• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    2014-07-19 11:18:26QiangLiuFengPeng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年4期

    Qiang Liu,Feng Peng

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    Elasticity and Thermodynamic Properties of EuS Related to Phase Transition

    Qiang Liu,Feng Peng?

    College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    First-principles calculations of the crystal structures,phase transition,and elastic properties of EuS have been carried out with the plane-wave pseudopotential density functional theory method.The calculated values are in very good agreement with experimental data as well as some of the existing model calculations.The dependence of the elastic constants, the aggregate elastic modulus,and the elastic anisotropy on pressure have been investigated. Moreover,the variation of the Poisson’s ratio,Debye temperature,and the compressional and shear elastic wave velocities with pressure have been investigated for the f i rst time.Through the quasi-harmonic Debye model,the thermal expansions,heat capacities,Grneisen parameters and Debye temperatures dependence on the temperature and pressure are obtained in the pressure range from 0 GPa to 60 GPa and temperature range from 0 K to 800 K.

    EuS,First-principles,Pressure effect,Thermodynamic properties

    I.INTRODUCTION

    Rare-earth compounds attract considerable experimental and theoretical attention due to their interesting optical,magnetic and electronic properties[1-4]. Especially,europium chalcogenides have received renewed attention because of their technological importance[5-7]and their potential applications in spintronic and spin f i ltering devices[8].Horne et al.used the ab initio self-interaction corrected(SIC)method to discuss the electronic structure of the Eu chalcogenides and pnictides in both the divalent and trivalent states [8].Kunes and Pickett used the full potential linearized augmented planes waves(FP-LAPW)method to study the effective exchange parameters and the corresponding ordering temperatures of the(ferro)magnetic insulating Eu chalcogenides under ambient and elevated pressure conditions[9].Goncharenko et al.studied magnetic interactions of Eu chalcogenides using neutron dif f raction at very high pressures[10].The calculation of the band-structure and the structural stability of the high-pressure phases of Eu chalcogenides have been investigated by Singh et al.using the tight-binding linear muffin-tin orbital method within the atomic sphere approximation(ASA)[11,12].Svane et al.gave the light of pressure-induced valence transitions in rare earth chalcogenides[13].Recently,Rached et al.studied elastic properties of Eu chalcogenides using the fullpotential linear muffin-tin orbital(FP-LMTO)method [14].Temmerman et al.gave a review of pressure induced valence transitions in f-electron systems of Eu chalcogenides calculated with the self-interaction corrected local spin density(SIC-LSD)approximation[15]. Among the europium chalcogenides compounds very little information is available for EuS.In this work,we studied the elastic and the thermodynamic properties of EuS under pressure considering the phase transition. The high pressure phase transition and elastic properties of EuS from B1(NaCl)to B2(CsCl)are investigated in detail.All calculations are performed based on the plane-wave pseudopotential density-function theory (DFT).

    II.CALCULATED DETAILS AND THEORY

    A.Calculated details

    Vanderbilt-type non-local ultrasoft pseudopotentials (USPP)[16]are employed to describe the electron-ion interactions.The effects of exchange-correlation interaction are treated with the generalized gradient approximation(GGA)of Perdew-Burke-Ernzerhof(PBE) [17]considering the spin polarized.In the structure calculation,a plane wave basis set with energy cut-of f680.00 eV is used.Pseudo-atomic calculations are performed for S3s23p4and Eu4f75s25p66s2.For the Brillouin-zone sampling,the 12×12×12 Monkhorst-Pack mesh[18]is adopted.The self-consistent convergence of the total energy is 10-7eV/atom and the maximum force on the atom is 10-4eV/?A.All the total energy electronic structure calculations are implemented through the CASTEP code[19].

    TABLE I The lattice parameter a,bulk moduli B(in GPa), and the elastic constants cij(in GPa)at 0 K and 0 GPa for EuS.

    B.Structure property

    The energy-volume(E-V)curve can be obtained by f i tting the calculated E-Vresults to the Birch-Murnaghan EOS[20]:

    where E0is the equilibrium energy.Pressure P vs.the normalized volume Vnis obtained through the following equation:

    here B00and B0are the pressure derivative of the bulk modulus and zero pressure bulk modulus,respectively.

    To calculate the total energy EBMand the corresponding volume V for both phases,a series of different lattice parameters a are taken to obtain the total energy over a wide volume range from 0.6V0to 1.2V0,where V0is the zero pressure equilibrium primitive cell volume. Through these calculations,we can obtain the equilibrium a(Table I).It is found that a and B are in good agreement with experimental data[7,12]and other theoretical results[8,13,20,21],respectively.The ratio V/V0as a function of the applied pressure together with the experimental result is plotted in Fig.1.Our obtained data are consistent well with the experiment[7, 12].

