緱新科+李冬冬+陳卓+王能才
摘 要: 針對(duì)柔性結(jié)構(gòu)的振動(dòng)普遍存在復(fù)雜性、非線性和建模難的特點(diǎn),跳過(guò)了復(fù)雜的機(jī)械?電壓建模,基于子空間系統(tǒng)辨識(shí)方法的基本算法和特點(diǎn),設(shè)計(jì)出抑制懸臂梁振動(dòng)的一種最優(yōu)控制器,并在算法實(shí)現(xiàn)、算法性能方面進(jìn)行了仿真和實(shí)時(shí)控制實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,算法在提高系統(tǒng)辨識(shí)精度,降低計(jì)算量等方面都有顯著提高,控制效果比較理想。
關(guān)鍵字: 壓電懸臂梁; 振動(dòng)主動(dòng)控制; 子空間辨識(shí); LQG控制器
中圖分類(lèi)號(hào): TN911?34; TP273 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)14?0001?04
Study on vibration control of piezoelectric cantilever beam
based on subspace identification
GOU Xin?ke, LI Dong?dong, CHEN Zhuo, WANG Neng?cai
(College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
Abstract: As the vibration of the flexible structure is generally non?linear, complex, and difficult to model, an optimal controller to suppress the vibration of the cantilever beam was designed based on the basic algorithm and characteristics of subspace system identification method, instead of the complex mechanical?voltage modeling. The simulation and real?time control experiments were carried out in the aspects of implementation and algorithm performance. The experimental results show that the algorithm has significant improvements in improving the accuracy of systems identification, reducing the amount of calculation, and enhancing the control effect.
Keywords: piezoelectric cantilever beam; active vibration control; subspace identification; LQG controller
0 引 言
柔性材料在干擾下易于發(fā)生不必要的振動(dòng),以壓電材料作為傳感器和執(zhí)行器的壓電智能結(jié)構(gòu)振動(dòng)主動(dòng)控制技術(shù)是當(dāng)前振動(dòng)工程研究的熱點(diǎn)之一。
振動(dòng)主動(dòng)控制的研究主要集中為系統(tǒng)建模、控制律設(shè)計(jì)兩方面。系統(tǒng)建模的方法主要有機(jī)理建模和實(shí)驗(yàn)建模。機(jī)理建模是指通過(guò)有限元方法建立結(jié)構(gòu)的數(shù)學(xué)模型,其能夠給出結(jié)構(gòu)的基本模態(tài)形式,但是計(jì)算量大,而且對(duì)于大型復(fù)雜結(jié)構(gòu)而言,很難進(jìn)行在線調(diào)整[1]。系統(tǒng)辨識(shí)建模是用觀測(cè)系統(tǒng)的輸入/輸出數(shù)據(jù)來(lái)建立系統(tǒng)數(shù)學(xué)模型的一種方法,可分為頻域辨識(shí)和時(shí)域辨識(shí)[2]。
