• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    過渡金屬改性的ZSM-5催化劑應用于甲硫醚轉化制甲硫醇

    2014-09-17 06:59:58陳世萍王偉明劉迎偉魏育才袁成龍方維平楊意泉
    物理化學學報 2014年6期
    關鍵詞:福建廈門元華化工學院

    陳世萍 王偉明 劉迎偉 魏育才 袁成龍 方維平 楊意泉,*

    (1廈門大學化學化工學院化學工程與生物工程系,福建廈門361005;2廈門大學化學化工學院化學系,福建廈門361005)

    1 Introduction

    The sulfur-containing compounds such as dimethyl sulfide(DMS),methanethiol(MT),and H2S are referred to as total reduced sulfur(TRS)compounds,and they all have malodorous odor.1,2Among them,MT is now used as an important chemical intermediate to produce organosulfur compounds such as methionine,widely used as feed additive.With increasing demand for methionine,the production of MT becomes more important.3Industrially,it is synthesized from methanol and hydrogen sulfide over alumina-supported metal oxide catalysts;and DMS,a major byproduct,is always formed along with methanethiol.4In the H2S atmosphere,DMS can be converted into MT in the presence of a catalyst,so as to boost the yield of methanethiol and lower the content of DMS in wastewater,which is economically as well as environmentally attractive for better carbon management.

    Several solid acid catalysts like Al2O3,phosphorus promoted Al2O3,and WO3/ZrO2,have been studied for the synthesis of MT from DMS at 623-673 K with byproduct methane.5-12Besides,the effect of temperature,space velocity,and molar ratio of H2S to DMS was investigated in our previous study.6

    There is still a constant search for the development of novel catalysts with high activity and selectivity for the conversion of DMS to MT.In this regard,less attention has been paid towards the ZSM-5 catalysts.Plaisance and Dooley13reported the production of DMS and MT by condensation of methanol and hydrogen sulfide in the presence of a kind of zeolite,and deduced that the zeolite with stronger acid sites can easily adsorb DMS and MT.Satokawa et al.14found that DMS was efficiently adsorbed on silver-exchanged Y zeolites(Ag/Na-Y)at room temperature.Hwang and Tai15have used Ag/ZSM-5,Mn/ZSM-5,and Ag-Mn/ZSM-5 as catalysts to catalyze the oxidation of DMS with ozone;they concluded that ion-exchanged ZSM-5 strengthened the adsorption and oxidation of DMS.

    It is well known that transition metals(W,Ni,Co,Mo)have an ability to catalyze sulfurization.14-19However,to the best of our knowledge,these transition metals supported on ZSM-5 have not been systematically studied for the reaction of DMS with H2S.The aim of this work is to carry out a systematic comparison of the performance of ZSM-5-supported W,Ni,Co,and Mo catalysts for the reaction.The performance-structure correlation of different catalysts was discussed as well.

    2 Experimental

    2.1 Catalyst preparation

    The catalysts were prepared by incipient wetness impregnation method.Ammonium metatungstate,nickel nitrate,cobalt nitrate,and ammonium molybdate(all are 99%of purity,Sinopharm Chemical Reagent Co.,Ltd.)were used as precursors of the said transition metals.Appropriate amount of transition metal salt was dissolved in distilled water to produce an aqueous solution,in which then the support material ZSM-5,(proton form,n(SiO2)/n(Al2O3)=38(molar ratio),Catalyst Factory of NanKai University)was soaked at room temperature.The impregnated sample was dried at 353 K for 24 h and then calcined in air at 773 K for 2 h.After pressing into wafer,crushing and sieving,the catalyst particles of 30-60 mesh were collected for use;the as-prepared catalysts are denoted as M/ZSM-5,(M=W,Ni,Co,Mo),the stoichiometric metal content was 2%(mass fraction).Besides,the used catalyst is marked as M/ZSM-5-A

    2.2 Catalyst activity evaluation

    DMS conversion reaction was conducted in a glass tubular fixed bed reactor with an internal diameter of 10 mm;typically,2.0 mL of the catalyst with 30-60 mesh was filled into the reactor,with a thin layer of glass fiber and a layer of quartz powder(30-60 mesh)covered on the catalyst bed.Before experiment,the catalyst was sulfurized with H2S for 1 h at 673 K to activate the catalyst;the H2S flow rate was maintained by mass flow controller(Beijing Seven star,D08-1F).Then the sulfurized catalyst was tested at 593,633,and 673 K in turn for 2 h,respectively,and the system pressure was held at 0.5 MPa with the aid of a back-pressure regulator.The DMS solution was injected into the catalyst bed by precision metering pump(Beijing Satellite Manufactory,2ZB-1L10).The outlet stream temperature was kept at 400 K with heater band and analyzed by an on-line gas-chromatograph equipped with a Porapak Q(2 m×Ф 3 mm)column connected to a thermal conductivity detector(TCD).