    The estimation of the zero-temperature transition pressure between B1 and B2 structures of EuS can be obtained from the usual condition of equal enthalpies, in other words,P,at which enthalpy H=E+PV of both

    FIG.1 Variations of the normalized volume V/V0with the applied pressure P for EuS.

    FIG.2 Enthalpy H as a function of pressure P for EuS.

    phases is the same.Figure 2 shows the enthalpy as a function of the pressure for EuS.It indicates that the transition pressure from B1 to B2 is about 22.1 GPa. The datum agrees well with the experimental value of 21.5 GPa from Jayaraman et al.[7]and the calculated result of 21.1 GPa from Singh et al.[13].But it is lower than the value of 27 GPa from Rached et al.[14].

    C.Elasticity

    To calculate the elastic constants under hydrostatic pressures,the non-volume conserving strains are adopted because this method is consistent with our calculated elastic constants using the stress-strain coefficients,which are appropriate for the calculation of the elastic wave velocities.The elastic constants cijkl, with respect to the fi nite strain variables are de fi ned as [22-24]:

    where cijkldenotes the second-order derivatives with respect to the inf i nitesimal strain(Eulerian),and δ is the f i nite strain variable.For EuS(B1 or B2),there are three independent elastic constants,i.e.c11,c12,and c44.In our calculations,for all strains,δ=±0.0018, ±0.003,and±0.0006 are taken to calculate the total energies E for the strained crystal structure,respectively. To make comparison with experimental results under hydrostatic pressure,the elastic constants Cijmust be transformed into the observable cijdef i ned with respect to the f i nite strain variables[23-25].Cijis transformed into cijin the case of hydrostatic pressure P as follows:

    From the independent elastic constants above,the theoretical polycrystalline elastic modulus can be obtained. There are two approximation methods to calculate the polycrystalline modulus,namely the Voigt method[26] and the Reuss method[27].The Voigt GVand Reuss GRshear moduli are given by

    The shear modulus G and bulk modulus B can be estimated by

    The polycrystalline Young’s modulus E,anisotropy factor A,and the Poisson’s ratio σ are then calculated by

    The elastic Debye temperature Θ can be estimated from the average sound velocity vm,by the following equation [28]

    where h is Planck constant,kBis Boltzmann constant, NAis Avogadro number,n is the number of atoms in the molecule,M is the molecular weight,and ρ is the density.vmis approximately calculated from

    where vpand vsare the compressional and shear wave velocities,respectively,which can be obtained from Navier’s equation[29]

    III.RESULTS AND DISCUSSION

    A.Elasticity

    Our calculated cijof the EuS for two phases at zero pressure and zero temperature are listed in Table I.Our result is consistent with the data from Shapira et al. [21],but is inconsistent with the value from Rached et al.[14].In Table II,we present the pressure dependence on the cij,B,and G of EuS at di ff erent pressures. It is shown that c11varies substantially under applied pressure compared with the variations in c12and c44. c11represents elasticity in length.A longitudinal strain produces a change in c11.c12and c44are related to the elasticity in shape,which is a shear constant.A transverse strain causes a change in shape without a change in volume.Therefore,c12and c44are less sensitive to pressure as compared with c11.Moreover,B is sensitive to press as compared with G.

    As it is known,the elastic constants determine the response of the crystal to external forces.They play an important part in determining the strength of the material.The single crystal shear moduli for the{100} plane along the[010]direction and for the{110}plane along the[110]direction are simply given by

    They are listed in Table II together with Young’s modulus E and Eh100i,σ and A under applied pressures.

    For B1 phase,G{100}are always lower than G{110}from 0 GPa to 20 GPa,indicating that it is harder to shear on the{110}plane along the[110]direction than on the{100}plane along the[010]direction;for B2 phase, the result is contrary.G represents the resistance to plastic deformation,while B represents the resistance to fracture[30].B/G of polycrystalline phases is considered.A high(low)B/G value is associated with ductility(brittleness).The critical value which separates ductile and brittle materials is about 1.75.It is interesting to try to understand the microscopic originof this empirical parameter.For both two phases,when P>10 GPa,the calculated values of the B/G(>1.75) increase with pressures,which means that pressure can improve ductility.

    TABLE II The calculated elastic constants cij(in GPa),and aggregate elastic moduli(B,G,E,in GPa),the quotient of bulk to shear modulus B/G,the elastic anisotropic parameter,the Poisson’s ratio σ,the Debye temperature Θ(in K)of the EuS under pressure P(in GPa)at zero temperature.