子空間辨識(shí)就是時(shí)域系統(tǒng)辨識(shí)方法中很有代表性的一種新算法,由于子空間方法在辨識(shí)中對(duì)模型結(jié)構(gòu)先驗(yàn)知識(shí)需求較少,不需要參數(shù)化[3]。而且算法的實(shí)現(xiàn)僅依賴(lài)于一些簡(jiǎn)單可靠的線性代數(shù)工具,需要迭代優(yōu)化,因此運(yùn)算速度較快,也保證了數(shù)值的魯棒性[4]。
本文采用子空間辨識(shí)算法對(duì)壓電懸臂梁振動(dòng)系統(tǒng)進(jìn)行建模,并將模型辨識(shí)與控制器設(shè)計(jì)統(tǒng)一起來(lái)考慮,從而跳過(guò)系統(tǒng)模型參數(shù)的估計(jì),直接運(yùn)用RQ分解的方法得出Kalman濾波狀態(tài),進(jìn)而設(shè)計(jì)出線性二次型高斯最優(yōu)控制器。
1 壓電懸臂梁結(jié)構(gòu)
壓電懸臂梁的結(jié)構(gòu)圖如圖1所示,其中懸臂梁采用楊氏模量為135 GPa,密度[2.7 g/cm3]的金屬梁,一端固定在支架上,梁長(zhǎng)350 mm,寬20 mm,厚2 mm。采用6片壓電聚合物(PVDF)薄膜作為傳感/驅(qū)動(dòng)元件,分別粘貼于懸臂梁的上下兩側(cè)。
使用ABAQUS軟件對(duì)懸臂梁進(jìn)行有限元建模模態(tài)分析,得到如圖2所示的懸臂梁前二階振型曲線,圖2(a)所示為一階振型,其頻率為[f1=11.4 Hz];圖2(b)為二階振型,頻率[f2=69.5 Hz]。從圖中可以看出,懸臂梁振動(dòng)特性中起到主要作用的是其振型中的一階模態(tài)。一階振型的最大應(yīng)變處靠近懸臂梁的固定端,二階振型的最大應(yīng)變處位于距離固定端160 mm處。
圖1 壓電懸臂梁結(jié)構(gòu)圖
圖2 懸臂梁前二階振型曲線
2 子空間系統(tǒng)辨識(shí)建模
在系統(tǒng)的不同數(shù)學(xué)描述形式中,狀態(tài)空間模型在現(xiàn)代系統(tǒng)理論中最為常用,與其他模型相比,狀態(tài)空間模型不僅能夠反應(yīng)系統(tǒng)的外部關(guān)系,更能揭示系統(tǒng)的內(nèi)部特性,尤其對(duì)于多輸入多輸出系統(tǒng),根據(jù)狀態(tài)空間模型能夠方便有效地進(jìn)行系統(tǒng)分析和設(shè)計(jì)[5]。
子空間辨識(shí)方法的核心即得到廣義可觀測(cè)矩陣或者狀態(tài)序列的估計(jì)值,然后利用上述信息求解系統(tǒng)狀態(tài)空間模型[6]。之所以稱(chēng)之為子空間方法,是因?yàn)橄到y(tǒng)的狀態(tài)空間模型矩陣可以從特定矩陣的行或者列空間中獲得,而這些特定矩陣是由系統(tǒng)的輸入/輸出數(shù)據(jù)通過(guò)一定的計(jì)算得到[7]。對(duì)于未知的[n]階MIMO系統(tǒng),給定系統(tǒng)輸入測(cè)量值[u∈Rm]和輸出測(cè)量值[y∈Rl],其狀態(tài)空間方程的一般確定性隨機(jī)形式可表示如下:
[xk+1=Axk+Buk+wk] (1)
[yk=Cxk+Duk+vk] (2)
并且滿足條件:
[EwivjwiTvjT=QSSTRδpq≥0] (3)
其中:[A∈Rn×n],[B∈Rn×m],[C∈Rn×l],[D∈Rl×l],[Q∈Rn×n],[S∈Rn×l],[R∈Rl×l]均為常數(shù)矩陣;噪聲協(xié)方差矩陣中的[wk∈Rn]和[vk∈Rn]為不可測(cè)量向量信號(hào),[wk]稱(chēng)為過(guò)程噪聲,[vk]稱(chēng)為測(cè)量噪聲,均為零均值的白噪聲;[δpq]為Kronecker算子。
式(1)、式(2)可以寫(xiě)成下面的穩(wěn)態(tài)Kalman濾波器形式:
[xk+1=Axk+Buk+Kek] (4)
[yk=Cxk+Duk+ek] (5)
式中:K為Kalman濾波器增益;[ek]為測(cè)量余量。將輸入數(shù)據(jù)構(gòu)造成如下形式的塊 Hankel 矩陣:
[U=U02i-1=u0u1u2…uj-1u1u2u3…uj?????ui-1uiui+1…ui+j-2uiui+1ui+2…ui+j-1ui+1ui+2ui+3…ui+j?????u2i-1u2iu2i+1…u2i+j-2] (6)
且令[Up=defU0i-1],[Uf=defUi2i-1],相應(yīng)地,輸入/輸出方程可寫(xiě)成下述形式:
