方福衣 陳星
摘 要: 在PCB板表面蝕刻不同尺寸的微帶單元結(jié)構(gòu),構(gòu)建非均勻特異媒質(zhì)層,并將其放置在天線輻射單元前方,利用非均勻特異媒質(zhì)層對(duì)電磁波不同的反射系數(shù),實(shí)現(xiàn)對(duì)天線輻射波束的賦形。設(shè)計(jì)了由不同尺寸正方形貼片組成的非均勻特異媒質(zhì)層,并放置于工作頻率為5.8 GHz的矩形貼片天線前方。仿真和測(cè)試表明:該非均勻特異媒質(zhì)層能夠在基本保持貼片天線工作頻點(diǎn)和回波損耗曲線不變條件下,通過(guò)調(diào)整與貼片天線距離,實(shí)現(xiàn)輻射波束由筆形波束向?qū)捊遣ㄊ婉R鞍形波束的賦形轉(zhuǎn)換。為賦形天線設(shè)計(jì)提供了一種有效的新方法。
關(guān)鍵詞: 特異媒質(zhì); 寬角賦形天線; 馬鞍形賦形天線; 回波損耗
中圖分類號(hào): TN820.1?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)11?0096?05
Abstract: The non?uniform metamaterial layers are built by engraving microstrip units with different size on the surface of PCBs. Through placing a proposed metamaterial layer in front an antenna and making use of the spatial varying reflection coefficient of the non?uniform metamaterial layer for the electromagnetic wave, the radiation pattern of the antenna can be shaped. In this paper, a proposed layer consisted of square patches with different size is designed and then placed in front of a rectangular patch antenna working at a frequency of 5.8 GHz. Both simulation and measurement show that the non?uniform metamaterial layer is able to realize the conversion of the antennas radiation pattern from a pencil? shaped beam to a wide beam pattern or a saddle?shaped beam, through adjusting the distance between the patch antenna and the metamaterial layer, while the antennas working frequency and return loss curve almost remain unchanged. The research result provided a new method for the design of the shaped beam antenna.
Keywords: metamaterial; wide shaped beam antenna; saddle?shaped antenna; return loss
0 引 言