    FIG.3 The calculated elastic velocities v vs.pressure P at 0 K.

    The Young’s modulus E and Poisson’s ratio σ are important for technological and engineering applications. E is def i ned as the ratio from stress to strain,and is used to provide a measure of the stif f ness of the solid, i.e.,the larger the value of E,the stiffer the material is.v provides more information about the characteristics of the bonding forces than any of the other elastic constants.The v=0.25 and 0.5 are the lower limit and upper limit for central force solids,respectively.In our case,v increases with the applied pressure for both phases(Table II).The obtained v values are very close to the value of 0.30 which indicates that the interatomic forces in the EuS are central forces.

    The elastic anisotropy of crystals has an important implication in engineering science since it is highly correlated with the possibility to induce microcracks in the materials[31].The anisotropy factor was evaluated to provide insight on the elastic anisotropy of the EuS.For a completely isotropic material,the A factor takes the value of 1,while values smaller or greater than unity measure the degree of elastic anisotropy.In the wide range of applied pressure,the obtained anisotropy factors are listed in Table II.One can f i nd that the B1-EuS exhibits low elastic anisotropy at zero pressure and the degree of the anisotropy increases with pressure;for B2-EuS,the degree of the anisotropy decreases with pressure.

    FIG.4 The calculated heat capacity CPof B1 structure of EuS vs.temperature T at ambient pressure P.The dashed line data are from phonon dispersion,and the solid line data are from quasi-harmonic Debye model.

    The obtained compressional,shear and average wave velocities are illustrated in Fig.3.It is shown that the vs,vp,and vmincrease gradually with pressure.However,vpis more sensitive to pressure than vsand vm.

    B.Thermodynamic properties

    Through the quasi-harmonic Debye model,the thermodynamic properties of EuS are obtained.The calculated details can be seen in our recent works[32-35]. To test the validity of quasi-harmonic Debye model,we calculated the phonon dispersion of B1-EuS by the linear response method and obtained the thermodynamic properties from the phonon dispersion.Figure 4 shows that heat capacities curves of B1-EuS vs.temperature from different methods f i t very well.So,the quasiharmonic Debye model is valid in this work.

    FIG.5 Pressure P(a)and temperature T(b)dependence of the isothermal bulk modulus B for EuS.

    FIG.6 Temperature T dependence of the heat capacity CPfor EuS.

    Figure 5 presents the relation of the isothermal bulk modulus as a function of temperature T up to 800 K at P=0,30,and 60 GPa,respectively.At lower pressures, the isothermal bulk modulus is nearly a constant when T<200 K,but it drops remarkably when T>200 K, which are in accordance with the relationships between the ratio V/V0and T as shown in Fig.1.It demonstrates that dramatic volume variation leads to the rapid decreases in the isothermal bulk modulus.One can f i nd that the effect of T on the isothermal bulk modulus is less important than that of P on it.

    The calculated heat capacity CPat constant pressure and heat capacity CVat constant volume with T at different P are shown in Fig.6.There is little difference between CPand CVat low temperatures.However,at high temperature,the CVapproaches to a constant,CPincreases monotonously with the increment of the temperature.The values follow the Debye model at low temperature(CV(T)-T3)and the classical behavior(CV(T)-3R for mono-atomic solids)is found at sufficiently high temperatures,obeying Dulong and Petit’s Rule.From Fig.6,one can also see that the heat capacity increases with the temperatures at the same pressure and decreases with the pressures at the same temperature,and the inf l uences of the temperature on the heat capacity are much more significant than that of the pressure on it.

    FIG.7VariationoftheDebyetemperatureΘand Gr¨uneisen parameter γ with pressure P.

    FIG.8 Temperature T(a)and pressure P(b)dependence of the thermal expansion coefficient α for EuS.

    The Debye temperature Θ is a fundamental parameter of a material which is link to many physical properties such as speci fic heat,elastic constants,and melting point[36].The Debye temperature and the Gru¨neisen parameter at various temperatures and di ff erent pressures are presented in Fig.7.Our calculated Debye temperature at T=0 K is 278.51 J/(mol K),which is in agreement with the results of 274.04 J/(mol K) from Eq.(12)and 276 J/(mol K)from Ref.[21]and 280 J/(mol K)from Ref.[37].From Fig.7,one can fi nd:(i)When the temperature keeps constant,the Debye temperature increases almost linearly with applied pressures;while the Gru¨neisen parameter decreases smoothly with pressures.(ii)When the pressure keeps constant,the Debye temperature decreases with the increasing temperatures;while the Gru¨neisen parameter increases with the increasing temperatures.In virtue of the fact that the e ff ect of increasing pressure on the material is the same as decreasing temperature of the material.(iii)The Debye temperature at the temperature of 800 K is lower than that at 300 K,which shows that the vibration frequency of the particles in EuS changes with the pressures and the temperatures.