[Yp=ΓiXp+HdiUp+HsiEp] (7)
[Yf=ΓiXf+HdiUf+HsiEf] (8)
[Xf=AiXf+ΔdiUp+HsiEp] (9)
式中:[Δdi]為逆廣義可控矩陣;[Γi]為廣義可觀矩陣,其定義為:
[Γi=CCACA2 ?CAi-1∈Rli×n] (10)
[Hdi],[Hsi]為T(mén)oeplitz下三角矩陣,如下:
[Hdi=D00…0CΓD0…0CΦΓCΓD…0?????CΦi-2ΓCΦi-3ΓCΦi-4?!?] (11)
[Hsi=ΛiΛi-1Λi-2…Λ1Λi+1ΛiΛi-1…Λ2Λi+2Λi+1Λi…Λ3?????Λ2i-1Λ2i-2Λ2i-3…Λi] (12)
子空間辨識(shí)可以理解為:給定過(guò)去的輸入/輸出[Wp],將來(lái)的輸入[Uf],尋找將來(lái)輸出[Yf] 的最優(yōu)預(yù)測(cè)[Yf],即:
[Yf=LwWp+LuUf] (13)
式中:[Wp=YpUp],而[Lw],[Lu]為子空間預(yù)測(cè)器參數(shù)。
一般而言,子空間辨識(shí)建模包含三個(gè)基本步驟[8]:
(1) 運(yùn)用RQ分解計(jì)算輸入/輸出數(shù)據(jù)分塊 Hankel 矩陣的行空間映射,并從這一映射中得到[ΓiXf]。
(2) 再進(jìn)行 SVD 分解得到系統(tǒng)的可觀矩陣[Γi] 或者Kalman濾波狀態(tài)序列[Xf],以及系統(tǒng)階次[n]。
(3) 通過(guò)最小二乘法確定系統(tǒng)矩陣[A],[B],[C],[D]。
3 振動(dòng)控制器的設(shè)計(jì)
設(shè)計(jì)線性二次型高斯最優(yōu)控制器的實(shí)質(zhì)是尋找最優(yōu)輸入[uf],使得二次型性能指標(biāo)函數(shù)最小[9]:
[J=k=0∞ykTQkyk+ukTRkuk] (14)
式中:[yk]為系統(tǒng)第[k]步預(yù)測(cè)輸出;[Qk]和[Rk]分別為系統(tǒng)輸出和控制輸入加權(quán)矩陣。
通常情況下,在沒(méi)有獲取被控對(duì)象的狀態(tài)空間模型前,要設(shè)計(jì)一個(gè)線性二次型高斯最優(yōu)控制器通常都需要三個(gè)步驟[10]:
(1) 根據(jù)輸入/輸出數(shù)據(jù)進(jìn)行系統(tǒng)辨識(shí)建模;
(2) 計(jì)算系統(tǒng)的最優(yōu)狀態(tài)估計(jì),進(jìn)行 Kalman 濾波器設(shè)計(jì);
(3) 計(jì)算最優(yōu)控制律。
從第2節(jié)中可以看出,子空間辨識(shí)的一個(gè)重要特點(diǎn)就是系統(tǒng)的Kalman濾波狀態(tài)可以在完全沒(méi)有系統(tǒng)參數(shù)的情況下估計(jì)出來(lái)。所以,本文直接通過(guò)將輸入/輸出方程進(jìn)行一系列的線性運(yùn)算設(shè)計(jì)出LQG控制器。
定義將來(lái)輸入/輸出序列[yf],[uf]分別為:
[yf=y1y2…yiT] (15)
[uf=u1u2…uiT] (16)
則式(14)可以改寫(xiě)為:
[J=yTfQyf+uTfRuf] (17)
由式(13)可知:
[yf=Lwwp+Luu] (18)
將式(18)帶入式(17)中,可得:
[J=Lwwp+LuuTQLwwp+Luu+uTfRuf] (19)
式中:[wp=ypup],而[up],[yp]分別為前[i]個(gè)輸入/輸出數(shù)據(jù):
[up=u-i-1…u-1u0T] (20)
[yp=y-i-1…y-1y0T] (21)
求解[?J?uf=0],可得LQG最優(yōu)控制器的控制律為:
[uf=-R+LTuQLu-1LTuQLwwp] (22)
從而,可以得出基于子空間辨識(shí)的LQG最優(yōu)控制器的設(shè)計(jì)步驟主要為:
(1) 運(yùn)用被控對(duì)象的輸入/輸出數(shù)據(jù)構(gòu)建輸入/輸出數(shù)據(jù)分塊 Hankel 矩陣:[Up],[Uf],[Yp],[Yf],[Wp]。
(2) 對(duì)[WpUfYfT]進(jìn)行 RQ 分解,計(jì)算出R因子:
[WpUfYf=R1100R21R220R31R32R33QT1QT2QT3] (23)