隨著無(wú)線通信、雷達(dá)和遙感遙測(cè)等科技的發(fā)展,對(duì)天線的性能要求越來(lái)越高,許多應(yīng)用領(lǐng)域要求對(duì)天線波束進(jìn)行賦形,即賦形天線[1]。衛(wèi)星通信、通信基站、雷達(dá)、遙感遙測(cè)、飛行器通信等領(lǐng)域都廣泛應(yīng)用著各種賦形天線。例如,寬角波束賦形天線,其輻射方向圖的主瓣空間角大,可以實(shí)現(xiàn)大范圍的波束信號(hào)覆蓋,飛行器遙控系統(tǒng)天線,我國(guó)的北斗雙星定位系統(tǒng)天線,美國(guó)的GPS系統(tǒng)天線均需要使用這種寬角波束天線[2]。在衛(wèi)星對(duì)地通信、空對(duì)地雷達(dá)搜索等應(yīng)用中,考慮到地球表面的曲線影響,天線主波束邊緣和中央軸向與地面之間有較大距離差,馬鞍形波束賦形天線能夠補(bǔ)償?shù)降孛娴木嚯x不同引起的損耗差異[3?4],實(shí)現(xiàn)整個(gè)主波束對(duì)地面的均勻電磁照射。
傳統(tǒng)的賦形天線設(shè)計(jì)方法一般可以分為:反射面賦形[5]和陣列賦形[6]。反射面賦形,通過(guò)加載反射面,對(duì)饋源發(fā)出的電磁波進(jìn)行反射疊加在遠(yuǎn)場(chǎng)形成合適的方向圖,反射面賦形可以是多饋源元天線,也可以是單饋源的天線。多饋源反射面賦形,一方面可以通調(diào)節(jié)饋源激勵(lì)幅度和激勵(lì)相位,另一方面還可以調(diào)節(jié)反射板的形狀、大小、放置位置來(lái)對(duì)天線方向圖進(jìn)行賦形,這樣大大增加了賦形的靈活度,能夠完成對(duì)復(fù)雜方向圖的賦形。但天線系統(tǒng)的大量開(kāi)銷將花費(fèi)在設(shè)計(jì)和調(diào)整波束形成網(wǎng)絡(luò)上,并且復(fù)雜的波束形成網(wǎng)絡(luò)會(huì)引起射頻損耗降低天線系統(tǒng)的增益[7]。單饋源反射面賦形克服了多饋源賦形損耗大的缺點(diǎn),結(jié)構(gòu)也相對(duì)簡(jiǎn)單,但是賦形能力有限[8]。陣列賦形屬于陣列天線方向圖綜合的范疇,是利用饋電功分網(wǎng)絡(luò),通過(guò)調(diào)整陣元的激勵(lì)幅度,激勵(lì)相位,或者調(diào)整陣元之間的間隙來(lái)改變天線輻射方向圖。傳統(tǒng)的陣列賦形方法例如:切比雪夫多項(xiàng)式法,傅里葉變換法,泰勒法,伍德沃德法,這些方法很難完成對(duì)復(fù)雜方向圖的綜合[9]。賦形饋電網(wǎng)絡(luò)射頻損耗也比較大,綜合時(shí)候未考慮單元之間的互耦,精度相對(duì)較低。但與反射器賦形天線,因?yàn)椴恍枰胖梅瓷浒澹蚨Y(jié)構(gòu)輕巧,便于安裝和使用。
特異媒質(zhì)(Metamaterials)是指具有天然材料所不具備的超常物理性質(zhì)的人工復(fù)合結(jié)構(gòu)或復(fù)合材料,它具有任意的(甚至是負(fù)數(shù))的介電常數(shù)和磁導(dǎo)率[10]。例如具有負(fù)介電常數(shù)和負(fù)磁導(dǎo)率的左手材料,還有頻率選擇表面(Frequency Selective Surface, FSS)、高阻表面(High Impedance Surface)等。特異媒質(zhì)的獨(dú)特電磁特異已廣泛應(yīng)用于天線設(shè)計(jì)中,例如提高天線增益[11?13]、拓展天線帶寬[14?16]等。
本文研究將特異媒質(zhì)應(yīng)用于賦形天線的設(shè)計(jì),采用在PCB板表面蝕刻微帶單元結(jié)構(gòu)來(lái)構(gòu)建特異媒質(zhì)層,并放置在天線前方,在保持天線阻抗匹配特性基本不變的條件下實(shí)現(xiàn)天線波束的賦形。但迥異于通常的特異媒質(zhì)采用周期性單元結(jié)構(gòu),本文中特異媒質(zhì)層中微帶單元具有不同尺寸,為非均勻單元結(jié)構(gòu)。利用非均勻單元對(duì)電磁波不同的反射系數(shù)實(shí)現(xiàn)波束賦形,通過(guò)調(diào)節(jié)特異媒質(zhì)層和輻射天線之間距離,一種非均勻特異媒質(zhì)層能夠?qū)崿F(xiàn)寬角波束和馬鞍形波束等不同賦形。
1 賦形天線設(shè)計(jì)
1.1 微帶貼片天線設(shè)計(jì)
