蔣庭君等
摘要采用氮化鈦(TiN)修飾平面微電極陣列(pMEA),對其性能進行改進,開展了離體神經電生理和神經遞質電化學的檢測研究。采用磁控濺射法在實驗室自制微電極陣列上修飾具有納米結構的TiN材料,修飾后的微電極阻抗降低近一個數(shù)量級,背景噪聲基線降至±6 μV,信噪比是修飾前的17倍。在SD大鼠離體腦片神經電生理信號檢測中,信噪比可達10∶1,能分離提取±12 μV的微弱信號。神經遞質多巴胺電化學信號檢測下限達50 nmol/L(信噪比2∶1),濃度在005~100 μmol/L內與電流響應的線性相關系數(shù)為0998。實驗結果表明,在微電極表面修飾納米TiN,降低了微電極阻抗,提高了信噪比,實現(xiàn)了對神經信息微弱信號的檢測。
關鍵詞[HTSS]微電極陣列; 氮化鈦修飾; 神經電生理; 神經電化學; 多巴胺
1引言
神經疾病已成為現(xiàn)代社會的一大隱患,其致病機理與腦部神經網絡中神經信息的異常發(fā)放和傳遞有關。神經網絡起溝通外部世界及協(xié)調機體內部活動的作用,是由大量神經元個體連接組成的復雜系統(tǒng)。神經元之間通過電學和化學兩種模式的信號實現(xiàn)信息傳遞,通過對神經元胞外電生理檢測可獲取其電學信號; 對神經遞質的釋放進行電化學檢測可獲取其化學信號。因此,采用兩種檢測模式對神經電生理信號和遞質化學信號的實時、準確和同步的探測,已成為研究和治療神經疾病的基礎\[1~4\]。
微電極陣列(MEA)為神經信息檢測和記錄的研究提供了一種高通量、高時空、分辨率和高靈敏度的檢測器件。目前,微電極陣列主要分為平面MEA\[5,6\](Planar MEA, pMEA)、CMOS (Complementary metal oxide semiconductor)集成MEA\[7\]和3D立體MEA\[8,9\],研究的重點多為神經電生理信息的檢測。pMEA制作工藝相對簡單,批量制作成品率高,對其表面處理也更多樣化和易于實現(xiàn),可直接將細胞培養(yǎng)在其上,具有對神經細胞無損檢測的優(yōu)勢,廣泛應用于神經信息離體檢測。對于神經細胞的胞外電生理檢測,信號的幅度非常微弱(微伏量級),神經遞質的釋放也很微量(納摩爾到微摩爾級),pMEA需克服因電極尺寸小造成的阻抗和熱噪聲增大等問題,而這些問題可通過對其表面進行納米修飾得到改善\[10~13\]。相對于納米鉑黑、納米鉑銥和石墨烯等通過電化學沉積的電極修飾方法,用磁控濺射法修飾在電極表面的氮化鈦(TiN)既能呈現(xiàn)出納米結構, 又能與微電極結合牢固,可多次重復使用,且批量化成本較低。
本研究組自制的pMEA\[14\]集合了神經電生理和神經遞質電化學檢測的功能,為神經信息雙模檢測提供了一種有效工具,通過磁控濺射法修飾的納米TiN材料與微電極結合牢固,重復使用率高,可批量制作。通過交流阻抗譜及背景噪聲測試實驗,考察TiN修飾pMEA的性能。采用修飾TiN的pMEA進行神經電生理檢測和神經遞質電化學檢測實驗,進一步考察其雙模檢測性能。
2實驗部分
21儀器與材料
USBME16FAISystem型16通道濾波放大器(Multi Channel Systems公司),Autolab AUT85039型電化學工作站(Metrohm公司),M205C型體式顯微鏡(LEICA公司),S3500型掃描電子顯微鏡(Hitachi公司),LEAD1548型蠕動泵(蘭格公司),實驗室自制刺激器,MWD20型實驗室超純水器(美誠公司),BSA124S型電子天平(賽多利斯公司)。
多巴胺(Sigma公司),09%生理鹽水(石家莊四藥公司),Ag|AgCl漿(Dupont公司),人工腦脊液(ACSF):1250 mmol/L NaCl,25 mmol/L KCl,20 mmol/L CaCl2,13 mmol/L MgCl2,13 mmol/L NaH2PO4,250 mmol/L NaHCO3,250 mmol/L Glucose,13 mmol/L LSodium Ascorbate,06 mmol/L Sodium pyruvate,pH 74,持續(xù)充入含95% O2和5% CO2的混合氣體。實驗所用SD大鼠海馬區(qū)腦片由北京大學神經科學研究所邢國剛課題組提供,所用藥品試劑均為分析純(國產),實驗用水為高純水。