(3) 計(jì)算[L],并推導(dǎo)出子空間預(yù)測(cè)器參數(shù)[Lw],[Lu]:
[L=R31R32R110R21R22] (24)
[Lw=L:,1:im+l] (25)
[Lu=L:,im+l+1:end] (26)
(4) 構(gòu)建控制器輸入[wpk];
(5) 計(jì)算控制律序列[uf]:
[uf=-R+LTuQLu-1LTuQLwwp] (27)
(6) 提取控制序列[uf]的第一個(gè)控制輸出[uk+1],并測(cè)量系統(tǒng)的輸出[yk+1],如此往復(fù)循環(huán)。
4 實(shí)驗(yàn)仿真結(jié)果
為了檢驗(yàn)上述建模和控制器設(shè)計(jì)方法在壓電懸臂梁振動(dòng)主動(dòng)控制中的有效性和合理性,本文搭建了實(shí)驗(yàn)平臺(tái)進(jìn)行了實(shí)時(shí)控制實(shí)驗(yàn)。
系統(tǒng)的硬件主要由懸臂梁、激振器、PVDF壓電傳感薄膜、PVDF壓電作動(dòng)薄膜、電荷放大器、數(shù)據(jù)采集卡、計(jì)算機(jī)、壓電驅(qū)動(dòng)功率放大器等儀器組成,其中數(shù)據(jù)采集卡采用NI公司的USB?6353數(shù)據(jù)采集卡,完全可以保證數(shù)據(jù)采集的精確性和實(shí)時(shí)性,并且通過(guò)USB接口直接與計(jì)算機(jī)連接通信。如圖3所示。
圖3 壓電懸臂梁振動(dòng)控制系統(tǒng)原理框圖
在軟件方面,采用LabVIEW 2013集成開(kāi)發(fā)環(huán)境進(jìn)行振動(dòng)信號(hào)跟蹤、存儲(chǔ)及設(shè)計(jì)控制程序,它不僅能大大的縮短整個(gè)控制系統(tǒng)的開(kāi)發(fā)周期,而且還提供了Real?Time模塊,可以有效解決Window操作系統(tǒng)弱實(shí)時(shí)性的問(wèn)題。
實(shí)驗(yàn)中,以粘貼在懸臂梁根部的壓電傳感器測(cè)得的信號(hào)來(lái)表征懸臂梁的振動(dòng)狀態(tài)。圖4表示的是懸臂梁在持續(xù)激振下,在第2 s時(shí)刻,施加本文所述的振動(dòng)控制律之后的振動(dòng)信號(hào)波形。而圖5所示振動(dòng)波形則是利用機(jī)理建模建立的系統(tǒng)前兩階振動(dòng)模態(tài),施加基于 LMS 算法的自適應(yīng)濾波前饋抵消控制律之后的振動(dòng)波形。
圖4 基于子空間辨識(shí)算法的振動(dòng)控制過(guò)程圖
圖5 基于機(jī)理建模的振動(dòng)控制過(guò)程圖
對(duì)比圖4、圖5所示的的控制效果,可以看出,在施加控制律之后,本文所設(shè)計(jì)的控制方法,收斂速度略慢,這是由于基于子空間方法的 LQG 控制器是直接運(yùn)用被控對(duì)象實(shí)物的輸入輸出數(shù)據(jù)來(lái)進(jìn)行設(shè)計(jì)的,而且它每產(chǎn)生一個(gè)控制信號(hào)都需要進(jìn)行一定的 QR 分解和 SVD 分解運(yùn)算。但是圖4中振動(dòng)穩(wěn)定后的振動(dòng)抑制效果更好,誤差較小,這表明本文所設(shè)計(jì)的方法建模精度更高。
圖6表示的是對(duì)懸臂梁施加振動(dòng)控制前后結(jié)構(gòu)響應(yīng)的功率譜分析。圖中虛線表示的是控制前的振動(dòng)功率譜,實(shí)線表示的控制后功率譜,可以看出,控制后功率譜峰值比控制前下降了60%左右,各個(gè)該模態(tài)的振動(dòng)都得到了較好的抑制。
5 結(jié) 語(yǔ)
本文提出一種基于子空間辨識(shí)算法而設(shè)計(jì)的壓電懸臂梁振動(dòng)線性二次型高斯最優(yōu)控制器,將系統(tǒng)辨識(shí)和控制器設(shè)計(jì)統(tǒng)一起來(lái)考慮,相比較與傳統(tǒng)方法,在降低計(jì)算量方面有很大提高。實(shí)驗(yàn)結(jié)果表明,本文所設(shè)計(jì)的振動(dòng)控制器能夠大幅度的提高柔性智能梁的阻尼,使其振動(dòng)在短時(shí)間內(nèi)迅速衰減,控制效果比較理想。
圖6 控制前后功率譜比較
參考文獻(xiàn)
[1] 鄒濤,丁寶蒼,張端.模型預(yù)測(cè)控制工程應(yīng)用導(dǎo)論[M].北京:化學(xué)工業(yè)出版社,2010.