    The thermal expansion coefficient α with T and P for EuS is presented in Fig.8.From Fig.8(a),α increaseswith T3at low temperature and gradually approaches a linear increase at high temperatures and then the increasing trend becomes gentler.The effects of pressure on α are very small at low temperatures;the effects are increasingly obvious as the temperature increases. As P increases,α decreases rapidly and the effects of T become less and less pronounced,resulting in linear high-temperature behaviour.It is noteworthy that the high-temperature dependence of α is not linear at low pressures(0 GPa);this is an indication of the inadequacy of the quasi-harmonic approximation at high temperature and low pressure.It can be found that α converges to a constant value at high temperature and pressure.However,from Fig.8(b),as the pressure increases,α decreases almost exponentially,and the higher the temperature is,the faster α decreases. It shows that the effect of temperature is much greater than that of pressure on α.

    IV.CONCLUSION

    The structural properties and phase transition and elastic constants of EuS at high pressure are computed by the ultrasoft pseudopotentials within the generalized gradient approximation in the frame of density functional theory.We carry out total energy calculations over a wide range of volume from 0.6V0to 1.2V0,and obtain the equilibrium ratio of the normalized volume V/V0for a given volume.The obtained pressure dependence on the normalized volume is in excellent agreement with the experimental result.

    The aggregate elastic modulus(B,G,E),Poisson’s ratio and the shear anisotropic factor A of EuS at high pressure from 0 GPa to 60 GPa considering phase transition are also calculated.An analysis of the calculated parameters reveals the anisotropy in EuS.When P>10 GPa,the calculated values of the B/G(>1.75) increase with pressure,which indicates that pressure can improve ductility.The obtained Poisson’s ratios are very close to the value of 0.30,which means that the interatomic forces in the EuS are central forces.The compressional and shear wave velocities,and the Debye temperature are successfully obtained.The experimental values of the sound velocity,Poisson ratio,and Debye temperature under high pressure are not available for comparison yet,but considering the case of Refs.[38, 39],our predicted data should be credible.

    The other thermodynamic properties are predicted using the quasi-harmonic Debye model.It is found that the high temperature leads to a smaller adiabatic bulk modulus,a smaller Debye temperature,a larger Gr¨uneisen parameter,a larger heat capacity,and a bigger thermal expansion coefficient at constant pressure. But the high pressure gives birth to a lager isothermal bulk modulus,a larger Debye temperature,a smaller Gr¨uneisen parameter,a smaller heat capacity,and a smaller thermal expansion coefficient at constant temperature.The thermal expansion coefficient and heat capacity at constant volume are shown to converge to a nearly constant value at high pressures and temperatures.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.40804034 and No.11304141),the Natural Science Foundation of the Education Department of Henan Province of China (No.2011B140014),the Program for the Science and Technology Department of Henan Province of China (No.112102310641),and the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.13IRTSTHN020).

    [1]F.J.Ried,L.K.Matsan,J.F.Miller,and R.C.Maines, J.Phys.Chem.Solids 25,969(1964).

    [2]R.Didchenko and F.P.Gortsema,J.Phys.Chem. Solids 24,863(1963).

    [3]R.Akimoto,M.Kobayashi,and T.Suzuki,J.Phys. Soc.Jpn.62,1490(1993).

    [4]I.N.Goncharenko and I.Mirebeau,Europhys.Lett.37, 633(1997).

    [5]C.J.M.Rooymans,Solid State Commun.3,421 (1965).

    [6]A.Chatterjee,A.K.Singh,and A.Jayaraman,Phys. Rev.B 6,2285(1972).

    [7]A.Jayaraman,A.K.Singh,A.Chatterjee,and S.U. Devi,Phys.Rev.B 9,2513(1974).

    [8]M.Horne,P.Strange,W.M.Temmerman,Z.Szotek, A.Svane,and H.Winter,J.Phys.:Condens.Matter 16,5061(2004).

    [9]J.Kunes and W.E.Pickett,Physica B 359,205(2005).

    [10]I.N.Goncharenko and I.Mirebeau,Phys.Rev.Lett. 80,1082(1998).

    [11]D.Singh,M.Rajagopalan,and A.K.Bandyopadhyay, Solid State Commun.112,39(1999).

    [12]D.Singh,M.Rajagopalan,M.Husain,and A.K. Bandyopadhyay,Solid State Commun.115,323(2000).

    [13]A.Svane,P.Strange,W.M.Temmerman,Z.Szotek, H.Winter,and L.Petit,Phys.Stat.Sol.(b)223,105 (2001).