    2.3 Catalyst characterization

    XRD measurements were performed on a Panalytical X′pert PRO X-ray diffractometer utilizing monochromatic Cu Kαradiation(λ=0.15418 nm,tube voltage:40 kV,tube current:30 mA)in the 2θ range from 5°to 50°.Unmodified ZSM-5 zeolite sample was used as reference for crystallinity comparison.The degree of crystallinity of M/ZSM-5 was defined utilizing the main X-ray diffraction peak(2θ=22.0°-25.0°)by the following equation:

    The surface areas of the catalysts were measured using nitrogen adsorption at 77 K with a Micromeritics Tristar 3000 surface area and pore analyzer.Prior to N2physisorption measurement,all samples were degassed at 393 K for 1 h and then evacuated at 573 K for 3 h to remove physically adsorbed impurities.The specific surface area(SBET)was determined by the Brunauer-Emmett-Teller(BET)method and the pore size distributions were calculated by Barrett-Joyner-Halenda(BJH)method according to the desorption branch of the isotherms.The Si/Al mole ratios and actual metal compositions of the M/ZSM-5 samples were determined by a Bruker S8 TIGER X-ray fluorescence(XRF)spectrometer.The contents of carbon and sulfur on the tested catalysts were measured on CHNS Equipment(Vario EL III elemental analyser)with the limit of detection(LOD)being 0.03-20 mg for carbon and 0.03-6 mg for sulfur.

    CO2and NH3temperature-programmed desorption(TPD)measurements of the catalysts were conducted in a quartz tube reactor filled with 80 mg catalyst.For CO2-TPD experiment,the catalyst was pretreated in Ar at 673 K for 1 h,then cooled down to 323 K;carbon dioxide adsorption was performed for about 0.5 h in a CO2stream at a flow rate of 30 mL·min-1.Weakly adsorbed CO2was removed by Ar sweeping at 323 K,and then the temperature was increased to 1073 K at a heating rate of 10 K·min-1.The desorbed CO2component was monitored with a mass spectrometry(MS)signal of m/e=44 in multiple ion detection(MID)mode.So did the NH3-TPD experiment as CO2-TPD with NH3substituting for CO2.The NH3-TPD experiment was conducted from 323 to 873 K.Desorbed NH3and H2O were monitored with a MS signal of m/e=16,17 in MID mode,and a MS signal of m/e=18,respectively.

    O2temperature-programmed oxidation(TPO)experiment for the used catalysts was performed in a quartz reactor.For each experiment,80 mg sample was pretreated in Ar at 323 K for 1 h,and then swept with 5%O2/Ar at a rate of 20 mL·min-1until the base line on the recorder remained unchanged.Finally,the sample was heated at a rate of 10 K·min-1in 5%O2/Ar.CO2and SO2formed were analyzed with a MS signal of m/e=44,64 in MID mode,respectively.

    3 Results and discussion

    3.1 Catalytic activity

    The evaluation results of the catalysts as a function of temperature are shown in Fig.1;the activity data of the catalysts with different molar ratios of H2S to DMS at 593 K are summarized in Table 1.Earlier studies5-7indicated that the reaction of H2S with DMS to form MT is accompanied with by-product methane;two reactions,i.e.,CH3SH→CH4+S+C,and CH3SCH3→CH4+C2H6+S+C,led to the formation of methane at the expense of MT and DMS.

    The data of DMS conversion and selectivities toward MT and methane are listed in Table 1.The conversions of DMS at 593 K for all catalysts are similar,and the selectivity toward MT is found to be higher than 98%for all catalysts.The modified ZSM-5 sample exhibits a relatively high activity,which may be due to the strong Lewis acid sites on ZSM-5.In the transition metal-modified ZSM-5 catalysts,the Co/ZSM-5 sample shows the best conversion at both H2S/DMS mole ratio cases,followed by Mo-,Ni-,and W-modified samples in turn.Several lines of evidences verified that both DMS and MT were adsorbed on the Al3+cation of ZSM-5 by electronic pairs,20-22the above activity results show that the additive ions(W6+,Ni2+,Co3+,and Mo6+)are more efficient than Al3+in adsorbing DMS and MT.

    Fig.1 Conversion of DMS as a function of temperature over(a)W/ZSM-5,(b)Ni/ZSM-5,(c)Co/ZSM-5,(d)Mo/ZSM-5

    Table 1 Conversion of DMS at different mole ratios of H2S to DMS over the catalysts at 593 K

    The shapes of conversion and selectivity curves for W-,Ni-,Co-and Mo-containing catalysts are similar(Fig.1).We observed that increasing in the reaction temperature led to the enhancement in the conversion of DMS and decline in the selectivity towards MT.It might be due to the inevitable decomposition of DMS and MT with the temperature increasing.23W/ZSM-5 exhibits the lowest conversion and the highest selectivity towards methanethiol as the increase of temperature with respect to the four transition metal-modified catalysts,whereas the Co/ZSM-5 catalyst is most active and the selectivity towards methanethiol severely decreases with temperature increasing.The decreasing rate of the selectivity towards methanethiol follows the sequence:Co/ZSM-5>Mo/ZSM-5>Ni/ZSM-5>W/ZSM-5.In other words,the transition metal-modified ZSM-5 catalysts not only strengthen the adsorption of DMS and MT,but also improve the decomposition of DMS and MT on active metal sites.Low selectivity towards MT of the Co-containing catalyst for this reaction is rather unexpected although the severe decomposition of DMS and MT may generate much carbon and sulfur deposition,which will clog the pore.When the amount of carbon accumulated has been over 20%(mass fraction)on the surface,the catalyst would be deactivated.5

    For the four catalysts,the conversion of DMS is relative to the concentration of DMS in the feed.At H2S/DMS molar ratio of 4,the conversion of DMS is close to twice as many as that at H2S/DMS molar ratio of 2.This phenomenon is accordance with the result reported in the literature23for γ-Al2O3used in the reaction of DMS with H2S.

