李寶軍+楊磊+劉明增+胡平+王博
收稿日期:20130807
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61173102,11272077);國(guó)家基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)資助項(xiàng)目(2010CB832700);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)基金資助項(xiàng)目(DUT12RC(3)206);湖南大學(xué)汽車(chē)車(chē)身先進(jìn)設(shè)計(jì)制造國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(31115023)
作者簡(jiǎn)介:李寶軍(1977-),男,山東萊陽(yáng)人,大連理工大學(xué)講師,博士
通訊聯(lián)系人,Email:pinghu@dlut.edu.cn
摘要:提出一種面向車(chē)身結(jié)構(gòu)分析的骨架驅(qū)動(dòng)模型變形方法,實(shí)現(xiàn)有限元模型的有效重用.根據(jù)給定車(chē)身結(jié)構(gòu)有限元模型的幾何特點(diǎn),定義描述車(chē)身結(jié)構(gòu)的骨架曲線與包圍車(chē)身結(jié)構(gòu)的控制體.建立骨架曲線與模型控制體的約束關(guān)系,用戶可對(duì)骨架曲線進(jìn)行編輯,得到目標(biāo)控制體形狀.最終應(yīng)用體變形方法,重構(gòu)內(nèi)嵌的有限元模型.數(shù)值實(shí)例表明,骨架驅(qū)動(dòng)的模型變形方法能夠?qū)崿F(xiàn)有限元模型的有效重用,并為用戶提供了直觀便捷的交互方式.
關(guān)鍵詞:模型變形;骨架曲線;結(jié)構(gòu)知識(shí);車(chē)身結(jié)構(gòu);有限元模型
中圖分類(lèi)號(hào):TH122 文獻(xiàn)標(biāo)識(shí)碼:A
Skeletondriven Model Editing for Autobody Structural Analysis
LI Baojun1,2,YANG Lei1,LIU Mingzeng1,HU Ping1,WANG Bo1
(1. State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian Univ of Technology,
Dalian, Liaoning116024, China;2. State Key Laboratory of Advanced Design and Manufacturing
for Vehicle Body,Hunan Univ, Changsha, Hunan410082, China)
Abstract:We presented a skeletondriven model deformation method for the effective reuse of finite element (FE) models in autobody structural analysis. Skeletons were defined to describe the body structure and control blocks embedding the body structure based on the geometry of the given FE model. Then, the constraint between the skeleton curve set and control blocks of the given model were established so that the user can derive the desired shape of control blocks by editing the skeleton curves. Finally, the deformed FE model was reconstructed by using the spatial deformation method. Numerical experiments show that the proposed method can obtain physically plausible deformed results and achieve the effective reuse of the given FE models. In addition, using skeleton curves as the handles can provide users with an intuitive way to manipulate FE models.
Key words:model deformation;skeleton curves;structural awareness;autobody structure;finite element model
隨著CAE的不斷發(fā)展,其重心由為設(shè)計(jì)提供校驗(yàn)向設(shè)計(jì)優(yōu)化轉(zhuǎn)變 [1 ].無(wú)論是基于代理模型 [2 ]的優(yōu)化算法還是啟發(fā)式優(yōu)化算法 [3 ],都需要對(duì)設(shè)計(jì)空間進(jìn)行采樣,生成多個(gè)相似的CAE模型.然而,由CAD模型生成CAE模型需要耗費(fèi)巨大工作量,因此有效重用已有CAE模型,是提高復(fù)雜工程產(chǎn)品設(shè)計(jì)效率的重要方法之一.
模型重用方法獲得了許多研究關(guān)注 [3-13 ].文獻(xiàn) [4-5 ]提出了基于模板與知識(shí)庫(kù)的快速有限元模型獲取方法,實(shí)現(xiàn)了有限元模型的重用.然而該類(lèi)方法基于近似有限元模型,求解精度有限.文獻(xiàn) [6-8 ]應(yīng)用面變形方法實(shí)現(xiàn)網(wǎng)格模型的有效變形.然而面變形方法一般用于流形網(wǎng)格模型,且對(duì)于大規(guī)模網(wǎng)格模型,求解效率不高.相對(duì)于面變形方法,體變形方法 [3, 9 ]將模型嵌于控制體內(nèi)部,因此不受模型表示形式的限制,適用于復(fù)雜工程產(chǎn)品有限元模型的整體變形.
傳統(tǒng)的網(wǎng)格模型變形方法在交互的過(guò)程中缺少對(duì)于模型整體結(jié)構(gòu)特征的理解,需對(duì)離散網(wǎng)格頂點(diǎn)進(jìn)行大量約束,否則難以獲得合理的變形結(jié)果 [10 ].文獻(xiàn) [11 ]將模型的結(jié)構(gòu)特征定義為模型各部分的幾何形式與其之間的聯(lián)系.Gal等 [12 ]和Zheng等 [13 ]利用模型的結(jié)構(gòu)特征,實(shí)現(xiàn)直觀便捷的交互式模型編輯.