22平面微電極陣列芯片制備、修飾及表征
實驗使用玻璃基底,鉑作為導電材料,氮化硅作為絕緣層的自制60通道分區(qū)型平面微電極陣列芯片。芯片包含微電極陣列、電極導線、外接電路觸點、神經電生理檢測參比電極、神經遞質電化學檢測參考電極和對電極,使用MEMS(Microelectromechanical Systems)技術的薄膜工藝和光刻工藝制備芯片,通過涂覆Ag|AgCl漿制備電化學參考電極,具體方法參考文獻\[14\]。在修飾TiN之前, 需用氧等離子清洗去除pMEA表面可能吸附的雜質,經光刻工藝曝露待修飾部分。采用磁控濺射法在氬氣與氮氣流量比15∶1條件下濺射30 min,去除殘膠清洗后,完成納米TiN材料修飾。通過掃描電子顯微鏡(Scanning electron microscope, SEM)對微電極表面的TiN材料結構進行表征。
實驗利用自制外接電路接口將pMEA與16通道濾波放大器系統(tǒng)相連,用生理鹽水模擬檢測的組織液環(huán)境,引入實驗室自制刺激器產生的同一刺激脈沖信號,模擬神經電生理檢測過程。通過配套軟件觀察記錄未修飾TiN的微電極(簡稱裸電極)和修飾了TiN的微電極(簡稱TiN電極)的背景噪聲數(shù)據(jù),統(tǒng)計各通道均值和標準偏差,以及對同一刺激信號的響應幅值。將SD大鼠海馬區(qū)腦片置于pMEA培養(yǎng)環(huán)內,通過顯微鏡觀察,將其定位在相應的微電極位點上,使腦片與電極表面緊密貼覆后用腦片夾固定,通入ACSF灌流,觀察記錄腦片神經元的神經電生理信息。
實驗采用Autolab電化學工作站作為電化學實驗的檢測平臺,Ag|AgCl電極作為參考電極,在生理鹽水中對裸電極和TiN電極進行交流阻抗譜掃描,記錄阻抗譜圖;在生理鹽水中依次加入不同濃度多巴胺(Dopamine,DA),采用循環(huán)伏安法和計時電流法對TiN電極進行掃描,觀察記錄pMEA對不同濃度多巴胺溶液的響應數(shù)據(jù)。通過配套軟件Nova記錄實驗數(shù)據(jù),采用Origin軟件擬合多次掃描數(shù)據(jù)作圖。
所有測試過程均在屏蔽箱中進行,且整個測試系統(tǒng)良好接地,將外界噪聲干擾降到最低。
交流阻抗譜是衡量電極性能的重要指標。裸電極與TiN電極的交流阻抗譜掃描對比實驗如圖2所示,TiN電極的阻抗在大部分實驗頻率范圍都比裸電極的阻抗低。但在高頻區(qū)域(f≥1045 Hz), TiN電極的阻抗略高于裸電極。由于本實驗體系采用相同測試條件,溶液電阻近似相等,而交流阻抗包含溶液電阻、電極電阻以及電極表面雙電層產生的容抗,故阻抗變化主要受后兩者影響。在低頻區(qū)域容抗特性占主導,金屬化合物介電常數(shù)大于金屬,TiN能與溶液產生更利于電子擴散的雙電層,即容抗較小,因此TiN電極的阻抗小于裸電極;在高頻區(qū)域電容相當于通路,電阻特性占主導,裸電極為鉑金,其金屬電阻率較低,因此阻抗會低于TiN電極。由于神經電生理信號的頻率約為103Hz,在相應頻段,TiN電極的阻抗比裸電極的降低了近一個數(shù)量級,從04 MΩ降到006 MΩ,其更利于檢測電生理信號。
312背景噪聲對比分析在實際檢測實驗中,背景噪聲基線的高低直接影響探測結果的信噪比。采用pMEA在細胞外記錄的神經元電活動信號信噪比通常都較低, 而且背景噪聲的來源很多\[15\],主要包括環(huán)境噪聲、微電極和檢測系統(tǒng)本身的熱噪聲等,微電極本身的阻抗、得失電子能力等性能會直接影響其大小。
在相同條件下,使用pMEA進行模擬電生理信號檢測,裸電極和TiN電極的背景噪聲基線和響應信號有很大差別。當檢測到信號時,修飾前后微電極各個通道的背景噪聲基線數(shù)值見表1。通過對多個通道的均值對比,TiN電極的噪聲基線比裸電極降低了35 μV,且各通道之間的標準偏差由18 μV降低到08 μV。對同一刺激信號,裸電極和TiN電極探測信號的能力也不同。