    [14]D.Rached,M.Ameri,M.Rabah,R.Khenata,A. Bouhemadou,N.Benkhettou,and M.D.el Hannani, Phys.Stat.Sol.(b)244,1988(2007).

    [15]W.M.Temmerman,A.Svane,L.Petit,M.L¨uders,P. Strange,and Z.Szotek,Phase Trans.80,415(2007).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [20]A.Svane,G.Santi,Z.Szotek,W.M.Temmerman,P. Strange,M.Horne,G.Vaitheeswaran,V.Kanchana,L. Petit,and H.Winter,Phys.Stat.Sol.(b)241,3185 (2004).

    [21]Y.Shapira and T.B.Reed,Conf.Proc.5,837(1971).

    [22]J.Wang,J.Li,S.Yip,S.Phillpot,and D.Wolf,Phys. Rev.B 52,12627(1995).

    [23]D.C.Wallace,Thermodynamics of Crystals,New York: John Wiley&Sons,20(1972).

    [24]B.B.Karki,G.J.Ackland,and J.Crain,J.Phys.: Condens.Matter 9,8579(1997).

    [25]T.H.K.Barron and M.L.Klein,Proc.Phys.Soc.85, 523(1965).

    [26]K.Tsubouchi and N.Mikoshiba,IEEE.Trans.Sonics Ultrason.Su-32,634(1985).

    [27]A.Reuss,Z.Angew.Math.Mech.9,49(1929).

    [28]G.V.Sin’ko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [29]O.L.Anderson,J.Phys.Chem.Solids 24,909(1963). [30]S.F.Pugh,Philos.Mag.45,823(1954).

    [31]V.Tvergaard and J.W.Hutchinson,J.Am.Ceram. Soc.71,157(1988).

    [32]F.Peng,Q.Liu,H.Z.Fu,and X.D.Yang,Solid State Commun.149,56(2009).

    [33]F.Peng,H.Z.Fu,and X.D.Yang,Solid State Commun.145,91(2008).

    [34]F.Peng,Y.Han,H.Z.Fu,and X.Cheng,Phys.Stat. Sol.(b)245,2743(2008).

    [35]F.Peng,H.Z.Fu,and X.D.Yang,Phys.B 403,2851 (2008).

    [36]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills,and O.Eriksson,J.Appl.Phys.84,4891 (1998).

    [37]E.M.Dudnik,G.V.Lashkarev,Y.B.Paderno,and V. A.Obolonchik,Inorg.Mater.2,833(1966).

    [38]T.Iitaka and T.Ebisuzaki,Phys.Rev.B 64,012103 (2001).

    [39]O.G¨ulseren and R.E.Cohen,Phys.Rev.B 65,064103 (2002).

    ceived on March 16,2014;Accepted on May 8,2014)

    ?Author to whom correspondence should be addressed.E-mail:pengfengscu@gmail.com,Tel.:+86-379-62960015,FAX:+86-379-65526093