圖1(a)所示的矩形貼片天線采用同軸頂饋的饋電方式,工作頻點(diǎn)為5.8 GHz,制作在介電常數(shù)為2.65,尺寸為[W]=[L]=82 mm和厚度[h]=1 mm的PCB板上。該天線其他結(jié)構(gòu)參數(shù)為:[Lx]=21 mm,[Ly]=15 mm,[d]=4.2 mm。圖1(b)為該天線的加工實(shí)物圖。
圖2和圖3為該貼片天線的CST軟件仿真和實(shí)驗(yàn)測(cè)試的回波損耗曲線和5.8 GHz方向圖,可以看出仿真和測(cè)試吻合良好,該天線方向圖為典型的貼片天線所具有的筆形波束。
1.2 非均勻特異媒質(zhì)設(shè)計(jì)
賦形天線是在以上設(shè)計(jì)的微帶貼片天線的基礎(chǔ)上,通過(guò)加載非均勻特異媒質(zhì)層來(lái)達(dá)到賦形的作用,在天線的工作頻點(diǎn)基本不偏移和[S11]不惡化的前提下,實(shí)現(xiàn)筆形波束向?qū)捊遣ㄊ婉R鞍形波束的賦形轉(zhuǎn)變。
如圖4(a)所示,非均勻特異媒質(zhì)層是在PCB板上印刷不同大小矩形金屬貼片構(gòu)建而成,特異媒質(zhì)層與矩形貼片天線之間為空氣層,兩層之間間距為[dis,]采用聚四氟乙烯柱進(jìn)行支撐和隔離。特異媒質(zhì)層PCB介質(zhì)基板介電常數(shù)為2.65,厚度為0.5 mm。本文設(shè)計(jì)的特異媒質(zhì)層由四種大小不一的單元,命名為:[A1,][A2,][A3,][A4。]這些單元按照一定規(guī)律排列組成:在[x]和[y]軸方向,即[A1,][A2,][A3]單元正方形金屬貼片邊長(zhǎng)分別為[L1]、[L2]、[L3],與相鄰單元貼片的中心距離為[d1],其他方向四個(gè)貼片,即[A4]距離中心貼片即[A1]單元的距離為[d2],邊長(zhǎng)為[L4。]其中[L2=rL1,][L3=rL2,][L4=2rL1,][d2=2d1,][r]為比例因子。特異媒質(zhì)層的結(jié)構(gòu)參數(shù)值為:[L1]=4 mm,[d1]=14 mm,[r]=1.2。圖4(b)為安裝了非均勻特異媒質(zhì)層的賦形天線照片。
1.3 寬角波束賦形天線設(shè)計(jì)
當(dāng)貼片天線和特異媒質(zhì)層的距離[dis]=7.3 mm時(shí),該天線呈現(xiàn)為一種寬角波束賦形天線。圖5和圖6對(duì)比了加載和未加載特異媒質(zhì)層的天線[S11]實(shí)測(cè)曲線和實(shí)測(cè)輻射方向圖??梢郧宄乜闯觯虞d特異媒質(zhì)層后,天線工作頻點(diǎn)和[S11]曲線變化很小,基本保持不變。而天線方向圖變化明顯,天線增益由7.2 dBi下降為6.2 dBi,天線的波束半功率角顯著加寬,E面半功率角達(dá)到了139°,比未加載特異媒質(zhì)層的貼片天線提高了37°,H面半功率角達(dá)到了140°,提高了62°,天線方向圖由未加載前的筆形波束賦形為寬角波束。
1.4 馬鞍形波束賦形天線設(shè)計(jì)
當(dāng)貼片天線和特異媒質(zhì)層的距離[dis]=15 mm時(shí),該天線呈現(xiàn)為一種馬鞍形波束賦形天線,這可以從圖7和圖8的天線[S11]曲線和方向圖的實(shí)測(cè)數(shù)據(jù)中清楚地看出。對(duì)馬鞍形波束賦形天線,天線工作頻點(diǎn)(5.8 GHz)和[S11]曲線仍基本保持不變,而天線方向圖形狀為中央軸向增益低(-2 dBi),主波束邊緣增益高(6.9 dBi),最大增益出現(xiàn)在[±45°]方向上,為明顯的馬鞍形狀。
2 分 析
本文構(gòu)造的非均勻特異媒質(zhì)層上有4種大小不一致的單元,如圖4(a)所示,分別命名為[A1,][A2,][A3,][A4。]利用電磁仿真軟件和波導(dǎo)法[17]能夠計(jì)算得到這些單元的反射系數(shù),見(jiàn)表1??梢钥吹?,非均勻特異媒質(zhì)層上4種單元對(duì)電磁波有不一樣的反射系數(shù)。