    3.2 Catalyst characterization

    3.2.1 Physicochemical properties

    The XRD patterns of the metal-modified ZSM-5(M/ZSM-5)samples(both fresh and used samples)are shown in Fig.2.As can be observed from Fig.2a,all the fresh M/ZSM-5 samples exhibit typical peaks due to ZSM-5,indicating that the structure of the zeolite remained intact after metal loading.However,the crystallinity of different metal-modified catalysts drops to some extent(Table 2),possibly owing to the dealumination of the zeolite during the modification process(impregnating,drying,and calcining).The transition metal cations(W6+,Ni2+,Co3+,Mo6+)anchor to the negative framework charge held in the Al―O―(Si―O)2―Al cluster on the surface of ZSM-5 and replace for some of Al3+sites,24so the mole ratio of Si/Al for the modified catalysts exhibits a little increase.No diffraction peaks due to metal oxides(metal=W,Ni,Co,Mo)can be detected,indicating that the active metal component on the catalyst surface is highly dispersed or lower than the XRD detection limit.The XRD patterns of the used catalysts illustrate that the support ZSM-5 in all metal-modified ZSM-5 samples still preserves typical structure even under harsh reaction conditions,obviously,the crystallinity drops to varying degrees,which is estimated from Fig.2b;this may be attributed to carbon deposition on the surface.

    Fig.2 XRD patterns of the metal-modified ZSM-5 samples before and after using

    The surface area,pore diameter,and pore volume of the M/ZSM-5 samples are found to be lower than those of ZSM-5 sample(Table 3).The surface area of Ni/ZSM-5 is lower than those of the others;the difference may be due to different particle sizes of these metal oxides and their different interactions with ZSM-5.It is observed that the porosity and specific surface area of the used catalyst reduce much;the losses in the sur-face area(compared with the surface area of the fresh catalyst)are 29.7%for W/ZSM-5,33.75%for Ni/ZSM-5,37%for Co/ASM-5,and 40.5%for Mo/ZSM-5.The distinct loss of the porosity and specific surface area may be ascribed to the deposition of carbon and sulfur on the surface,leading to blocking up the pore;these depositions caused by DMS conversion are subjected to oxidation treatment at above 773 K repeatedly to rejuvenate the catalyst in industrial process.6,7

    Table 2 Chemical composition of the different M/ZSM-5 samples

    Table 3 Textural properties of M/ZSM-5 samples before and after using

    3.2.2 Surface acid-base properties

    The NH3-TPD and CO2-TPD measurement results are depicted in Figs.3 and 4.Two outstanding desorption peaks appear in the NH3-TPD patterns arising from the catalysts.A low temperature peak at near 420 K due to the ammonia species,which is desorbed from week acidic sites,in all catalysts appears;whereas a high temperature peak at near 730 K due to the ammonia species desorbed from strong acidic sites in W/ZSM-5,Ni/ZSM-5,Mo/ZSM-5 catalysts occurs.25,26Compared with ZSM-5 sample,the samples modified with M(M=W,Ni,Co,Mo)have a small shoulder peak at near 520 K in the NH3-TPD profile,indicating that small amounts of moderate acidic sites in all modified catalysts appear.In summary,the area below the curve increases as the addition of transition metal,this indicates that the total acidity of ZSM-5 is enhanced by the modification with transition metal;the addition of W,Ni,and Mo intensifies the strong acid of the catalysts,while Co makes the weak acidic sites increase.On the other hand,the intensities and quantities of basic sites on the modified catalysts are changed to some extent,especially in Co/ZSM-5 and Mo/ZSM-5.For Co/ZSM-5 catalyst,doping cobalt oxide results in the disappearance of the most of moderate basic sites with a CO2desorption peak occurring at 700 K,27and in the appearance of strong basic sites with a CO2desorption peak occurring at 800 K.A shoulder peak at 750 K appears in the profile for the Mo/ZSM-5 catalyst,indicating that Mo-modified ZSM-5 expresses more mild basicity.Weak basic sites shown by CO2desorption peak at 410 K do not exhibit significant change for all catalysts.