    色视频在线一区二区三区| 黄色视频在线播放观看不卡| 男人添女人高潮全过程视频| 制服丝袜香蕉在线| 国产国拍精品亚洲av在线观看| 精品少妇内射三级| 丝瓜视频免费看黄片| 人妻制服诱惑在线中文字幕| av免费观看日本| 亚洲内射少妇av| 2021少妇久久久久久久久久久| 熟妇人妻不卡中文字幕| 黄色配什么色好看| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 久久婷婷青草| 寂寞人妻少妇视频99o| 桃花免费在线播放| 一本久久精品| 涩涩av久久男人的天堂| 黑丝袜美女国产一区| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 十八禁高潮呻吟视频 | av一本久久久久| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 日产精品乱码卡一卡2卡三| 97在线视频观看| 日韩一区二区视频免费看| 国产高清不卡午夜福利| 久久久久久久久大av| 美女福利国产在线| 婷婷色av中文字幕| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 美女福利国产在线| tube8黄色片| 精品国产露脸久久av麻豆| 日韩制服骚丝袜av| 免费观看的影片在线观看| 在线观看人妻少妇| 国产免费福利视频在线观看| 精品久久国产蜜桃| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 日韩成人av中文字幕在线观看| 欧美丝袜亚洲另类| 高清视频免费观看一区二区| 人人妻人人澡人人看| 卡戴珊不雅视频在线播放| 亚洲国产欧美日韩在线播放 | 一级毛片我不卡| av线在线观看网站| 熟女电影av网| 亚洲欧洲日产国产| 少妇熟女欧美另类| 国产伦理片在线播放av一区| 美女主播在线视频| 热re99久久国产66热| 亚洲美女搞黄在线观看| 国产精品久久久久久久电影| 欧美精品国产亚洲| 简卡轻食公司| 亚洲无线观看免费| 日本av免费视频播放| 欧美日韩视频高清一区二区三区二| 国产中年淑女户外野战色| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线| 成人国产麻豆网| 精品少妇久久久久久888优播| 如何舔出高潮| av有码第一页| 国产极品粉嫩免费观看在线 | 老司机影院成人| 成人美女网站在线观看视频| 国产亚洲5aaaaa淫片| 9色porny在线观看| 久久精品国产亚洲av天美| 色网站视频免费| 亚洲自偷自拍三级| 亚洲精品国产av成人精品| 久久精品夜色国产| 黄色配什么色好看| 日韩中文字幕视频在线看片| 亚洲人与动物交配视频| 精品人妻熟女毛片av久久网站| 观看av在线不卡| 黄色毛片三级朝国网站 | 777米奇影视久久| av女优亚洲男人天堂| 人妻 亚洲 视频| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 国产日韩欧美亚洲二区| 在线观看av片永久免费下载| 嫩草影院新地址| 国产91av在线免费观看| 永久免费av网站大全| 黑人猛操日本美女一级片| 久久精品国产亚洲网站| 亚洲av二区三区四区| 色吧在线观看| a 毛片基地| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 在线 av 中文字幕| 伦精品一区二区三区| 少妇丰满av| 午夜老司机福利剧场| 日本欧美视频一区| 婷婷色麻豆天堂久久| 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 色94色欧美一区二区| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 日韩精品免费视频一区二区三区 | 欧美人与善性xxx| 亚洲欧洲国产日韩| 曰老女人黄片| 成年人免费黄色播放视频 | 免费看日本二区| 日韩熟女老妇一区二区性免费视频| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 人人妻人人爽人人添夜夜欢视频 | 久久精品久久久久久久性| 亚洲国产日韩一区二区| av免费在线看不卡| 久久精品久久久久久久性| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| av女优亚洲男人天堂| 亚洲无线观看免费| 大码成人一级视频| 国产乱来视频区| 岛国毛片在线播放| 国国产精品蜜臀av免费| 乱人伦中国视频| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 91精品国产九色| 色网站视频免费| 国产精品免费大片| 亚洲精品中文字幕在线视频 | 国产黄片视频在线免费观看| 国产高清三级在线| 成人黄色视频免费在线看| 好男人视频免费观看在线| 国产淫语在线视频| 视频区图区小说| 热99国产精品久久久久久7| av视频免费观看在线观看| av福利片在线| 乱系列少妇在线播放| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 91精品国产国语对白视频| 少妇精品久久久久久久| 一区在线观看完整版| 能在线免费看毛片的网站| a级一级毛片免费在线观看| 如日韩欧美国产精品一区二区三区 | 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 日韩在线高清观看一区二区三区| 成人国产av品久久久| 91成人精品电影| 日韩av不卡免费在线播放| 国产综合精华液| 黑人巨大精品欧美一区二区蜜桃 | 插逼视频在线观看| 欧美日韩视频高清一区二区三区二| 十八禁高潮呻吟视频 | 在线亚洲精品国产二区图片欧美 | 国产亚洲午夜精品一区二区久久| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 日本av手机在线免费观看| 久久久国产欧美日韩av| 日韩av不卡免费在线播放| 国产成人免费无遮挡视频| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 99久久精品国产国产毛片| 熟女av电影| 精品久久久久久电影网| 97精品久久久久久久久久精品| 五月开心婷婷网| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 国内少妇人妻偷人精品xxx网站| 国精品久久久久久国模美| 国产免费又黄又爽又色| 日本wwww免费看| 久久精品夜色国产| 国产免费福利视频在线观看| 大片免费播放器 马上看| 一级毛片aaaaaa免费看小| 婷婷色综合大香蕉| 日韩一区二区三区影片| 久久99一区二区三区| 黄色怎么调成土黄色| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 97在线视频观看| 内地一区二区视频在线| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 蜜桃在线观看..| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| 性色avwww在线观看| 中国美白少妇内射xxxbb| 色吧在线观看| 蜜桃久久精品国产亚洲av| 久久久久久久久久久久大奶| 国产在视频线精品| 看十八女毛片水多多多| 视频中文字幕在线观看| 两个人免费观看高清视频 | 欧美变态另类bdsm刘玥| 97超视频在线观看视频| 99久久人妻综合| 久久99精品国语久久久| av不卡在线播放| 国产在线视频一区二区| 国产视频首页在线观看| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 国产美女午夜福利| 国产成人精品久久久久久| 久久97久久精品| 两个人免费观看高清视频 | av视频免费观看在线观看| 亚洲国产精品专区欧美| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品一区三区| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 色视频www国产| 国产免费福利视频在线观看| 日韩欧美精品免费久久| 成人免费观看视频高清| 日本爱情动作片www.在线观看| 一级毛片aaaaaa免费看小| 日韩制服骚丝袜av| 婷婷色av中文字幕| 只有这里有精品99| 狂野欧美白嫩少妇大欣赏| 你懂的网址亚洲精品在线观看| 综合色丁香网| 欧美高清成人免费视频www| 国产成人免费观看mmmm| av线在线观看网站| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 亚洲精品自拍成人| 熟女人妻精品中文字幕| 高清黄色对白视频在线免费看 | av网站免费在线观看视频| 99九九在线精品视频 | 春色校园在线视频观看| 国产欧美亚洲国产| 天堂8中文在线网| 日韩视频在线欧美| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 中文欧美无线码| 下体分泌物呈黄色| 我的老师免费观看完整版| 嫩草影院入口| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| 免费看光身美女| 91久久精品国产一区二区三区| 少妇精品久久久久久久| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 自拍偷自拍亚洲精品老妇| 男人爽女人下面视频在线观看| 亚洲成色77777| 嫩草影院新地址| 免费看不卡的av| 亚洲精品色激情综合| 高清毛片免费看| 如日韩欧美国产精品一区二区三区 | 精品久久久精品久久久| 黄色一级大片看看| 嫩草影院新地址| 久久亚洲国产成人精品v| 少妇的逼好多水| 乱码一卡2卡4卡精品| 日韩中字成人| 在线亚洲精品国产二区图片欧美 | 天美传媒精品一区二区| 伦精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 亚洲图色成人| 亚洲av成人精品一二三区| 免费看日本二区| 久久人人爽人人爽人人片va| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| 欧美成人精品欧美一级黄| 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 老司机影院毛片| 免费观看无遮挡的男女| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久久久| xxx大片免费视频| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 丝瓜视频免费看黄片| 久久精品国产自在天天线| 国产无遮挡羞羞视频在线观看| 日产精品乱码卡一卡2卡三| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 丝袜脚勾引网站| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 中文字幕人妻丝袜制服| 国产精品熟女久久久久浪| 免费观看av网站的网址| 99久国产av精品国产电影| av.在线天堂| 国模一区二区三区四区视频| 国产av码专区亚洲av| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲四区av| 国产熟女欧美一区二区| 2021少妇久久久久久久久久久| 你懂的网址亚洲精品在线观看| 能在线免费看毛片的网站| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 嫩草影院入口| 高清午夜精品一区二区三区| 高清欧美精品videossex| 九九在线视频观看精品| 日本欧美国产在线视频| 美女大奶头黄色视频| 曰老女人黄片| 亚洲av国产av综合av卡| 色视频www国产| 91aial.com中文字幕在线观看| 在线观看www视频免费| 亚洲欧美精品专区久久| 中文字幕制服av| 最新中文字幕久久久久| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 色视频在线一区二区三区| 欧美人与善性xxx| 日本av手机在线免费观看| 亚洲欧美日韩东京热| 啦啦啦视频在线资源免费观看| av有码第一页| 91久久精品国产一区二区成人| 国产在线视频一区二区| 美女内射精品一级片tv| 熟女电影av网| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 秋霞在线观看毛片| 男人舔奶头视频| 久久久久网色| 久久久国产精品麻豆| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 亚洲精品,欧美精品| 热99国产精品久久久久久7| 日韩大片免费观看网站| av在线观看视频网站免费| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 综合色丁香网| 久久久久久人妻| 黑丝袜美女国产一区| 亚洲怡红院男人天堂| 久久久久久久精品精品| 