利用特異媒質(zhì)層來(lái)設(shè)計(jì)寬角賦形天線和馬鞍形賦形天線,它們的實(shí)現(xiàn)方式是相似的:既要消減矩形貼片天線主輻射方向的增益,又要填補(bǔ)四周輻射方向上較小的增益。其原理可以利用非均勻特異媒質(zhì)層上單元對(duì)電磁波的不同反射系數(shù),改變天線電磁近場(chǎng)分布,進(jìn)而改變天線的遠(yuǎn)場(chǎng)方向圖。由于特異媒質(zhì)層對(duì)天線近場(chǎng)的影響與特異媒質(zhì)層和輻射天線之間距離有關(guān),因此可以利用同一特異媒質(zhì)層,通過(guò)調(diào)節(jié)距離值實(shí)現(xiàn)這兩種賦形效果。圖9的仿真結(jié)果可以清楚地看到特異媒質(zhì)層造成天線近場(chǎng)(電場(chǎng)強(qiáng)度分布)的明顯變化,中央軸向上的輻射場(chǎng)強(qiáng)被減弱,而對(duì)應(yīng)原筆狀波束邊緣方向上的輻射場(chǎng)強(qiáng)被明顯地加強(qiáng)。
3 結(jié) 語(yǔ)
賦形天線是一類在諸多領(lǐng)域應(yīng)用廣泛的天線類型,本文提出了一種新的賦形天線設(shè)計(jì)方法:設(shè)計(jì)微帶結(jié)構(gòu)的非均勻特異媒質(zhì)層,加載在天線前方,利用特異媒質(zhì)層中大小不同單元對(duì)電磁波不同的反射系數(shù),改變輻射天線的近場(chǎng)分布,進(jìn)而改變天線遠(yuǎn)場(chǎng)方向圖,實(shí)現(xiàn)波束賦形。作為典型例,本文設(shè)計(jì)了由大小不同的正方形貼片組成的非均勻特異媒質(zhì)層,并成功地實(shí)現(xiàn)了對(duì)一種矩形貼片天線的波束賦形,將矩形貼片天線的筆形波束賦形為寬角波束和馬鞍形波束。
值得指出的是,仿真計(jì)算和實(shí)驗(yàn)測(cè)試都表明,本文設(shè)計(jì)的非均勻特異媒質(zhì)層能夠在基本不影響矩形貼片的工作頻點(diǎn)和回波損耗曲線的前提下實(shí)現(xiàn)波束賦形,并且可以通過(guò)簡(jiǎn)單地調(diào)整特異媒質(zhì)層與貼片天線之間距離來(lái)實(shí)現(xiàn)寬角和馬鞍形兩種不同的波束賦形。該賦形能力是傳統(tǒng)賦形天線設(shè)計(jì)方法不具備,因此本文提出的賦形天線設(shè)計(jì)新方法不僅具有新穎性,同時(shí)有強(qiáng)大的賦形天線設(shè)計(jì)能力,在賦形天線的工程設(shè)計(jì)中具有廣闊的推廣應(yīng)用前景。
參考文獻(xiàn)
[1] 李浩.陣列天線波束賦形研究[D].西安:西北工業(yè)大學(xué),2004.
[2] SU C W, HUANG S K, LEE C H. CP microstrip antenna with wide beamwidth for GPS band application [J]. Electronics Letters, 2007, 43(20): 1062?1063.
[3] MINATTI G, MACI S, DE VITA P, et al. A metasurface isoflux antenna and potential beam reconfigurability [C]// Procee?dings of 2012 6th European Conference on Antennas and Pro?pagation (EUCAP). [S.l.]: IEEE, 2012: 2613?2617.
[4] 賈鉑奇.陣列天線多波束賦形技術(shù)研究[D].上海:中國(guó)科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所),2007.
[5] RUSCH W. The current state of the reflector antenna art [J]. IEEE Transactions on Antennas and Propagation, 1984, 32(4): 313?329.
