• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      誘導(dǎo)性多潛能干細(xì)胞研究進(jìn)展

      2014-07-05 10:23程騰賀小英馬利兵
      湖北農(nóng)業(yè)科學(xué) 2014年5期

      程騰 賀小英 馬利兵

      摘要:通過(guò)轉(zhuǎn)染特定的一個(gè)或多個(gè)基因?qū)⒁逊只捏w細(xì)胞誘導(dǎo)成為多潛能干細(xì)胞,這種干細(xì)胞稱為誘導(dǎo)性多潛能干細(xì)胞(Induced pluripotent stem cells,iPS cells)。近年來(lái)關(guān)于iPS細(xì)胞的研究取得了舉世矚目的成就,多種已分化的體細(xì)胞都可以誘導(dǎo)成為iPS細(xì)胞,而且可以進(jìn)一步將iPS細(xì)胞誘導(dǎo)成具有特定功能的細(xì)胞,稱為誘導(dǎo)性細(xì)胞。這些研究極大地促進(jìn)了細(xì)胞生物學(xué)、表觀遺傳學(xué)和發(fā)育生物學(xué)的研究,并且為人類再生醫(yī)學(xué)和特異的細(xì)胞治療帶來(lái)了更美好的希望。對(duì)iPS細(xì)胞和誘導(dǎo)性細(xì)胞的最新研究狀況進(jìn)行了綜述。

      關(guān)鍵詞:誘導(dǎo)性多潛能干細(xì)胞(iPS細(xì)胞);誘導(dǎo)性細(xì)胞;細(xì)胞治療

      中圖分類號(hào):Q813 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)05-0993-05

      將已分化的體細(xì)胞重編程為類胚胎干細(xì)胞樣細(xì)胞的技術(shù)完成于2006年。Takahashi等[1]通過(guò)外源表達(dá)一組選擇性的轉(zhuǎn)錄因子導(dǎo)入成體小鼠成纖維細(xì)胞,最終確定最少有4種轉(zhuǎn)錄基因組合——Oct4(也稱Pou5f1、Oct3/4)、Sox2、Klf4和c-Myc可將成纖維細(xì)胞重編程為誘導(dǎo)性多潛能干細(xì)胞(iPS細(xì)胞)。從此iPS細(xì)胞的研究開始成為干細(xì)胞研究領(lǐng)域的熱門,并且iPS細(xì)胞的來(lái)源也越來(lái)越廣泛。利用iPS細(xì)胞誘導(dǎo)技術(shù)將終末分化細(xì)胞先誘導(dǎo)成iPS細(xì)胞,再進(jìn)一步誘導(dǎo)成具有特定功能的細(xì)胞,如神經(jīng)細(xì)胞,心肌細(xì)胞等,稱為誘導(dǎo)性細(xì)胞。時(shí)至今日研究者已經(jīng)開始嘗將iPS細(xì)胞應(yīng)用于臨床治療。

      1 誘導(dǎo)性多潛能干細(xì)胞的研究進(jìn)展

      從iPS細(xì)胞誕生之日起,iPS細(xì)胞的研究就成為細(xì)胞研究領(lǐng)域的熱門。起初,研究者誘導(dǎo)iPS細(xì)胞時(shí),iPS細(xì)胞的誘導(dǎo)效率極低,而且他們用的是4個(gè)轉(zhuǎn)錄因子Oct4、Sox2、Klf4和c-Myc,其中c-Myc還具有一定的致癌作用。后來(lái)經(jīng)過(guò)科學(xué)家們的不斷嘗試,開始用小分子化合物、miRNA、mRNA或蛋白質(zhì)等導(dǎo)入細(xì)胞來(lái)誘導(dǎo)iPS細(xì)胞[1-6],轉(zhuǎn)錄因子的個(gè)數(shù)也從4個(gè)減少到1個(gè),甚至只用小分子化合物等物質(zhì)來(lái)誘導(dǎo)iPS細(xì)胞[7-9]。近年來(lái)iPS細(xì)胞研究取得了突破性進(jìn)展,如建立了人類疾病特異的iPS細(xì)胞,借助鋅指核酸酶和轉(zhuǎn)座子等介導(dǎo)的轉(zhuǎn)基因技術(shù)高效制備了無(wú)病毒的iPS細(xì)胞[10-13]。