自线自在国产av| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 日本黄色片子视频| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 黄色配什么色好看| 在线观看三级黄色| 国产精品一二三区在线看| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 成年av动漫网址| 交换朋友夫妻互换小说| 国产av国产精品国产| 美女中出高潮动态图| 国产一区二区三区av在线| 最后的刺客免费高清国语| 午夜免费观看性视频| 多毛熟女@视频| 国产伦精品一区二区三区四那| 国产精品欧美亚洲77777| 少妇被粗大的猛进出69影院 | 国产一区二区三区av在线| 国产精品蜜桃在线观看| 久久久久精品久久久久真实原创| 新久久久久国产一级毛片| av免费在线看不卡| 精品视频人人做人人爽| 男女国产视频网站| 尾随美女入室| 99久久综合免费| 国产高清不卡午夜福利| 男人和女人高潮做爰伦理| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 2022亚洲国产成人精品| 久热久热在线精品观看| 九九久久精品国产亚洲av麻豆| 精品亚洲成a人片在线观看| 日韩中文字幕视频在线看片| 久久久精品免费免费高清| 久久午夜综合久久蜜桃| 看十八女毛片水多多多| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站| 国产中年淑女户外野战色| 国产午夜精品久久久久久一区二区三区| 美女视频免费永久观看网站| 日日撸夜夜添| 最近的中文字幕免费完整| 国产精品偷伦视频观看了| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 日韩视频在线欧美| 成人18禁高潮啪啪吃奶动态图 | 九九在线视频观看精品| 麻豆成人午夜福利视频| 国产精品一区二区三区四区免费观看| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| av播播在线观看一区| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 色视频在线一区二区三区| av专区在线播放| 最近最新中文字幕免费大全7| 亚洲av在线观看美女高潮| 久久精品国产自在天天线| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 永久免费av网站大全| 99久久精品国产国产毛片| 国产av码专区亚洲av| 午夜老司机福利剧场| 女人久久www免费人成看片| 少妇裸体淫交视频免费看高清| 国产在线男女| 久久人人爽人人爽人人片va| 欧美精品高潮呻吟av久久| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| 国产 一区精品| 麻豆乱淫一区二区| 亚洲精品aⅴ在线观看| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 国产精品免费大片| 午夜免费观看性视频| 色哟哟·www| 少妇精品久久久久久久| 亚洲欧洲国产日韩| 免费看av在线观看网站| 久久热精品热| 亚洲欧美日韩卡通动漫| 国产精品麻豆人妻色哟哟久久| 成人亚洲欧美一区二区av| 777米奇影视久久| 麻豆精品久久久久久蜜桃| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 日韩欧美 国产精品| 在线观看免费高清a一片| 亚洲精品一二三| 一本色道久久久久久精品综合| 久久99热6这里只有精品| 国产有黄有色有爽视频| 午夜免费鲁丝| 久久毛片免费看一区二区三区| 少妇人妻久久综合中文| 色视频www国产| 两个人的视频大全免费| 美女福利国产在线| 尾随美女入室| 日韩av免费高清视频| 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄| 亚洲av成人精品一区久久| 人人澡人人妻人| 全区人妻精品视频| 性色av一级| 亚洲av.av天堂| 久久毛片免费看一区二区三区| 国产成人a∨麻豆精品| 国产免费一级a男人的天堂| 久热久热在线精品观看| 久久人人爽人人爽人人片va| 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 国产亚洲5aaaaa淫片| 乱人伦中国视频| 国产亚洲最大av| 国产黄片美女视频| 黄色视频在线播放观看不卡| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| 日韩成人av中文字幕在线观看| 精品国产露脸久久av麻豆| 国产精品一二三区在线看| 最近最新中文字幕免费大全7| 色5月婷婷丁香| 人妻人人澡人人爽人人| freevideosex欧美| 老女人水多毛片| 青春草亚洲视频在线观看| 老司机影院毛片| 少妇人妻精品综合一区二区| 视频区图区小说| 久久这里有精品视频免费| 久久97久久精品| 久久热精品热| 伊人久久国产一区二区| 日韩强制内射视频| 亚洲成人av在线免费| 久久99热6这里只有精品| 一本色道久久久久久精品综合| 国产精品99久久久久久久久| 国产亚洲精品久久久com| 欧美日韩在线观看h| 又黄又爽又刺激的免费视频.| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 嘟嘟电影网在线观看| 国产男人的电影天堂91| 日韩,欧美,国产一区二区三区| 久久久久网色| 26uuu在线亚洲综合色| 在线观看免费视频网站a站| 99久久综合免费| av在线观看视频网站免费| 欧美精品高潮呻吟av久久| av在线播放精品| 日韩欧美 国产精品| 乱人伦中国视频| 一级二级三级毛片免费看| 全区人妻精品视频| 极品教师在线视频| 国产精品免费大片| 国产高清不卡午夜福利| 热re99久久精品国产66热6| 亚洲精品色激情综合| 国产精品一区二区三区四区免费观看| 久久精品夜色国产| 日日撸夜夜添| 国产一区二区三区综合在线观看 | 中国三级夫妇交换| 欧美+日韩+精品| 简卡轻食公司| 99久久精品热视频| 欧美老熟妇乱子伦牲交| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 成人综合一区亚洲| 美女内射精品一级片tv| 国产精品无大码| 美女中出高潮动态图| 久久午夜福利片| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 亚洲,一卡二卡三卡| 91午夜精品亚洲一区二区三区| 97在线人人人人妻|