[6] CHERRETTE A, CHANG D. Phased array contour beam sha?ping by phase optimization [C]// Proceedings of Antennas and Propagation Society 1985 International Symposium. Vancouver, Canada: Antennas and Propagation Society, 1985, 23: 475?478.
[7] 謝蘇隆,鐘鷹.賦形天線研究[J].微型機(jī)與應(yīng)用,2010,29(10):1?4.
[8] 孫雷洪,郭文嘉.單饋源賦形反射面天線研究[J].空間電子技術(shù),1995(2):27?37.
[9] STUTZMAN W L.天線理論與設(shè)計(jì)[M].朱守正,譯.北京:人民郵電出版社,2006.
[10] 孫樹(shù)林.電磁特異介質(zhì)若干理論問(wèn)題研究[D].上海:復(fù)旦大學(xué), 2009.
[11] LEE Y J, PARK W S, YEO J, et al. Directivity enhancement of printed antennas using a class of metamaterial superstrate [J]. Electromagnetics, 2006, 26(3/4): 203?218.
[12] LIN H H, WU C Y, YEH S H. Metamaterial enhanced high gain antenna for WiMAX application [C]// TENCON 2007 IEEE Region 10 Conference. Taipei, China: IEEE, 2007: 1?3.
[13] LIU H N, SU H L, LIN K H, et al. Design of antenna radome composed of metamaterials for high gain [C]// IEEE 2006 Antennas and Propagation Society International Symposium. [S.l.]: Antennas and Propagation Society, 2006: 19?22.
[14] LEE J, LIM S. Bandwidth?enhanced and polarisation?insensitive metamaterial absorber using double resonance [J]. Electronics letters, 2011, 47(1): 8?9.
[15] YANG R, XIE Y, LI D, et al. Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates [J]. Journal of Electromagnetic waves and Applications, 2007, 21(15): 2321?2330.
[16] JI J K, KIM G H, SEONG W M. Bandwidth enhancement of metamaterial antennas based on composite right/left?handed transmission line [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 36?39.
[17] BOUGHRIET A H, LEGRAND C, CHAPOTON A. Noniterative stable transmission/reflection method for low?loss material complex permittivity determination [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(1): 52?57.
[18] 鐘順時(shí).微帶天線理論與應(yīng)用[M].西安:西安電子科技大學(xué)出版社,1991.
[3] MINATTI G, MACI S, DE VITA P, et al. A metasurface isoflux antenna and potential beam reconfigurability [C]// Procee?dings of 2012 6th European Conference on Antennas and Pro?pagation (EUCAP). [S.l.]: IEEE, 2012: 2613?2617.
[4] 賈鉑奇.陣列天線多波束賦形技術(shù)研究[D].上海:中國(guó)科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所),2007.
[5] RUSCH W. The current state of the reflector antenna art [J]. IEEE Transactions on Antennas and Propagation, 1984, 32(4): 313?329.
[6] CHERRETTE A, CHANG D. Phased array contour beam sha?ping by phase optimization [C]// Proceedings of Antennas and Propagation Society 1985 International Symposium. Vancouver, Canada: Antennas and Propagation Society, 1985, 23: 475?478.
[7] 謝蘇隆,鐘鷹.賦形天線研究[J].微型機(jī)與應(yīng)用,2010,29(10):1?4.
[8] 孫雷洪,郭文嘉.單饋源賦形反射面天線研究[J].空間電子技術(shù),1995(2):27?37.
[9] STUTZMAN W L.天線理論與設(shè)計(jì)[M].朱守正,譯.北京:人民郵電出版社,2006.
[10] 孫樹(shù)林.電磁特異介質(zhì)若干理論問(wèn)題研究[D].上海:復(fù)旦大學(xué), 2009.
[11] LEE Y J, PARK W S, YEO J, et al. Directivity enhancement of printed antennas using a class of metamaterial superstrate [J]. Electromagnetics, 2006, 26(3/4): 203?218.
[12] LIN H H, WU C Y, YEH S H. Metamaterial enhanced high gain antenna for WiMAX application [C]// TENCON 2007 IEEE Region 10 Conference. Taipei, China: IEEE, 2007: 1?3.