      從2007年Takahashi 等[2]和Yu等[3]先后將人的體細(xì)胞重編程為iPS細(xì)胞開始,多種人類成體干細(xì)胞被重編程為誘導(dǎo)性多潛能干細(xì)胞,但是直到2013年Trokovic等[14]才將人類骨骼成肌細(xì)胞重編程為iPS細(xì)胞,他們通過(guò)逆轉(zhuǎn)錄病毒載體(圖1)或仙臺(tái)病毒載體介導(dǎo)目的基因的異位表達(dá),在無(wú)飼養(yǎng)層且含有適宜的培養(yǎng)基條件下,可以使人類骨骼成肌細(xì)胞達(dá)到和人類成纖維細(xì)胞一樣的重編程效率,再加入組蛋白脫乙酰酶抑制劑丙戊酸鈉(VPA)、丁酸鈉(NaB)和ALK4/5/7抑制劑SB431542(SB),能明顯提高人類骨骼成肌細(xì)胞重編程為iPS細(xì)胞的誘導(dǎo)效率。

      到目前為止,除了人之外,小鼠、大鼠、猴子、綿羊、豬的iPS細(xì)胞系均已建立[15-19]。

      iPS細(xì)胞研究的意義重大,它不僅為多潛能干細(xì)胞[20]的獲取提供了新的途徑,而且避免了傳統(tǒng)胚胎干細(xì)胞研究中存在的倫理問題,同時(shí)還解決了免疫排斥反應(yīng)問題,為細(xì)胞的體外培養(yǎng)和誘導(dǎo)提供了平臺(tái)(圖2),使人們?cè)诩?xì)胞和分子水平上研究人類多種疾病及其發(fā)病機(jī)理成為可能(圖3),也為相應(yīng)藥物的研發(fā)提供了便利。正是由于iPS細(xì)胞技術(shù)使得整個(gè)細(xì)胞生物學(xué)研究發(fā)生了質(zhì)的飛躍,所以Yamanaka榮獲了2012年的諾貝爾醫(yī)學(xué)獎(jiǎng)。當(dāng)然,目前iPS細(xì)胞的發(fā)生機(jī)制還不是十分明確,還有待深入了解,iPS細(xì)胞的誘導(dǎo)效率仍然很低,整個(gè)誘導(dǎo)過(guò)程相對(duì)繁瑣,費(fèi)用比較昂貴,達(dá)到商業(yè)化、大眾化應(yīng)用的地步還有些遙遠(yuǎn),這一切都有待進(jìn)一步研究和開發(fā)。

      2 誘導(dǎo)性細(xì)胞的研究進(jìn)展

      利用iPS細(xì)胞誘導(dǎo)技術(shù),通過(guò)導(dǎo)入特定的轉(zhuǎn)錄因子組合,再加入一些小分子化合物等物質(zhì),將終末分化細(xì)胞先誘導(dǎo)成iPS細(xì)胞,再進(jìn)一步誘導(dǎo)成具有特定功能的細(xì)胞,如神經(jīng)細(xì)胞、心肌細(xì)胞等,稱為誘導(dǎo)性細(xì)胞或誘導(dǎo)性功能細(xì)胞。到目前為止,已經(jīng)在多種具有重要功能的細(xì)胞上誘導(dǎo)成功[21-23]。

      2.1 誘導(dǎo)性造血和血管祖細(xì)胞

      Park等[21]在改進(jìn)的無(wú)飼養(yǎng)層的內(nèi)皮培養(yǎng)條件下,利用了一組重組生長(zhǎng)因子[骨形態(tài)發(fā)生蛋白4(BMP4)、血管內(nèi)皮生長(zhǎng)因子(VEGF)和纖維母細(xì)胞生長(zhǎng)因子2(FGF2)]的最適組合,然后在成分明確的內(nèi)皮細(xì)胞生長(zhǎng)培養(yǎng)基(EGM-2)中附著低密度培養(yǎng),用人類胚胎干細(xì)胞和人類誘導(dǎo)多潛能干細(xì)胞培育出大量的CD34+CD45+造血祖細(xì)胞(表1)。這些造血祖細(xì)胞出現(xiàn)在附著于內(nèi)皮或基質(zhì)的細(xì)胞層周圍,從某種意義上來(lái)說(shuō),這種方式與體內(nèi)胚胎生血內(nèi)皮的造血方式類似。雖然之前已經(jīng)證實(shí)由成纖維細(xì)胞衍生而來(lái)的hiPSC細(xì)胞系并不具備有效分化為造血內(nèi)皮的能力,但是這個(gè)培養(yǎng)體系能夠使hiPSC具有和hESC一樣分化為造血內(nèi)皮的能力。這個(gè)有效的分化體系可用于直接延時(shí)攝像和造血發(fā)生過(guò)程的時(shí)間進(jìn)程研究等。