    Fig.3 NH3-TPD profiles of M/ZSM-5 samples

    Fig.4 CO2-TPD profiles of M/ZSM-5 samples

    The transformation of the acidities and basicities induced by doping transition metal oxides could be explained by the reaction of metal active sites and the acidic(basic)sites on the ZSM-5 surface.Therefore,the different metal-modified ZSM-5 zeolites result in various metal-sulfur interactions during the presulfurization with H2S.27The C―S bond is activated via acid site on the catalyst surface and cleaves to a methylthiolate group.14The increase of the acidity increases the capacity of the catalysts to carry out the C―S bond incision,28-31and subsequently improves the catalytic behaviors in converting DMS.The above catalyst activity test and characterization results strongly suggest that metal active sites and the acidic sites closely situated have a strong synergistic effect;therefore,the interactions of transition metals with DMS become stronger and the acid sites favor the cleavage of C―S bond.Furthermore,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,this may be due to the decompositions of DMS and MT,which are easy to carry out on basic sites on the catalyst surface.

    3.2.3 Investigation of C and S deposition measured by using O2-TPO

    As we briefly mentioned above,the accumulation of carbon and sulfur on the surface may block up the pore,leading to the losses of porosity and specific surface area.The data of surface contents of C and S on used catalysts are listed in Table 3.DMS and MT decompositions are the main routes for coke and sulfur formation,resulting in the highest content of C and S on the Co/ZSM-5 catalyst owing to the strongest effect of Co3+on C―S bond incision.

    Fig.5 O2-TPO profiles of M/ZSM-5 samples

    O2-TPO measurements for the used catalysts are depicted in Fig.5,the reaction includes the oxidation of the deposited carbon and sulfur along with the residual adsorbed TRS(DMS,MT,and H2S),resulting in the formation of CO2,SO2,and water,which are the complete oxidation products.It is evident that there are three regions of CO2formation with respect to the maximum peaks occurring at 690,750,and 860 K,respectively,which can be assigned to some carbonaceous deposits within the ZSM-5 zeolite channels.The M/ZSM-5 catalysts except Mo/ZSM-5 show a higher and stronger peak at 890 K,suggesting more carbon deposition existing,thus,higher temperature is needed when the reactivation of the catalyst is wanted.The release of SO2is more complicated,there is one apparent peak for ZSM-5 at 720 K,while,two small and broad peaks occur at 530 and 900 K for M/ZSM-5,whereas all the peaks of the M/ZSM-5 catalysts exhibit a small shift toward lower temperature for the oxidation of sulfur,The action of Co/ZSM-5 leads to producing largest amount of SO2,followed by that of Mo,Ni,W,indicating that the severest reaction occurs on Co/ZSM-5.

    4 Conclusions

    The reaction of H2S with DMS to form MT was studied over the transition metals(W,Ni,Co,Mo)modified ZSM-5 catalysts,the metal active sites and the acidic sites closely situated have a strong synergistic effect.The transition metal cations(W6+,Ni2+,Co3+,Mo6+)replace some of Al3+sites,since the transition metal cations are more efficient than Al3+in adsorbing DMS and MT,leading to more intense conversion of DMS.The total acidity of ZSM-5 was found to be enhanced by doping transition metal promoters,the addition of W,Ni,and Mo intensified the acidity of strong acid sites of the catalysts,while Co made the weak acidic sites increase.The increase of the acidity increases the capacity of the catalysts to carry out C―S bond incising,and subsequently improves the catalytic behavior in converting DMS.On the other hand,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,which may be due to the fact that the decompositions of DMS and MT are easy to carry out on basic sites on the surface of the catalysts.

    The used catalysts suffer from deactivation because of carbon and sulfur deposition on the surface;they cause distinct losses of the porosity and specific surface area,and subsequently block the pore and hinder the transport of reactants(H2S,DMS)to the surface,and,as a result,reduce the reaction rate.The oxidation treatment can efficiently rejuvenate the catalysts.

    (1) Kastner,J.R.;Buquoi,Q.;Gangavaram,R.;Das,K.C.Envir.Sci.Technol.2005,39,1835.doi:10.1021/es0499492

    (2) Demessie,E.S.;Devulapelli,V.G.Appl.Catal.B:Environ.2008,84,408.doi:10.1016/j.apcatb.2008.04.025

    (3) Gutiérrez,O.;Kaufmann,C.;Hrabar,A.;Zhu,Y.;Lercher,J.J.Catal.2011,280,264.doi:10.1016/j.jcat.2011.03.027

    (4) Chandra,S.;Soni,K.;Bunkar,R.;Sharma,M.;Singh,B.;Mahato,A.N.;Vijayaraghavan,R.Catal.Commun.2009,11,77.doi:10.1016/j.catcom.2009.08.014

    (5) Beach,L.K.Preparation ofAlkyl Mercaptans.US Patent 2667515,1954-1-26.

    (6)Chen,S.P.;Zhang,Y.H.;Wu,M.;Fang,W.P.;Yang,Y.Q.Appl.Catal.A 2012,431-432,151.

    (7)Chen,S.P.;Wang,W.M.;Zhang,Y.H.;Wei,Y.C.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2012,365,60.doi:10.1016/j.molcata.2012.08.009

    (8) Chang,J.S.;Yu,H.B.;Jiang,X.D.;Ma,Y.Q.;Cheng,H.;Zhao,H.Ind.Catal.2005,13,32.[常俊石,于海斌,姜雪丹,馬月謙,成 宏,趙 虹.工業(yè)催化,2005,13,32.]