[13] LIU H N, SU H L, LIN K H, et al. Design of antenna radome composed of metamaterials for high gain [C]// IEEE 2006 Antennas and Propagation Society International Symposium. [S.l.]: Antennas and Propagation Society, 2006: 19?22.
[14] LEE J, LIM S. Bandwidth?enhanced and polarisation?insensitive metamaterial absorber using double resonance [J]. Electronics letters, 2011, 47(1): 8?9.
[15] YANG R, XIE Y, LI D, et al. Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates [J]. Journal of Electromagnetic waves and Applications, 2007, 21(15): 2321?2330.
[16] JI J K, KIM G H, SEONG W M. Bandwidth enhancement of metamaterial antennas based on composite right/left?handed transmission line [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 36?39.
[17] BOUGHRIET A H, LEGRAND C, CHAPOTON A. Noniterative stable transmission/reflection method for low?loss material complex permittivity determination [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(1): 52?57.
[18] 鐘順時(shí).微帶天線理論與應(yīng)用[M].西安:西安電子科技大學(xué)出版社,1991.
[3] MINATTI G, MACI S, DE VITA P, et al. A metasurface isoflux antenna and potential beam reconfigurability [C]// Procee?dings of 2012 6th European Conference on Antennas and Pro?pagation (EUCAP). [S.l.]: IEEE, 2012: 2613?2617.
[4] 賈鉑奇.陣列天線多波束賦形技術(shù)研究[D].上海:中國(guó)科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所),2007.
[5] RUSCH W. The current state of the reflector antenna art [J]. IEEE Transactions on Antennas and Propagation, 1984, 32(4): 313?329.
[6] CHERRETTE A, CHANG D. Phased array contour beam sha?ping by phase optimization [C]// Proceedings of Antennas and Propagation Society 1985 International Symposium. Vancouver, Canada: Antennas and Propagation Society, 1985, 23: 475?478.
[7] 謝蘇隆,鐘鷹.賦形天線研究[J].微型機(jī)與應(yīng)用,2010,29(10):1?4.
[8] 孫雷洪,郭文嘉.單饋源賦形反射面天線研究[J].空間電子技術(shù),1995(2):27?37.
[9] STUTZMAN W L.天線理論與設(shè)計(jì)[M].朱守正,譯.北京:人民郵電出版社,2006.
[10] 孫樹(shù)林.電磁特異介質(zhì)若干理論問(wèn)題研究[D].上海:復(fù)旦大學(xué), 2009.
[11] LEE Y J, PARK W S, YEO J, et al. Directivity enhancement of printed antennas using a class of metamaterial superstrate [J]. Electromagnetics, 2006, 26(3/4): 203?218.
[12] LIN H H, WU C Y, YEH S H. Metamaterial enhanced high gain antenna for WiMAX application [C]// TENCON 2007 IEEE Region 10 Conference. Taipei, China: IEEE, 2007: 1?3.
[13] LIU H N, SU H L, LIN K H, et al. Design of antenna radome composed of metamaterials for high gain [C]// IEEE 2006 Antennas and Propagation Society International Symposium. [S.l.]: Antennas and Propagation Society, 2006: 19?22.
[14] LEE J, LIM S. Bandwidth?enhanced and polarisation?insensitive metamaterial absorber using double resonance [J]. Electronics letters, 2011, 47(1): 8?9.
[15] YANG R, XIE Y, LI D, et al. Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates [J]. Journal of Electromagnetic waves and Applications, 2007, 21(15): 2321?2330.
[16] JI J K, KIM G H, SEONG W M. Bandwidth enhancement of metamaterial antennas based on composite right/left?handed transmission line [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 36?39.
[17] BOUGHRIET A H, LEGRAND C, CHAPOTON A. Noniterative stable transmission/reflection method for low?loss material complex permittivity determination [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(1): 52?57.
[18] 鐘順時(shí).微帶天線理論與應(yīng)用[M].西安:西安電子科技大學(xué)出版社,1991.