      2.2 誘導(dǎo)性神經(jīng)細(xì)胞

      Kuo等[22]在由海藻酸和多聚γ-谷氨酸(γ-PGA)以及表面神經(jīng)生長(zhǎng)因子構(gòu)成的水凝膠中將iPS細(xì)胞誘導(dǎo)成神經(jīng)元。這種由海藻酸和多聚γ-谷氨酸(γ-PGA)以及表面神經(jīng)生長(zhǎng)因子構(gòu)成的水凝膠在整個(gè)誘導(dǎo)過(guò)程中發(fā)揮著重要作用,而孔隙結(jié)構(gòu)、孔隙度和溶脹比也有一定的影響。在這種水凝膠中,iPS細(xì)胞分化的形態(tài)學(xué)圖像(圖4)展示出神經(jīng)元的特點(diǎn)。在誘導(dǎo)iPS細(xì)胞向神經(jīng)元分化的過(guò)程中,表面神經(jīng)生長(zhǎng)因子可以增強(qiáng)β Ⅲ微管蛋白的表達(dá)強(qiáng)度而抑制SSEA-1的表達(dá)強(qiáng)度。iPS細(xì)胞在這種水凝膠中的分化可以通過(guò)SSEA-1和β Ⅲ微管蛋白的表面抗原免疫化學(xué)染色和掃描電子顯微鏡來(lái)觀察鑒定。

      2.3 誘導(dǎo)性心肌細(xì)胞

      Jiang等[23]使用從Oct4-GFP-C57小鼠身上獲得的心臟成纖維細(xì)胞(Cardiac fibroblasts,CFs)感染逆轉(zhuǎn)錄表達(dá)重組因子(Oct4、Sox2、Klf4和c-Myc)來(lái)誘導(dǎo)功能性心臟細(xì)胞(Cardiomyocytes,CMs)。以初代的小鼠胎兒成纖維細(xì)胞(MEFs)作為對(duì)照,試驗(yàn)發(fā)現(xiàn)由CFs衍生而來(lái)的iPS細(xì)胞(CF-iPS)與胚胎干細(xì)胞(EBs)及MEF衍生而來(lái)的iPS細(xì)胞(MEF-iPS)具有同樣的生理學(xué)特性。他們使用經(jīng)典擬胚體的方法和Transwell CM共培養(yǎng)體系來(lái)模擬心肌旁分泌微環(huán)境,進(jìn)而將CF-iPS向功能性心肌細(xì)胞誘導(dǎo)。在模擬的心肌旁分泌微環(huán)境中,CF-iPS自發(fā)地形成可以跳動(dòng)的EBs。這些分化而來(lái)的能夠自發(fā)跳動(dòng)的細(xì)胞可以表達(dá)心臟特有的組織特異性轉(zhuǎn)錄和結(jié)構(gòu)因素,而且顯示出典型的心肌形態(tài)學(xué)和電生理特征。

      當(dāng)然,除了上述誘導(dǎo)性造血和血管細(xì)胞、誘導(dǎo)性神經(jīng)細(xì)胞和誘導(dǎo)性心肌細(xì)胞外,還有其他的誘導(dǎo)性功能細(xì)胞也已經(jīng)被人們所發(fā)現(xiàn)并認(rèn)知。如Yamaguchi等[24]將小鼠的iPS細(xì)胞誘導(dǎo)成肥大細(xì)胞。

      3 展望

      iPS細(xì)胞自誕生之日起即受到人們的關(guān)注,iPS細(xì)胞的研究開創(chuàng)了細(xì)胞生物學(xué)的新篇章,也極大地促進(jìn)了表觀遺傳學(xué)和胚胎生物學(xué)的發(fā)展,為人類再生醫(yī)學(xué)和特異的細(xì)胞治療帶來(lái)了更美好的希望。