    (9)Zhang,Y.H.;Chen,S.P.;Yuan,C.L.;Fang,W.P.;Yang,Y.Q.Chin.J.Catal.2012,33,317.[張元華,陳世萍,袁成龍,方維平,楊意泉.催化學報,2012,33,317.]

    (10) Barth,J.O.Process for Preparing Methyl Mercaptan from Dialkyl Sulphides and Dialkyl Polysulphides.US Patent 7576243,2009-8-18.

    (11) Mashkina,A.V.Petro.Chem.2009,49,441.

    (12) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Phys.Chem.1993,97,9761.doi:10.1021/j100140a037

    (13) Plaisance,C.P.;Dooley,K.M.Catal.Lett.2009,128,449.doi:10.1007/s10562-008-9772-2

    (14) Satokawa,S.;Kobayashi,Y.;Fujiki,H.Appl.Catal.B:Environ.2005,56,51.doi:10.1016/j.apcatb.2004.06.022

    (15) Hwang,C.L.;Tai,N.H.Appl.Catal.A 2011,393,251.doi:10.1016/j.apcata.2010.12.004

    (16)Ding,L.H.;Zheng,Y.Catal Commun.2006,7,1035.doi:10.1016/j.catcom.2006.05.006

    (17)Chen,A.P.;Wang,Q.;Li,Q.L.;Hao,Y.J.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2008,238,69.

    (18) Fan,X.L.;Liu,Y.;Du,X.J.;Liu,C.;Zhang,C.Acta Phys.-Chim.Sin.2013,29,263.[范曉麗,劉 燕,杜秀娟,劉 崇,張 超.物理化學學報,2013,29,263.]doi:10.3866/PKU.WHXB201211231

    (19) Koranyi,T.I.;Moreau,F.;Rozanov,V.V.;Rozanova,E.A.J.Mol.Struct.1997,410,103.

    (20) Hwang,C.L.;Tai,N.H.Appl.Catal.B 2010,93,363.doi:10.1016/j.apcatb.2009.10.009

    (21) Maia,A.J.;Louis,B.;Lam,Y.L.;Pereira,M.M.J.Catal.2010,269,103.doi:10.1016/j.jcat.2009.10.021

    (22) Garcia,C.L.;Johannes,A.L.J.Phys.Chem.1991,95,10729.doi:10.1021/j100179a040

    (23) Mashkina,V.Y.Appl.Catal.A 1994,109,45.doi:10.1016/0926-860X(94)85002-X

    (24) Sazama,P.;Dedecek,J.;Gábová,V.;Wichterlová,B.;Spoto,G.;Bordiga,S.J.Catal.2008,254,180.doi:10.1016/j.jcat.2007.12.005

    (25)Luz,R.G.;Hermes,F.;Bertmer,M.;Enrique,R.C.;Antonio,J.L.;Simon,U.Appl.Catal.A 2007,328,174.doi:10.1016/j.apcata.2007.06.003

    (26) Wang,W.L.;Liu,B.J.;Zeng,X.J.Acta Phys.-Chim.Sin.2008,24,2102.[王文蘭,劉百軍,曾賢君.物理化學學報,2008,24,2102.]doi:10.3866/PKU.WHXB20081128

    (27)Seong,M.J.;Demoulin,O.;Grange,P.J.Mol.Catal.A:Chem.2005,236,94.doi:10.1016/j.molcata.2005.03.028

    (28) Pecoraro,T.A.;Chianelli,F.R.J.Catal.1981,67,430.doi:10.1016/0021-9517(81)90303-1

    (29) Mashkina,A.V.;Gruncald,V.R.;Borodin,B.P.;Nasteka,V.I.;Yakovleva,V.N.;Khairulina,L.N.React.Kinet.Catal.Lett.1991,43,361.doi:10.1007/BF02064698

    (30) Koshelev,S.N.;Paukshtis,E.A.;Sagitullin,R.S.;Bezrukov,A.V.;Mashkina,A.V.React.Kinet.Catal.Lett.1985,27,387.doi:10.1007/BF02070480

    (31) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Mol.Catal.A 1995,97,49.doi:10.1016/1381-1169(94)00068-9

    猜你喜歡
    福建廈門元華化工學院
    使固態(tài)化學反應100%完成的方法
    開學第一課
    珍貴樹種黃檀栽培技術
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    福建廈門
    雕塑藝術在食品造型中的應用研究
    詩書畫苑
    晚晴(2019年7期)2019-08-26 01:33:53
    讓詩詞插上音樂的翅膀——中華詩詞學會顧問李元華訪談錄
    中華詩詞(2016年11期)2016-07-21 14:56:16
    凌辱還是自愿?兒子刀下之人是否“第三者”
    男人爽女人下面视频在线观看| 久久久久久久大尺度免费视频| 成人综合一区亚洲| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频 | 亚洲在久久综合| 男女边摸边吃奶| 自拍欧美九色日韩亚洲蝌蚪91 | 69人妻影院| 久久久久国产精品人妻一区二区| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 深夜a级毛片| 亚洲内射少妇av| 一区二区三区免费毛片| 欧美成人精品欧美一级黄| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 日韩精品有码人妻一区| 国精品久久久久久国模美| 色视频www国产| 亚洲av成人精品一区久久| 国产精品一区二区在线观看99| 97人妻精品一区二区三区麻豆| 国产高清国产精品国产三级 | 人妻 亚洲 视频| 日本-黄色视频高清免费观看| 亚洲国产av新网站| 嫩草影院新地址| a级毛色黄片| 80岁老熟妇乱子伦牲交| 在线观看av片永久免费下载| 国产男女内射视频| 久久久久网色| 欧美97在线视频| av.在线天堂| 亚洲av男天堂| 最后的刺客免费高清国语| 欧美成人午夜免费资源| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 成人一区二区视频在线观看| 国产女主播在线喷水免费视频网站| 97超视频在线观看视频| 婷婷色综合www| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| 嘟嘟电影网在线观看| 伊人久久精品亚洲午夜| 日本色播在线视频| 色视频在线一区二区三区| 久久99热6这里只有精品| 国产精品国产av在线观看| 22中文网久久字幕| 亚洲欧洲日产国产| 一级黄片播放器| 成人午夜精彩视频在线观看| 91午夜精品亚洲一区二区三区| 日韩av免费高清视频| 老司机影院成人| 免费少妇av软件| 成年女人看的毛片在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 制服丝袜香蕉在线| 国产成人精品婷婷| 精品人妻熟女av久视频| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 一级二级三级毛片免费看| 建设人人有责人人尽责人人享有的 | 一级毛片我不卡| av线在线观看网站| 人体艺术视频欧美日本| 亚州av有码| 毛片女人毛片| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 中文精品一卡2卡3卡4更新| 好男人在线观看高清免费视频| 一级爰片在线观看| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区 | 精品国产一区二区三区久久久樱花 | 亚洲三级黄色毛片| 欧美激情在线99| 免费av不卡在线播放| 91精品一卡2卡3卡4卡| 国产大屁股一区二区在线视频| 在线播放无遮挡| 三级国产精品欧美在线观看| 亚洲欧美成人综合另类久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品精品国产色婷婷| 午夜爱爱视频在线播放| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放| 边亲边吃奶的免费视频| 视频区图区小说| 国产成年人精品一区二区| 高清av免费在线| 欧美性感艳星| 国内精品宾馆在线| 国产精品伦人一区二区| 欧美潮喷喷水| 免费观看av网站的网址| 国产午夜精品久久久久久一区二区三区| 黄片wwwwww| 久久久精品94久久精品| 国产亚洲av嫩草精品影院| 亚洲图色成人| 亚洲在久久综合| 日日啪夜夜撸| 亚洲精品乱久久久久久| 少妇的逼好多水| 校园人妻丝袜中文字幕| 简卡轻食公司| 特大巨黑吊av在线直播| 涩涩av久久男人的天堂| 可以在线观看毛片的网站| 伊人久久精品亚洲午夜| 国产精品不卡视频一区二区| 日韩视频在线欧美| 欧美激情久久久久久爽电影| 国产精品久久久久久久电影| 亚洲精品,欧美精品| 亚洲精品色激情综合| 99九九线精品视频在线观看视频| 亚洲综合精品二区| 久久精品国产亚洲网站| 少妇的逼水好多| 久久亚洲国产成人精品v| 男人添女人高潮全过程视频| 亚洲人成网站在线观看播放| kizo精华| av在线蜜桃| 一区二区三区精品91| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 国产视频内射| 又爽又黄a免费视频| 在线精品无人区一区二区三 | .国产精品久久| 黄片无遮挡物在线观看| 一级毛片电影观看| 精品久久久久久久末码| 国产一级毛片在线| 男女无遮挡免费网站观看| 国产伦精品一区二区三区四那| 精品久久久久久久人妻蜜臀av| 日韩视频在线欧美| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 精品人妻视频免费看| 日本爱情动作片www.在线观看| 麻豆成人午夜福利视频| 18禁动态无遮挡网站| 亚洲在线观看片| 日韩视频在线欧美| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 真实男女啪啪啪动态图| 日日啪夜夜撸| 国产免费一区二区三区四区乱码| 美女被艹到高潮喷水动态| 日日啪夜夜撸| videossex国产| 国产亚洲av片在线观看秒播厂| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜| 日本与韩国留学比较| 听说在线观看完整版免费高清| 欧美日韩亚洲高清精品| 制服丝袜香蕉在线| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 国产黄色免费在线视频| 国模一区二区三区四区视频| 国产午夜精品一二区理论片| 亚洲怡红院男人天堂| 丝袜脚勾引网站| 亚洲国产精品999| 久久久久久伊人网av| 免费黄色在线免费观看| 成人亚洲精品一区在线观看 | 亚洲av福利一区| 