[2] 潘立登.系統(tǒng)辨識(shí)與建模[M].北京:化學(xué)工業(yè)出版社,2004.
[3] 羅小鎖,丁寶蒼,鄒濤.基于在線子空間辨識(shí)的自適應(yīng)預(yù)測(cè)控制[J].化工自動(dòng)化及儀表,2010(10):10?13.
[4] 羅小鎖,周?chē)?guó)清,鄒濤.基于子空間辨識(shí)的狀態(tài)空間模型預(yù)測(cè)控制[J].計(jì)算機(jī)工程與應(yīng)用,2012(19):238?241.
[5] 王建宏,王道波.子空間預(yù)測(cè)控制算法在主動(dòng)噪聲振動(dòng)中的應(yīng)用[J].振動(dòng)與沖擊,2011(10):136?142.
[6] 緱新科,李大鵬.壓電自感知柔性懸臂梁振動(dòng)控制系統(tǒng)研究[J].壓電與聲光,2011(5):81?84.
[7] 陳震,薛定宇,郝麗娜,等.壓電智能懸臂梁主動(dòng)振動(dòng)最優(yōu)控制研究[J].東北大學(xué)學(xué)報(bào),2011(11):32?35.
[8] 劉慶華,歐陽(yáng)繕.壓電結(jié)構(gòu)系統(tǒng)辨識(shí)中的迭代子空間跟蹤法[J].振動(dòng)與沖擊,2013(5):52?57.
[9] YAMADAA K, MATSUHISA H, UTSUNO H. A new method for accurately determining the modal equivalent stiffness ratio of bonded piezoelectric structures [J]. Sound Vibrat, 2012, 331(14): 17?44.
[10] WARMINSKI J, BOCHENSKI M. Active suppression of nonlinear composite beam vibrations by selected control algorithms [J]. Nonlinear Sciences and Numerical Simulation, 2011, 16(5): 2237?2248.
[11] 李德亮,韓安明.柔性機(jī)械臂有限時(shí)問(wèn)控制器設(shè)計(jì)與仿真實(shí)現(xiàn)[J].現(xiàn)代電子技術(shù),2012,35(14):106?108.