      如果供體細(xì)胞是來(lái)源于病人自身的體細(xì)胞,就可以避免免疫排斥反應(yīng)問題,將這些體細(xì)胞先誘導(dǎo)成iPS細(xì)胞,進(jìn)而再誘導(dǎo)成具有特定功能的目的細(xì)胞,理論上就可以用于臨床醫(yī)學(xué)和再生醫(yī)學(xué),這樣就有望實(shí)現(xiàn)個(gè)性化治療。然而,到目前為止,誘導(dǎo)性功能細(xì)胞的種類有限,誘導(dǎo)效率也有待提高,并且細(xì)胞的功能仍需要大量動(dòng)物模擬試驗(yàn)驗(yàn)證。

      目前,如何獲取更多的從終末分化細(xì)胞誘導(dǎo)而來(lái)的iPS細(xì)胞,并進(jìn)一步誘導(dǎo)成具有特定功能的細(xì)胞成為熱點(diǎn),對(duì)多種體細(xì)胞衍生的iPS細(xì)胞和多種新的培養(yǎng)誘導(dǎo)方法[25-28]也已經(jīng)進(jìn)行了嘗試。

      盡管這種誘導(dǎo)的功能性體細(xì)胞在將來(lái)可能具有較高的應(yīng)用價(jià)值,但是其中的詳細(xì)機(jī)理仍需要探索明確。相信在胚胎干細(xì)胞研究、iPS細(xì)胞研究、現(xiàn)代基因組學(xué)和RNA組學(xué)以及蛋白質(zhì)組學(xué)的發(fā)展和帶動(dòng)下,在不遠(yuǎn)的將來(lái),越來(lái)越多的誘導(dǎo)性功能細(xì)胞有望在臨床醫(yī)學(xué)和生物學(xué)基礎(chǔ)研究上發(fā)揮重要作用,從而加快再生醫(yī)學(xué)和動(dòng)物組織工程的發(fā)展,同時(shí),也能促進(jìn)發(fā)育生物學(xué)、表觀遺傳學(xué)和細(xì)胞生物學(xué)等基礎(chǔ)研究的發(fā)展。

      參考文獻(xiàn):

      [1] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.

      [2] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007,131(5):861-872.

      [3] YU J, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007,318(5858):1917-1920.

      [4] ZHAO Y, YIN X L, QIN H, et al. Two supporting factors greatly improve the efficiency of human iPSC generation[J]. Cell Stem Cell, 2008,3(5):475-479.

      [5] LI W, WEI W, ZHU S, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell, 2009,4(1):16-19.

      [6] ANOKYE-DANSO F, TRIVEDI C M, JUHR D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell,2011,8(4):376-388.

      [7] ZHOU H, WU S, JOO J Y, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009,4(5):381-384.

      [8] KIM D, KIM C H, MOON J I, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009,4(6):472-476.

      [9] WARREN L, MANOS P D, AHFELDT T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010,7(5):618-630.

      [10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

      [11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

      [12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

      [13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

      [14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

      [15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

      [16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

      [17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

      [18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

      [19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

      [20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

      [21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

      [22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

      [23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

      [24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

      [25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

      [26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

      [27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

      [28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.

      [10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

      [11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

      [12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

      [13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

      [14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

      [15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

      [16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

      [17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

      [18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

      [19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

      [20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

      [21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

      [22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

      [23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

      [24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

      [25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

      [26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

      [27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

      [28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.

      [10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

      [11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

      [12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

      [13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

      [14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

      [15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

      [16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

      [17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

      [18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

      [19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

      [20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

      [21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

      [22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

      [23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

      [24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

      [25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

      [26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

      [27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

      [28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.

      景洪市| 高淳县| 扎鲁特旗| 潞城市| 林西县| 盐池县| 上蔡县| 富裕县| 彩票| 黄浦区| 额敏县| 台前县| 永仁县| 湖南省| 仪陇县| 阳山县| 阳高县| 长泰县| 博野县| 城步| 保山市| 梅河口市| 盐源县| 宝坻区| 观塘区| 焦作市| 连城县| 晋城| 安溪县| 甘德县| 瑞安市| 沭阳县| 北京市| 光山县| 建瓯市| 榕江县| 湘阴县| 胶州市| 连州市| 克山县| 财经|