韩国高清视频一区二区三区| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 99久久人妻综合| 我的老师免费观看完整版| 免费大片18禁| 日本一本二区三区精品| 91aial.com中文字幕在线观看| av国产久精品久网站免费入址| 午夜免费男女啪啪视频观看| 久久久久久伊人网av| 99热6这里只有精品| 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级 | 女人被狂操c到高潮| 国产精品久久久久久久电影| 天美传媒精品一区二区| 免费少妇av软件| 成人黄色视频免费在线看| 久久久久九九精品影院| 国产成人一区二区在线| 久久久国产一区二区| 嘟嘟电影网在线观看| 国产免费福利视频在线观看| 免费观看性生交大片5| 国产成人a区在线观看| 少妇人妻一区二区三区视频| 一本一本综合久久| 精品酒店卫生间| 2018国产大陆天天弄谢| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 成人美女网站在线观看视频| 精品久久久久久久久亚洲| 五月天丁香电影| 国产精品一区二区三区四区免费观看| 色哟哟·www| 中文字幕亚洲精品专区| 中文字幕av成人在线电影| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看 | 中文天堂在线官网| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 少妇 在线观看| 国产男女超爽视频在线观看| 国产高清国产精品国产三级 | 亚洲国产高清在线一区二区三| 99九九线精品视频在线观看视频| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 一级av片app| 人妻夜夜爽99麻豆av| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 国产亚洲一区二区精品| 男的添女的下面高潮视频| 精品久久久久久久末码| 亚洲最大成人中文| av一本久久久久| 亚洲av在线观看美女高潮| 日日啪夜夜撸| 国内精品宾馆在线| av天堂中文字幕网| 91久久精品国产一区二区三区| 观看免费一级毛片| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| 色网站视频免费| 18禁在线播放成人免费| 秋霞伦理黄片| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 免费av不卡在线播放| 欧美日韩视频高清一区二区三区二| 亚洲在线观看片| 国产精品av视频在线免费观看| 欧美丝袜亚洲另类| 欧美精品人与动牲交sv欧美| 亚洲va在线va天堂va国产| 亚洲在久久综合| 一级毛片电影观看| 免费人成在线观看视频色| 99热网站在线观看| 成人亚洲精品av一区二区| 91午夜精品亚洲一区二区三区| 午夜福利视频1000在线观看| 三级经典国产精品| 黄色怎么调成土黄色| 久久久精品免费免费高清| 黑人高潮一二区| 亚洲图色成人| 欧美bdsm另类| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| av国产久精品久网站免费入址| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 内地一区二区视频在线| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 人妻夜夜爽99麻豆av| 亚洲综合精品二区| 欧美区成人在线视频| 91久久精品国产一区二区成人| 在线播放无遮挡| 有码 亚洲区| 国产成人a区在线观看| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 午夜福利在线在线| 国产人妻一区二区三区在| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 十八禁网站网址无遮挡 | 亚洲av日韩在线播放| 精品久久久久久久末码| 人人妻人人澡人人爽人人夜夜| 国产黄片视频在线免费观看| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| xxx大片免费视频| 亚洲精品一区蜜桃| 日韩精品有码人妻一区| 成年av动漫网址| 国产一区二区三区av在线| 三级国产精品片| 亚洲精品乱码久久久久久按摩| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 国产精品熟女久久久久浪| 免费av不卡在线播放| 色播亚洲综合网| 精品少妇黑人巨大在线播放| 校园人妻丝袜中文字幕| 日本熟妇午夜| 久久6这里有精品| 国产成人freesex在线| 久久久精品欧美日韩精品| 赤兔流量卡办理| 有码 亚洲区| 青春草视频在线免费观看| 亚洲美女视频黄频| 亚洲国产精品国产精品| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 国产精品久久久久久久久免| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 精品人妻视频免费看| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 国产精品一二三区在线看| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 人妻夜夜爽99麻豆av| 五月天丁香电影| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 日韩免费高清中文字幕av| 最近中文字幕2019免费版| 欧美成人a在线观看| 国产成人精品福利久久| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 午夜福利在线观看免费完整高清在| 日韩欧美精品免费久久| 国产成人精品久久久久久| 老司机影院成人| 成人毛片60女人毛片免费| 在线免费十八禁| av在线蜜桃| 亚洲国产色片| 男女边摸边吃奶| 久久人人爽人人片av| 午夜日本视频在线| a级毛色黄片| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄| 99热这里只有精品一区| 亚洲欧美成人综合另类久久久| 国产精品久久久久久久久免| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 少妇人妻 视频| 国产欧美日韩一区二区三区在线 | 久久精品国产a三级三级三级| 精品一区二区免费观看| 欧美一级a爱片免费观看看| 七月丁香在线播放| 国产成人a区在线观看| 国产成人精品婷婷| kizo精华| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 啦啦啦中文免费视频观看日本| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 五月开心婷婷网| 少妇猛男粗大的猛烈进出视频 | 色婷婷久久久亚洲欧美| 亚洲一区二区三区欧美精品 | 亚洲欧美成人综合另类久久久| 亚洲不卡免费看| www.色视频.com| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频 | 久久久久久久精品精品| www.av在线官网国产| 精品久久久久久久末码| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 久久久a久久爽久久v久久| 2018国产大陆天天弄谢| 日韩在线高清观看一区二区三区| 久久97久久精品| h日本视频在线播放| 六月丁香七月| 国产午夜福利久久久久久| 在线免费十八禁| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 国产 一区 欧美 日韩| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 三级经典国产精品| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 极品教师在线视频| 秋霞在线观看毛片| 亚洲真实伦在线观看| 一级av片app| 日本wwww免费看| 亚洲在线观看片| 久久精品综合一区二区三区| 欧美+日韩+精品| 色播亚洲综合网| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 婷婷色麻豆天堂久久| 国产精品久久久久久久久免| 美女国产视频在线观看| 精品久久久久久久人妻蜜臀av| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 亚洲四区av| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 亚洲怡红院男人天堂| 日韩视频在线欧美| 国产精品精品国产色婷婷| 伦理电影大哥的女人| 亚洲欧美清纯卡通| 男女边摸边吃奶| 晚上一个人看的免费电影| 免费av毛片视频| 美女被艹到高潮喷水动态| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| 久久久久精品性色| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 久热这里只有精品99| 日本爱情动作片www.在线观看| 老司机影院毛片| 国产精品一区www在线观看| av播播在线观看一区| 99热这里只有精品一区| 2018国产大陆天天弄谢| 欧美激情国产日韩精品一区| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 欧美 日韩 精品 国产| 18禁裸乳无遮挡动漫免费视频 | 丝袜美腿在线中文| 国产成人精品久久久久久| 天堂俺去俺来也www色官网| 国产伦精品一区二区三区视频9| 午夜精品一区二区三区免费看| 日韩强制内射视频| www.av在线官网国产| 亚洲最大成人手机在线| 亚洲精品,欧美精品| 精品亚洲乱码少妇综合久久| 一级a做视频免费观看| 久久精品国产亚洲av涩爱| 男插女下体视频免费在线播放| 婷婷色麻豆天堂久久| 中文字幕免费在线视频6| 久久人人爽人人爽人人片va| 国产毛片在线视频| 亚洲高清免费不卡视频| 中文天堂在线官网| 国产探花在线观看一区二区| 欧美性感艳星| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻一区二区三区麻豆| 夫妻午夜视频| www.av在线官网国产| 99久国产av精品国产电影| 国产午夜精品久久久久久一区二区三区| av线在线观看网站| 亚洲精品国产成人久久av| 白带黄色成豆腐渣| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| av在线app专区| 一级a做视频免费观看| 大香蕉久久网| 一本一本综合久久| 精华霜和精华液先用哪个| 男女那种视频在线观看| 久久久精品欧美日韩精品| 欧美日韩综合久久久久久| 国产乱来视频区| 国产精品久久久久久精品电影| 国产精品人妻久久久久久| 毛片一级片免费看久久久久| 91午夜精品亚洲一区二区三区| av线在线观看网站| 丰满乱子伦码专区| 亚洲av二区三区四区| 好男人在线观看高清免费视频| 深夜a级毛片| 黄色欧美视频在线观看| 欧美激情在线99| 永久免费av网站大全| 美女视频免费永久观看网站| 久久人人爽人人爽人人片va| 亚洲欧美日韩东京热| 男人爽女人下面视频在线观看| 亚洲天堂av无毛| 男女无遮挡免费网站观看| 69av精品久久久久久| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 国产男女内射视频| 少妇高潮的动态图| 熟女人妻精品中文字幕| 成人国产麻豆网| 午夜视频国产福利| 欧美日韩国产mv在线观看视频 | 国产视频首页在线观看| 成年版毛片免费区| 久久人人爽人人片av| 成人国产av品久久久| 我要看日韩黄色一级片| 人体艺术视频欧美日本| 女人被狂操c到高潮| 啦啦啦在线观看免费高清www| 天天一区二区日本电影三级| 下体分泌物呈黄色| 视频区图区小说| 国产在线男女| 国模一区二区三区四区视频| 街头女战士在线观看网站| 国产亚洲av片在线观看秒播厂| 亚洲av一区综合| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲高清精品| 久久久精品94久久精品| 夫妻性生交免费视频一级片| 美女高潮的动态| 高清av免费在线| 女人久久www免费人成看片| 久久人人爽人人片av| 亚州av有码| 日韩,欧美,国产一区二区三区| 日韩 亚洲 欧美在线| 七月丁香在线播放| 麻豆成人av视频| 亚洲欧美中文字幕日韩二区| 久久久成人免费电影| 久久久久久久久久成人| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| 国产精品人妻久久久久久| 丰满少妇做爰视频| 日本色播在线视频| 国产在线男女| 国产在视频线精品| 看非洲黑人一级黄片| 97超碰精品成人国产| 国产亚洲av嫩草精品影院| 又大又黄又爽视频免费| 看黄色毛片网站| 最近手机中文字幕大全| 日韩伦理黄色片| 日韩成人伦理影院| 亚洲欧美清纯卡通| 欧美bdsm另类| 中国美白少妇内射xxxbb| 国产精品嫩草影院av在线观看| 亚洲怡红院男人天堂| 在线精品无人区一区二区三 |