J].中國電力,2013,46(1):59-65.

      Wang Xiaowei,Wu Jiwei,Li Ranyue.A novel method of fault selection based on voting mechanism of prony relative entropy theroy[J].Electric Power,2013,46(1):59-65.

      [4] 杜延輝.多重分形和小波理論在小電流接地系統(tǒng)單相接地故障選線中的應(yīng)用研究[D].成都:西南交通大學(xué),2008.

      [5] 張淑清,翟欣沛,董 璇.EMD及Duffing振子在小電流系統(tǒng)故障選線方法中的應(yīng)用[J].中國電機(jī)工程學(xué)報,2013,33(10): 161-167.

      Zhang Shuqing,Zhai Xinpei,Dong Xuan.Application of EMD and duffing oscillator to fault line detection in un-effectively grounded system[J].Proceedings of the CSEE,2013,33(10):161-167.

      [6] 郭壯志,陳 波,劉燦萍.基于遺傳算法的配電網(wǎng)故障定位[J].電網(wǎng)技術(shù),2007,31(11):87-92.

      Guo Zhuangzhi,Chen Bo,Liu Canping.Fault location of distribution network based on genetic algorithm[J].Power System Technology,2007,31(11):87-92.

      [7] 林 圣,何正友,臧天磊.基于粗神經(jīng)網(wǎng)絡(luò)的輸電線路故障分類方法[J].中國電機(jī)工程學(xué)報,2010,30(28):72-79.

      Lin Sheng,He Zhengyou,Zang Tianlei.Novel approach of fault type classification in transmission lines based on rough membership neural networks[J].Proceedings of the CSEE,2010,30(28):72-79.

      [8] 張全明,劉會金.最小二乘支持向量機(jī)在電能質(zhì)量擾動分類中的應(yīng)用[J].中國電機(jī)工程學(xué)報,2008,28(1):106-110.

      Zhang Quanming,Liu Huijin.Application of LS-SVM in classification of power quality disturbances[J].Proceedings of the CSEE, 2008,28(1):106-110.

      [9] 李 強(qiáng),徐建政.基于主觀貝葉斯方法的電力系統(tǒng)故障診斷[J].電力系統(tǒng)自動化,2007,31(15):46-49.

      Li Qiang,Xu Jianzheng.Secondary voltage control considering network transmission delays[J].Automation of Electric Power Systems, 2007,31(15):46-49.

      [10] 李天云,王 飛,祝 磊.基于固有模態(tài)能量熵的配電網(wǎng)單相接地故障選線新方法[J].電網(wǎng)技術(shù),2008,32(2):128-132.

      Li Tianyun,Wang Fei,Zhu Lei.A new method of distribution network single-phase ground fault line selection based on the intrinsic mode energy entropy[J].Power System Technology,2008, 32(2):128-132.

      [11] 束洪春,高 利,段銳敏.利用零序電流全量Hough變換的配電網(wǎng)故障選線方法[J].電力系統(tǒng)自動化,2013,37(9):1-7.

      Shu Hongchun,Gao Li,Duan Ruimin.A novel hough transform approach of fault line selection in distribution networks using the total zero-sequence current[J].Automation of Electric Power Systems, 2013,37(9):1-7.

      [12] Wu Xueming,Yu Dejie.Atomic decomposition method based on adaptive chirplet dictionary[J].Advances in Adaptive Data Analysis,2012,4(1):1-19.

      [13] Mallat Stephane,Zhang Zhifeng.Matching pursuit with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993,41(12):3397-3415.

      [14] Lisandro Lovisolo,Michel P Tcheou,Eduardo A B da Silva.Modeling of electric disturbance signals using damped sinusoids via atomic decompositions and its applications[A].EURASIP Journal on Advances in Signal Processing[C].2007:1-15.

      [15] Lisandro Lovisolo,Eduardo A B da Silva,Marco A M Rodrigues.Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids[J].IEEE Transactions on Signal Processing,2005,53(10):3831-3846.

      [16] 羅 毅,李昱龍.基于熵權(quán)法和灰色關(guān)聯(lián)分析的輸電網(wǎng)規(guī)劃方案綜合決策[J].電網(wǎng)技術(shù),2013,37(1):77-81.

      Luo Yi,Li Yulong.Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J].Power System Technology,2013,37(1):77-81.

      [17] 趙化時,姚李孝,柯麗芳.配電網(wǎng)選線和測距新方法研究[J].電力系統(tǒng)保護(hù)與控制,2010,38(16):6-10.

      Zhao Huashi,Yao Lixiao,Ke Lifang.A novel method for fault line selection and location in distribution system[J].Power System Protection and Control,2010,38(16):6-10.

      [18] Mark R McClure,Lawrence Carin.Matching pursuits with a wavebased dictionary[J].IEEE Transations on Signal Processing,1997, 45(12):2912-2926.

      [19] 賈清泉,于連富,董海艷.應(yīng)用原子分解的電能質(zhì)量擾動信號特征提取方法[J].電力系統(tǒng)自動化,2009,33(24):68-71.

      Jia Qingquan,Yu Lianfu,Dong Haiyan.Power quality disturbance features extraction based on atomic decomposition[J].Automation of Electric Power Systems,2009,33(24):68-71.

      [20] 朱 明,金煒東,胡來招.基于原子分解的輻射源信號二次特征提取[J].西南交通大學(xué)學(xué)報,2007,42(6):659-664.

      Zhu Ming,Jin Weidong,Hu Laizhao.Cascade feature extraction for radar emitter signals based on atomic decomposition[J].Journal of Southwest Jiao Tong University,2007,42(6):659-664.