將離體海馬區(qū)腦片置于pMEA電極位點上(圖4A),選擇的電極標記為1~3,電極位置對應顯示在圖4B中。圖4C顯示3個通道分別記錄了1000 ms的不同時刻神經電生理信號的發(fā)放,平均背景噪聲基線為±6 μV,信噪比可達10∶1。由于檢測的神經細胞不同,細胞與電極的距離不同,提取出峰電位的波形也不同\[16\]。圖4D顯示從3個通道神經電生理活動中提取的峰電位波形圖,峰電位S1, S2, S3分別對應通道1, 2, 3。峰電位S2具有典型胞外記錄動作電位波形特征,先產生03 ms的負向電位,接著產生1 ms的正向電位,清楚體現(xiàn)了動作電位的去極化、復極化和超極化過程,因其與被測細胞胞體接觸緊密具有較大幅值±60 μV。峰電位S1可能距離被測細胞較遠,發(fā)放信號較弱,幅值較小,僅為±12 μV。而峰電位S3與細胞軸突接觸,呈現(xiàn)先正后負的反向波形。在1000 ms內各通道多次記錄到幅值相同的峰電位波形,說明其攜帶的神經信息分別來自于與其對應電極相接觸的同一神經細胞上。
因為TiN修飾后的pMEA背景噪聲基線較低,一些較微弱信號也能從背景噪聲中分離提取出來,如圖4D中幅值±12 μV的峰電位S1,若采用裸電極進行檢測,較易淹沒在±10 μV的背景噪聲中。因此,經過TiN修飾的微電極更易于將微弱的神經電生理信號從噪聲背景中提取出來,有利于對神經動作電位的檢測,在離體神經電生理檢測中具有更加優(yōu)越的性能。[TS(]圖4(A)腦片海馬區(qū)置于pMEA上的顯微鏡圖,選擇電極1~3,電極位置在(B)圖中顯示;(C)神經元動作電位發(fā)放記錄;(D)分別提取出的典型峰電位波形
Fig4(A) Microgragh of hippocampus slice mounted on pMEA The selected microelectrodes were 1~3, and the positions were shown on (B) (C) Recordings of neural spike activities (D) Three typical spike firing patterns recorded separately from the microelectrodes 1-3[HT5][TS)]
33神經遞質多巴胺的電化學檢測實驗
為了檢測修飾TiN的pMEA對神經遞質的電化學響應,選用不同濃度的多巴胺溶液進行實驗。首先對01~10 mmol/L的多巴胺生理鹽水溶液進行循環(huán)伏安法(Cyclic voltammetry,CV)掃描(圖5A),掃速為005 V/s。在05 V電壓下,各濃度的循環(huán)伏安曲線已有較明顯的區(qū)分,且電極響應電流與多巴胺濃度呈較好的線性關系(圖5B),故選用05 V作為多巴胺在TiN電極表面的氧化電壓。分別使用005~04
4結論
采用磁控濺射法在pMEA表面修飾了納米TiN材料,修飾后交流阻抗降低近一個數(shù)量級,背景噪聲基線降至±6 μV,信噪比是修飾前的17倍。開展SD大鼠離體腦片神經電生理信號的檢測實驗和神經遞質多巴胺溶液電化學檢測實驗,成功獲取多通道的神經細胞動作電位信息,較易提取的微弱電生理信號,在濃度范圍0001~100 μmol/L的多巴胺溶液中獲得氧化電流響應,信噪比為2∶1的檢出限為50 nmol/L,005~100 μmol/L的氧化電流線性曲線相關系數(shù)為0998。在微電極表面修飾納米TiN材料,增加電極的有效表面積,降低了阻抗,提高信噪比,對低濃度神經遞質的有響應,在神經科學基礎研究、神經疾病研究治療和病理分析等方面具有廣泛的應用前景。
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋軼琳, 劉春秀, 蔡新霞 分析化學, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋軼琳, 劉春秀, 蔡新霞 分析化學, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋軼琳, 劉春秀, 蔡新霞 分析化學, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine