呂慶榮,方慶清,劉艷美
(安徽大學(xué)物理與材料科學(xué)學(xué)院,安徽省信息材料與器件重點實驗室,安徽合肥230039)
Co0.8Fe2.2O4多孔微球的制備及交換偏置效應(yīng)
呂慶榮,方慶清,劉艷美
(安徽大學(xué)物理與材料科學(xué)學(xué)院,安徽省信息材料與器件重點實驗室,安徽合肥230039)
通過溶劑熱反應(yīng)合成納米結(jié)構(gòu)Co0.8Fe2.2O4多孔微球.用X射線衍射儀(XRD)、透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)表征樣品的結(jié)構(gòu)和形貌,結(jié)果表明:所制備的Co0.8Fe2.2O4多孔微球由許多納米顆粒組裝而成,直徑約200 nm.用振動樣品磁強計(VSM)測量Co0.8Fe2.2O4多孔微球的變溫磁性,發(fā)現(xiàn)低溫下Co0.8Fe2.2O4多孔微球存在顯著的正交換偏置效應(yīng).組成Co0.8Fe2.2O4多孔微球的納米顆??煽醋饕粋€表面反鐵磁排列與內(nèi)部亞鐵磁排列共存的系統(tǒng),且內(nèi)部亞鐵磁與表面反鐵磁的相互作用為反鐵磁性,Co0.8Fe2.2O4納米顆粒系統(tǒng)具有正交換偏置效應(yīng).
Co0.8Fe2.2O4;多孔微球;交換偏置效應(yīng)
由于具有納米結(jié)構(gòu)的高密度存儲介質(zhì)的發(fā)展,納米結(jié)構(gòu)材料的磁性能引起了人們極大的興趣.Berkowitz等[1-2]報道了納米顆粒的飽和磁化強度隨尺寸減小而降低.為了解釋這種趨勢,Coey等[3]提出了一個簡單的顆粒表面自旋傾斜的模型.Lin等[4]證明了在CoFe2O4納米顆粒中存在一個約1.2 nm厚的磁自旋無序表面層.Kodama等[5]提出了一個包括亞鐵磁排列的核和自旋玻璃態(tài)表面層的顆粒內(nèi)磁化模型,通常稱為核-殼模型.核-殼模型按照鐵磁層(FM)-反鐵磁層(AFM)兩層系統(tǒng),與處理兩相納米顆粒系統(tǒng)的界面問題類似,可解釋納米顆粒系統(tǒng)出現(xiàn)的磁滯回線偏移,即交換偏置效應(yīng).
作為一種重要的磁性材料,鈷鐵氧體具有高飽和磁化強度、高矯頑力、好的機械強度和優(yōu)秀的化學(xué)穩(wěn)定性.納米結(jié)構(gòu)鈷鐵氧體在許多領(lǐng)域有潛在的應(yīng)用,包括高密度磁記錄、磁共振成像和藥物傳輸[6-10].近年來關(guān)于納米結(jié)構(gòu)CoFe2O4制備和性能的研究很受關(guān)注.文獻[11-13]成功制備出單分散CoFe2O4納米顆粒,文獻[14-15]成功制備出CoFe2O4納米線.磁性空心/多孔球的制備研究主要集中在Fe3O4和α-Fe2O3[16-17].相比較而言,鈷鐵氧體的熱和化學(xué)穩(wěn)定性更好.作者擬用溶劑熱反應(yīng)合成納米結(jié)構(gòu)Co0.8Fe2.2O4多孔微球,并用相關(guān)儀器研究其結(jié)構(gòu)、形貌及特性.
取0.73 mmol CoCl2·6H2O、2 mmol FeCl3·6H2O及20 mmol醋酸銨,在25 mL乙二醇中充分?jǐn)嚢枋蛊淙芙?,然后倒入不銹鋼反應(yīng)釜中.將反應(yīng)釜密封,置于干燥箱中,加熱到200℃,保溫24 h后,斷開干燥箱電源,讓其自然冷卻到室溫,隨后將黑色產(chǎn)物濾出,用丙酮清洗幾遍,最后再放進50℃的干燥箱中保溫20 h.
用Philips X'Pert Pro X射線衍射儀(XRD)對產(chǎn)物進行物相分析,掃描電鏡圖像(SEM)由Hitachi S-4800型掃描電子顯微鏡完成,用JEOL JEM-2010型透射電子顯微鏡獲取透射電鏡圖像(TEM),用BHV-55型振動樣品磁強計(VSM)測量產(chǎn)物在不同溫度下的磁性能.
2.1 Co0.8Fe2.2O4多孔微球的結(jié)構(gòu)和形貌
產(chǎn)物的XRD圖譜如圖1所示.圖1中只有7處明顯的衍射峰,分別與立方結(jié)構(gòu)鈷鐵氧體(JCPDS卡片:22-1086)的衍射峰相對應(yīng),沒有其他雜峰,表明實驗成功制備出了單一的尖晶石結(jié)構(gòu)的鈷鐵氧體.根據(jù)Scherrer公式[18]可估算出樣品的平均晶粒尺寸為26 nm.
圖1 Co0.8Fe2.2O4的XRD圖譜Fig.1 XRD pattern for Co0.8Fe2.2O4
圖2為Co0.8Fe2.2O4多孔微球的SEM、TEM照片及直徑分布直方圖.圖2a為Co0.8Fe2.2O4的SEM照片,在圖中可看到大量直徑100~300 nm的微球,微球表面粗糙,由許多納米顆粒組裝而成.圖2b為Co0.8Fe2.2O4的TEM照片,從圖中可清晰地看出微球內(nèi)部的多孔結(jié)構(gòu),Co0.8Fe2.2O4納米顆粒呈黑色,顆粒間的白色部分為納米孔洞.圖2c為Co0.8Fe2.2O4微球的直徑分布直方圖,微球平均直徑約200 nm.
圖2 Co0.8Fe2.2O4多孔微球的SEM(a)、TEM照片(b)及直徑分布直方圖(c)Fig.2 SEM(a),TEM images(b)and histogram of diameter distribution(c)for porousm icrospheres
2.2 Co0.8Fe2.2O4多孔微球的交換偏置效應(yīng)
將Co0.8Fe2.2O4多孔微球加場(H=5 000 Oe)冷卻至液氮溫度,再分別升至200、400、600 K后進行磁滯回線測量,結(jié)果如圖3所示.在200、400 K測得的磁滯回線不是左右對稱的,而是明顯向右偏移,呈現(xiàn)出正向交換偏置效應(yīng).在600 K測得的磁滯回線是左右對稱的,沒有交換偏置效應(yīng)出現(xiàn).
圖3 Co0.8Fe2.2O4多孔微球在不同溫度下的磁滯回線Fig.3 M agnetic hysteresis loops for Co0.8Fe2.2O4porousm icrospheres at different tem perature
分別在加場(H=1 000 Oe)(FC)及零場(ZFC)條件下冷卻,然后在升溫過程中測得Co0.8Fe2.2O4多孔微球的M-T曲線,如圖4所示.在零場冷卻下,Co0.8Fe2.2O4多孔微球磁化強度有極大值,對應(yīng)溫度TB≈410 K,即為交換偏置效應(yīng)的阻塞溫度.
圖4 Co0.8Fe2.2O4多孔微球的ZFC-FC曲線Fig.4 ZFC-FC curves for Co0.8Fe2.2O4porousm icrospheres
交換偏置效應(yīng)是一種界面耦合效應(yīng),主要存在于鐵磁/反鐵磁材料體系中.最近的研究發(fā)現(xiàn)亞鐵磁納米材料[5,19-20]及核殼材料[21]中都存在交換偏置效應(yīng).由于鐵氧體中磁性陽離子間的交換作用是由居于其間的一個氧離子促成的,如果氧離子從表面流失,則交換鍵斷開,斷裂鍵將減少表面陽離子的有效配位,從而誘導(dǎo)表面自旋無序[3].TEM和SEM分析表明:Co0.8Fe2.2O4多孔微球是由許多約30 nm的顆粒組裝而成,Co0.8Fe2.2O4納米顆粒表面自旋混亂排列或自旋受挫,在冷卻過程中這些表面自旋在低溫下被凍結(jié),充當(dāng)反鐵磁角色;又因為納米顆粒內(nèi)部的亞鐵磁性,使系統(tǒng)可視為反鐵磁和鐵磁共存的系統(tǒng),于是在Co0.8Fe2.2O4納米顆粒自旋凍結(jié)的表面和亞鐵磁性內(nèi)部之間就產(chǎn)生了交換偏置現(xiàn)象.
研究表明,對不同的交換偏置系統(tǒng),其交換偏置場有正有負(fù)[22-24],交換偏置場的正負(fù)主要決定于鐵磁-反鐵磁相互作用以及外場與反鐵磁表面的磁耦合相互作用.在場冷卻狀態(tài),如果鐵磁-反鐵磁相互作用是鐵磁性的,則交換偏置場為負(fù);如果鐵磁-反鐵磁相互作用是反鐵磁性的,并且外場足夠大使反鐵磁層表面磁化強度沿外場方向排列,從而克服了界面的鐵磁-反鐵磁相互作用,則交換偏置場為正[25].Co0.8Fe2.2O4多孔微球系統(tǒng)中產(chǎn)生了正交換偏置效應(yīng),說明Co0.8Fe2.2O4納米顆粒內(nèi)部亞鐵磁層與自旋凍結(jié)表層的相互作用為反鐵磁性.
圖5 Co0.8Fe2.2O4多孔微球的矯頑力(HC)和偏置場(HE)隨溫度變化的曲線Fig.5 Coercivity(Hc)and exchange bias field(HE)with tem perature for Co0.8Fe2.2O4porousm icrospheres
用溶劑熱反應(yīng)制備出由納米顆粒組裝的Co0.8Fe2.2O4多孔微球.在場冷卻條件下,Co0.8Fe2.2O4的多孔微球在低溫下表現(xiàn)出顯著的正交換偏置效應(yīng),這是由Co0.8Fe2.2O4納米顆粒自旋無序的表面和亞鐵磁性的內(nèi)部間存在強交換耦合作用所造成的.交換偏置場隨溫度增加快速減小到零,矯頑力隨溫度增加呈先增后降趨勢,在TB附近有最大值.
[1]Berkowitz A E,Lahut JA,Jacobs IS,et al.Spin pinning at ferrite-organic interfaces[J].Phys Rev Lett,1975,34:594-597.
[2]Berkowitz A E,Lahut JA,Van Buren C E.Properties ofmagnetic fluid particles[J].IEEE Trans Magn,1980,16: 184-190.
[3]Coey JM D.Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites[J].Phys Rev Lett,1971,27:1140-1142.
[4]Lin D,Nunes A C,Majkrzak C F,et al.Polarized neutron study of the magnetization density distribution within a CoFe2O4colloidal particle II[J].JMagn Magn Mater,1995,145:343-348.
[5]Kodama R H,Berkowitz A E.Surface spin disorder in NiFe2O4nanoparticles[J].Phys Rev Lett,1996,77:394-397.
[6]Caruso F,Spasova M,Susha A,et al.Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J].Chem Mater,2001,13:109-116.
[7]Hyeon T,Lee S,Park J,etal.Synthesis of highly crystalline andmonodispersemaghemite nanocrystalliteswithouta size-selection process[J].JAm Chem Soc,2001,123:12798-12801.
[8]Yu S,Yoshimura M.Ferrite/metal composites fabricated by soft solution processing[J].Adv FunctMater,2002,12: 9-15.
[9]Li X,Zhang D,Chen J.Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres[J].JAm Chem Soc,2006,128:8382-8383.
[10]Su C,Sheu H,Lin C,et al.Nanoshellmagnetic resonance imaging contrast agents[J].JAm Chem Soc,2007,129:2139-2146.
[11]Sun S,Zeng H,Robinson D,et al.Monodisperse MFe2O4(M=Fe,Co,Mn)nanoparticles[J].JAm Chem Soc,2004,126:273-279.
[12]Rondinone A,Samia A,Zhang Z.Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4spinel ferrite nanocrystallites[J].JPhys Chem B,1999,103:6876-6880.
[13]Olsson R,Salazar-Alvarez G,Hedenqvist M,et al.Controlled synthesis of near-stoichiometric Cobalt ferrite nanoparticles[J].Chem Mater,2005,17:5109-5118.
[14]Pham-Huu C,Keller N,Estournès C,et al.Synthesis of CoFe2O4nanowire in carbon nanotubes[J].Chem Commun,2002:1882-1883.
[15]Pham-Huu C,Keller N,Estournès C,et al.Microstructural investigation and magnetic properties of CoFe2O4nanowires synthesized inside carbon nanotubes[J].Phys Chem Chem Phys,2003,5:3716-3723.
[16]Duan H,Wang D,Sobal N,etal.Magnetic colloidosomes derived from nanoparticle Interfacial self-assembly[J].Nano Lett,2005,5:949-952.
[17]Bang J,Suslick K.Sonochemical synthesis of nanosized hollow hematite[J].JAm Chem Soc,2007,129:2242-2243.
[18]范雄.金屬X射線學(xué)[M].北京:機械工業(yè)出版社,1996:103-122.
[19]Kodama R H,Berkowitz A E.Atomic-scalemagnetic modeling of oxide nanoparticles[J].Phys Rev B,1999,59: 6321-6325.
[20]Martinez B,Obradors X,Balcells L,et al.Low temperature surface spin-glass transition inγ-Fe2O3nanoparticles[J].Phys Rev Lett,1998,80:181-184.
[21]Kong Q,Wei A,Lin X M.Exchange bias in Fe/Fe3O4core-shell magnetic nanoparticles mediated by frozen interfacial spins[J].Phys Rev B,2009,80:134418-134421.
[22]Nogues J,Schuller IK.Exchange bias[J].JMagn Magn Mater,1999,192:203-232.
[23]Tian H Y,Xu X Y,Hu J G.The influence of the cooling field on the exchange bias in ferromagnetantiferromagnet bilayers system[J].Acta Phys Sin,2009,58:2757-2761.
[24]Fitzsimmons M R,Kirby B J,Roy S,et al.Pinned magnetization in the antiferromagnet and ferromagnet of an exchange bias system[J].Phys Rev B,2007,75:214412-214416.
[25]Nogues J,Lederman D,Moran T J,et al.Positive exchange bias in FeF2-Fe bilayers[J].Phys Rev Lett,1996,76:4624-4627.
(責(zé)任編輯 鄭小虎)
Synthesis and exchange bias effect of nano-structure Co0.8Fe2.2O4porousm icrospheres
LV Qing-rong,F(xiàn)ANG Qing-qing,LIU Yan-mei
(Anhui Key Laboratory of Information Materials and Devices,School of Physics and Materials Science,Anhui University,Hefei 230039,China)
Co0.8Fe2.2O4porous nanostructure microspheres were prepared by solvothermal reaction.X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were used to characterize the structure and morphology of samples.The results showed that the prepared Co0.8Fe2.2O4porous microspheres with about 200 nm diameter,were assembled bymany nanoparticles.The magnetic properties were evaluated with a vibrating sample magnetometer(VSM).The significant positive exchange bias effectwas found at lower temperature in Co0.8Fe2.2O4porous microspheres.Co0.8Fe2.2O4porous microspheres were assembled by many nanoparticles,and the nanoparticles could be seen as a surface antiferromagnetic arrangement and internal ferrimagnetic ordering coexistence system.The interaction between internal ferrimagnetic layer and antiferromagnetic surface layer was antiferromagnetic,so the Co0.8Fe2.2O4nanoparticles system possessed positive exchange bias effect.
Co0.8Fe2.2O4;porousmicrospheres;exchange bias
TQ138.1
A
1000-2162(2014)03-0037-06
10.3969/j.issn.1000-2162.2014.03.007
2013-09-10
安徽省自然科學(xué)基金資助項目(090414177);安徽大學(xué)博士科研啟動經(jīng)費資助項目
呂慶榮(1972—),女,河南信陽人,安徽大學(xué)副教授,博士.