[Lu=L:,im+l+1:end] (26)
(4) 構(gòu)建控制器輸入[wpk];
(5) 計(jì)算控制律序列[uf]:
[uf=-R+LTuQLu-1LTuQLwwp] (27)
(6) 提取控制序列[uf]的第一個(gè)控制輸出[uk+1],并測(cè)量系統(tǒng)的輸出[yk+1],如此往復(fù)循環(huán)。
4 實(shí)驗(yàn)仿真結(jié)果
為了檢驗(yàn)上述建模和控制器設(shè)計(jì)方法在壓電懸臂梁振動(dòng)主動(dòng)控制中的有效性和合理性,本文搭建了實(shí)驗(yàn)平臺(tái)進(jìn)行了實(shí)時(shí)控制實(shí)驗(yàn)。
系統(tǒng)的硬件主要由懸臂梁、激振器、PVDF壓電傳感薄膜、PVDF壓電作動(dòng)薄膜、電荷放大器、數(shù)據(jù)采集卡、計(jì)算機(jī)、壓電驅(qū)動(dòng)功率放大器等儀器組成,其中數(shù)據(jù)采集卡采用NI公司的USB?6353數(shù)據(jù)采集卡,完全可以保證數(shù)據(jù)采集的精確性和實(shí)時(shí)性,并且通過(guò)USB接口直接與計(jì)算機(jī)連接通信。如圖3所示。
圖3 壓電懸臂梁振動(dòng)控制系統(tǒng)原理框圖
在軟件方面,采用LabVIEW 2013集成開(kāi)發(fā)環(huán)境進(jìn)行振動(dòng)信號(hào)跟蹤、存儲(chǔ)及設(shè)計(jì)控制程序,它不僅能大大的縮短整個(gè)控制系統(tǒng)的開(kāi)發(fā)周期,而且還提供了Real?Time模塊,可以有效解決Window操作系統(tǒng)弱實(shí)時(shí)性的問(wèn)題。
實(shí)驗(yàn)中,以粘貼在懸臂梁根部的壓電傳感器測(cè)得的信號(hào)來(lái)表征懸臂梁的振動(dòng)狀態(tài)。圖4表示的是懸臂梁在持續(xù)激振下,在第2 s時(shí)刻,施加本文所述的振動(dòng)控制律之后的振動(dòng)信號(hào)波形。而圖5所示振動(dòng)波形則是利用機(jī)理建模建立的系統(tǒng)前兩階振動(dòng)模態(tài),施加基于 LMS 算法的自適應(yīng)濾波前饋抵消控制律之后的振動(dòng)波形。
圖4 基于子空間辨識(shí)算法的振動(dòng)控制過(guò)程圖
圖5 基于機(jī)理建模的振動(dòng)控制過(guò)程圖
對(duì)比圖4、圖5所示的的控制效果,可以看出,在施加控制律之后,本文所設(shè)計(jì)的控制方法,收斂速度略慢,這是由于基于子空間方法的 LQG 控制器是直接運(yùn)用被控對(duì)象實(shí)物的輸入輸出數(shù)據(jù)來(lái)進(jìn)行設(shè)計(jì)的,而且它每產(chǎn)生一個(gè)控制信號(hào)都需要進(jìn)行一定的 QR 分解和 SVD 分解運(yùn)算。但是圖4中振動(dòng)穩(wěn)定后的振動(dòng)抑制效果更好,誤差較小,這表明本文所設(shè)計(jì)的方法建模精度更高。
圖6表示的是對(duì)懸臂梁施加振動(dòng)控制前后結(jié)構(gòu)響應(yīng)的功率譜分析。圖中虛線表示的是控制前的振動(dòng)功率譜,實(shí)線表示的控制后功率譜,可以看出,控制后功率譜峰值比控制前下降了60%左右,各個(gè)該模態(tài)的振動(dòng)都得到了較好的抑制。
5 結(jié) 語(yǔ)
本文提出一種基于子空間辨識(shí)算法而設(shè)計(jì)的壓電懸臂梁振動(dòng)線性二次型高斯最優(yōu)控制器,將系統(tǒng)辨識(shí)和控制器設(shè)計(jì)統(tǒng)一起來(lái)考慮,相比較與傳統(tǒng)方法,在降低計(jì)算量方面有很大提高。實(shí)驗(yàn)結(jié)果表明,本文所設(shè)計(jì)的振動(dòng)控制器能夠大幅度的提高柔性智能梁的阻尼,使其振動(dòng)在短時(shí)間內(nèi)迅速衰減,控制效果比較理想。
圖6 控制前后功率譜比較
參考文獻(xiàn)
[1] 鄒濤,丁寶蒼,張端.模型預(yù)測(cè)控制工程應(yīng)用導(dǎo)論[M].北京:化學(xué)工業(yè)出版社,2010.
[2] 潘立登.系統(tǒng)辨識(shí)與建模[M].北京:化學(xué)工業(yè)出版社,2004.
[3] 羅小鎖,丁寶蒼,鄒濤.基于在線子空間辨識(shí)的自適應(yīng)預(yù)測(cè)控制[J].化工自動(dòng)化及儀表,2010(10):10?13.
[4] 羅小鎖,周?chē)?guó)清,鄒濤.基于子空間辨識(shí)的狀態(tài)空間模型預(yù)測(cè)控制[J].計(jì)算機(jī)工程與應(yīng)用,2012(19):238?241.
[5] 王建宏,王道波.子空間預(yù)測(cè)控制算法在主動(dòng)噪聲振動(dòng)中的應(yīng)用[J].振動(dòng)與沖擊,2011(10):136?142.
[6] 緱新科,李大鵬.壓電自感知柔性懸臂梁振動(dòng)控制系統(tǒng)研究[J].壓電與聲光,2011(5):81?84.
[7] 陳震,薛定宇,郝麗娜,等.壓電智能懸臂梁主動(dòng)振動(dòng)最優(yōu)控制研究[J].東北大學(xué)學(xué)報(bào),2011(11):32?35.
[8] 劉慶華,歐陽(yáng)繕.壓電結(jié)構(gòu)系統(tǒng)辨識(shí)中的迭代子空間跟蹤法[J].振動(dòng)與沖擊,2013(5):52?57.
[9] YAMADAA K, MATSUHISA H, UTSUNO H. A new method for accurately determining the modal equivalent stiffness ratio of bonded piezoelectric structures [J]. Sound Vibrat, 2012, 331(14): 17?44.
[10] WARMINSKI J, BOCHENSKI M. Active suppression of nonlinear composite beam vibrations by selected control algorithms [J]. Nonlinear Sciences and Numerical Simulation, 2011, 16(5): 2237?2248.
[11] 李德亮,韓安明.柔性機(jī)械臂有限時(shí)問(wèn)控制器設(shè)計(jì)與仿真實(shí)現(xiàn)[J].現(xiàn)代電子技術(shù),2012,35(14):106?108.
[Lu=L:,im+l+1:end] (26)
(4) 構(gòu)建控制器輸入[wpk];
(5) 計(jì)算控制律序列[uf]:
[uf=-R+LTuQLu-1LTuQLwwp] (27)
(6) 提取控制序列[uf]的第一個(gè)控制輸出[uk+1],并測(cè)量系統(tǒng)的輸出[yk+1],如此往復(fù)循環(huán)。
4 實(shí)驗(yàn)仿真結(jié)果
為了檢驗(yàn)上述建模和控制器設(shè)計(jì)方法在壓電懸臂梁振動(dòng)主動(dòng)控制中的有效性和合理性,本文搭建了實(shí)驗(yàn)平臺(tái)進(jìn)行了實(shí)時(shí)控制實(shí)驗(yàn)。
系統(tǒng)的硬件主要由懸臂梁、激振器、PVDF壓電傳感薄膜、PVDF壓電作動(dòng)薄膜、電荷放大器、數(shù)據(jù)采集卡、計(jì)算機(jī)、壓電驅(qū)動(dòng)功率放大器等儀器組成,其中數(shù)據(jù)采集卡采用NI公司的USB?6353數(shù)據(jù)采集卡,完全可以保證數(shù)據(jù)采集的精確性和實(shí)時(shí)性,并且通過(guò)USB接口直接與計(jì)算機(jī)連接通信。如圖3所示。
圖3 壓電懸臂梁振動(dòng)控制系統(tǒng)原理框圖
在軟件方面,采用LabVIEW 2013集成開(kāi)發(fā)環(huán)境進(jìn)行振動(dòng)信號(hào)跟蹤、存儲(chǔ)及設(shè)計(jì)控制程序,它不僅能大大的縮短整個(gè)控制系統(tǒng)的開(kāi)發(fā)周期,而且還提供了Real?Time模塊,可以有效解決Window操作系統(tǒng)弱實(shí)時(shí)性的問(wèn)題。
實(shí)驗(yàn)中,以粘貼在懸臂梁根部的壓電傳感器測(cè)得的信號(hào)來(lái)表征懸臂梁的振動(dòng)狀態(tài)。圖4表示的是懸臂梁在持續(xù)激振下,在第2 s時(shí)刻,施加本文所述的振動(dòng)控制律之后的振動(dòng)信號(hào)波形。而圖5所示振動(dòng)波形則是利用機(jī)理建模建立的系統(tǒng)前兩階振動(dòng)模態(tài),施加基于 LMS 算法的自適應(yīng)濾波前饋抵消控制律之后的振動(dòng)波形。
圖4 基于子空間辨識(shí)算法的振動(dòng)控制過(guò)程圖