      [21] 張大波.復(fù)小波變換在小電流單相接地故障選線中的應(yīng)用研究[D].成都:西南交通大學(xué),2007.

      [22] 李 勛,龔慶武,賈晶晶.基于原子稀疏分解的低頻振蕩模態(tài)參數(shù)辨識方法[J].電工技術(shù)學(xué)報,2012,27(9):124-133.

      Li Xun,Gong Qingwu,Jia Jingjing.Atomic sparse decomposition based identification method for low-frequency oscillation modal parameters[J].Transactions of China Electrotechnical Society,2012, 27(9):124-133.

      [23] 王 寧,李林川,賈清泉.應(yīng)用原子分解的電能質(zhì)量擾動信號分類方法[J].中國電機(jī)工程學(xué)報,2011,31(4):51-58.

      Wang Ning,Li Linchuan,Jia Qingquan.Classification of power quality disturbance signals using atomic decomposition method[J].Proceedings of the CSEE,2011,31(4):51-58.

      [24] 王 韶,朱姜峰.基于改進(jìn)相關(guān)性分析法的配電網(wǎng)絡(luò)單相接地故障選線[J].電力系統(tǒng)保護(hù)與控制,2012,40(15):76-81.

      Wang Shao,Zhu Jiangfeng.Faulty line selection of single-phase to ground fault in distribution network based on improved correlation analysis method[J].Power System Protection and Control,2012, 40(15):76-81.

      [25] 張慧芬,潘貞存,田質(zhì)廣.基于可辨識矩陣的單相接地故障選線新方法[J].中國電力,2006,39(11):33-36.

      Zhang Huifen,Pan Zhencun,Tian Zhiguang.Discernable matrix method based method for detecting single phase grounding feeder[J].Electric Power,2006,39(11):33-36.

      [26] 束洪春.電力工程信號處理應(yīng)用[M].北京:科學(xué)出版社,2009.

      A novel fault line selection method based on time-frequency atom decomposition and grey correlation analysis of small current to ground system

      WANG Xiao-wei,HOU Ya-xiao,TIAN Shu,LI Yu-dong,GAO Jie,WEI Xiang-xiang

      (School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China)

      This paper proposed a small current to ground fault line selection method with time-frequency atom and grey correlation analysis.Firstly,it calculated the base values of fault line and non-fault line based on the number of branch line of small current to ground system.Secondly,it used the matching pursuit method to decompose the transient zerosequence current of the first 1/4 cycle indexed by Gabor atom,and calculated the damped sinusoidal atoms of every branch line which expressed the characteristic of fault state.Thirdly,it used the theory of grey relational analysis to compute the correlation degree of every damped sinusoidal atom,and got the characteristic value of every branch line.Finally,it calculated the Euclidean distance value between the characteristic values and the base values of fault line and non-fault line,and compared the size of Euclidean distance values to achieve the fault line selection accurately.The method has a lower computational complexity,an accurate fault selection proved by a large number of simulations.It is especially suitable for the multi-branch lines of small current to ground system.

      matching pursuit;damped sinusoidal atom;grey correlation;Euclidean distance;interval domain

      TD611

      A

      0253-9993(2014)10-2147-10

      2013-10-18 責(zé)任編輯:許書閣

      國家自然科學(xué)基金資助項目(61403127);河南省教育廳科學(xué)技術(shù)研究重點(diǎn)資助項目(12B470002,14A470004)

      王曉衛(wèi)(1983—),男,陜西鳳翔人,講師,碩士。E-mail:proceedings@126.com

      王曉衛(wèi),侯雅曉,田 書,等.基于時頻原子灰色關(guān)聯(lián)的小電流接地故障選線方法[J].煤炭學(xué)報,2014,39(10):2147-2156.

      10.13225/j.cnki.jccs.2013.1493

      Wang Xiaowei,Hou Yaxiao,Tian Shu,et al.A novel fault line selection method based on time-frequency atom decomposition and grey correlation analysis of small current to ground system[J].Journal of China Coal Society,2014,39(10):2147-2156.doi:10.13225/j.cnki.jccs.2013.1493

      猜你喜歡
      選線暫態(tài)零序
      300Mvar空冷隱極同步調(diào)相機(jī)暫態(tài)特性仿真分析
      基于壓縮感知的電力系統(tǒng)故障選線研究
      電力系統(tǒng)全網(wǎng)一體化暫態(tài)仿真接口技術(shù)
      電子制作(2018年14期)2018-08-21 01:38:28
      除氧器暫態(tài)計算研究
      電子測試(2017年23期)2017-04-04 05:07:02
      6kV供電系統(tǒng)零序保護(hù)誤動作處理
      大電流接地系統(tǒng)接地故障時零序電壓分析
      小波變換在電力線路故障選線中的應(yīng)用
      基于強(qiáng)跟蹤濾波器的小電流接地系統(tǒng)故障選線
      近似熵在諧振接地系統(tǒng)故障選線中的應(yīng)用
      基于PSD-BPA的暫態(tài)穩(wěn)定控制批處理計算方法的實現(xiàn)
      碌曲县| 开原市| 吉隆县| 苗栗县| 滨海县| 潜江市| 昔阳县| 格尔木市| 承德县| 休宁县| 锡林郭勒盟| 南宁市| 潮州市| 迁西县| 大悟县| 鹿泉市| 宁都县| 汶川县| 饶河县| 三江| 明水县| 屏东县| 灵寿县| 额敏县| 万宁市| 纳雍县| 永昌县| 连平县| 兖州市| 益阳市| 长春市| 济南市| 龙山县| 镇沅| 江永县| 崇阳县| 大足县| 罗江县| 客服| 松潘县| 田阳县|