圖5 基于機(jī)理建模的振動(dòng)控制過(guò)程圖
對(duì)比圖4、圖5所示的的控制效果,可以看出,在施加控制律之后,本文所設(shè)計(jì)的控制方法,收斂速度略慢,這是由于基于子空間方法的 LQG 控制器是直接運(yùn)用被控對(duì)象實(shí)物的輸入輸出數(shù)據(jù)來(lái)進(jìn)行設(shè)計(jì)的,而且它每產(chǎn)生一個(gè)控制信號(hào)都需要進(jìn)行一定的 QR 分解和 SVD 分解運(yùn)算。但是圖4中振動(dòng)穩(wěn)定后的振動(dòng)抑制效果更好,誤差較小,這表明本文所設(shè)計(jì)的方法建模精度更高。
圖6表示的是對(duì)懸臂梁施加振動(dòng)控制前后結(jié)構(gòu)響應(yīng)的功率譜分析。圖中虛線表示的是控制前的振動(dòng)功率譜,實(shí)線表示的控制后功率譜,可以看出,控制后功率譜峰值比控制前下降了60%左右,各個(gè)該模態(tài)的振動(dòng)都得到了較好的抑制。
5 結(jié) 語(yǔ)
本文提出一種基于子空間辨識(shí)算法而設(shè)計(jì)的壓電懸臂梁振動(dòng)線性二次型高斯最優(yōu)控制器,將系統(tǒng)辨識(shí)和控制器設(shè)計(jì)統(tǒng)一起來(lái)考慮,相比較與傳統(tǒng)方法,在降低計(jì)算量方面有很大提高。實(shí)驗(yàn)結(jié)果表明,本文所設(shè)計(jì)的振動(dòng)控制器能夠大幅度的提高柔性智能梁的阻尼,使其振動(dòng)在短時(shí)間內(nèi)迅速衰減,控制效果比較理想。
圖6 控制前后功率譜比較
參考文獻(xiàn)
[1] 鄒濤,丁寶蒼,張端.模型預(yù)測(cè)控制工程應(yīng)用導(dǎo)論[M].北京:化學(xué)工業(yè)出版社,2010.
[2] 潘立登.系統(tǒng)辨識(shí)與建模[M].北京:化學(xué)工業(yè)出版社,2004.
[3] 羅小鎖,丁寶蒼,鄒濤.基于在線子空間辨識(shí)的自適應(yīng)預(yù)測(cè)控制[J].化工自動(dòng)化及儀表,2010(10):10?13.
[4] 羅小鎖,周?chē)?guó)清,鄒濤.基于子空間辨識(shí)的狀態(tài)空間模型預(yù)測(cè)控制[J].計(jì)算機(jī)工程與應(yīng)用,2012(19):238?241.
[5] 王建宏,王道波.子空間預(yù)測(cè)控制算法在主動(dòng)噪聲振動(dòng)中的應(yīng)用[J].振動(dòng)與沖擊,2011(10):136?142.
[6] 緱新科,李大鵬.壓電自感知柔性懸臂梁振動(dòng)控制系統(tǒng)研究[J].壓電與聲光,2011(5):81?84.
[7] 陳震,薛定宇,郝麗娜,等.壓電智能懸臂梁主動(dòng)振動(dòng)最優(yōu)控制研究[J].東北大學(xué)學(xué)報(bào),2011(11):32?35.
[8] 劉慶華,歐陽(yáng)繕.壓電結(jié)構(gòu)系統(tǒng)辨識(shí)中的迭代子空間跟蹤法[J].振動(dòng)與沖擊,2013(5):52?57.
[9] YAMADAA K, MATSUHISA H, UTSUNO H. A new method for accurately determining the modal equivalent stiffness ratio of bonded piezoelectric structures [J]. Sound Vibrat, 2012, 331(14): 17?44.
[10] WARMINSKI J, BOCHENSKI M. Active suppression of nonlinear composite beam vibrations by selected control algorithms [J]. Nonlinear Sciences and Numerical Simulation, 2011, 16(5): 2237?2248.
[11] 李德亮,韓安明.柔性機(jī)械臂有限時(shí)問(wèn)控制器設(shè)計(jì)與仿真實(shí)現(xiàn)[J].現(xiàn)代電子技術(shù),2012,35(14):106?108.