針對(duì)復(fù)雜工程產(chǎn)品變型設(shè)計(jì)(variant design)中的有限元模型更新問(wèn)題,本文提出了基于車(chē)身側(cè)視圖的骨架驅(qū)動(dòng)有限元模型變形方法.根據(jù)給定的車(chē)身有限元模型,定義具有結(jié)構(gòu)特征的平面骨架,并生成與車(chē)身結(jié)構(gòu)部件對(duì)應(yīng)的平面控制單元以及空間控制體.建立“骨架曲線-控制單元-控制體-有限元模型”的層次對(duì)應(yīng)關(guān)系.通過(guò)編輯平面骨架曲線形狀,變形已有有限元模型,獲得滿足設(shè)計(jì)需求的新模型,實(shí)現(xiàn)模型的有效重用.
本方法的貢獻(xiàn)主要有以下3點(diǎn):1)應(yīng)用骨架曲線描述車(chē)身結(jié)構(gòu)部件的幾何形狀特征及其之間的相互關(guān)系,獲得了模型的整體結(jié)構(gòu)特征;2)骨架驅(qū)動(dòng)的模型變形方法為用戶提供了直觀便捷的模型編輯方式;3)變形所得有限元模型仍具有與初始有限元模型相近的網(wǎng)格質(zhì)量,實(shí)現(xiàn)了模型的有效重用.
1算法概述
本文通過(guò)建立“骨架曲線-控制單元-控制體-有限元模型”的層次對(duì)應(yīng)關(guān)系(見(jiàn)圖1),以骨架曲線為模型變形的驅(qū)動(dòng),結(jié)合基于拉普拉斯坐標(biāo)的面變形方法與基于等參元的體變形方法,實(shí)現(xiàn)了便捷且有效的整體有限元模型變形.
1.1骨架曲線
本文選取車(chē)身側(cè)視圖為工作平面,通過(guò)分析給定車(chē)身結(jié)構(gòu)有限元模型各部件間的拓?fù)潢P(guān)系,定義平面骨架曲線,其幾何表示形式為三階Bézier曲線.將骨架曲線分為兩類(lèi),分別是骨干(bone)曲線與關(guān)節(jié)(joint)曲線(見(jiàn)圖2).其中,骨干曲線由若干條曲線相連構(gòu)成,描述梁和板的幾何形狀特征;關(guān)節(jié)曲線由數(shù)條曲線相交于接頭位置而組成,描述接頭的幾何特征及部件之間的連接關(guān)系 [4, 14 ].因此,骨架曲線體現(xiàn)了模型的結(jié)構(gòu)特征,即各部件的幾何形狀特征與其之間的相互關(guān)系.
傳統(tǒng)的網(wǎng)格變形方法需要根據(jù)網(wǎng)格模型(或控制體模型)定義控制頂點(diǎn)、可變頂點(diǎn)和固定頂點(diǎn),而后改變離散控制頂點(diǎn)的位置,并結(jié)合變形函數(shù),獲得變形后的網(wǎng)格模型 [6, 9 ].
與傳統(tǒng)方法相比,骨架驅(qū)動(dòng)網(wǎng)格模型變體方法通過(guò)設(shè)定骨架曲線的影響距離,自動(dòng)定義控制頂點(diǎn)和固定頂點(diǎn)(即約束點(diǎn))及可動(dòng)頂點(diǎn).并根據(jù)骨架曲線確定約束點(diǎn)的位置變化,從而驅(qū)動(dòng)模型變形,最終獲得滿足設(shè)計(jì)需求的有限元模型變形結(jié)果.因此,與傳統(tǒng)的編輯方法相比,本文利用具有整體結(jié)構(gòu)特征的骨架曲線作為交互柄,驅(qū)動(dòng)模型的變形,為用戶提供直觀便捷的交互方式.
1.2模型有效重用
本文以變型設(shè)計(jì)為前提,對(duì)有限元網(wǎng)格進(jìn)行重用.為避免網(wǎng)格重劃分,應(yīng)在變形過(guò)程中對(duì)有限元網(wǎng)格質(zhì)量進(jìn)行保持,以獲得可分析的變形結(jié)果.通過(guò)最小化控制單元在變形前后的相對(duì)差異(見(jiàn)2.2節(jié)),保持變形后控制體模型質(zhì)量,最終保持內(nèi)嵌于其中的有限元網(wǎng)格質(zhì)量.
1.3算法流程
圖3為骨架驅(qū)動(dòng)模型變形方法流程圖.骨架驅(qū)動(dòng)網(wǎng)格模型變形流程可分為2步:預(yù)處理(圖3中(a)~(d))與變形實(shí)現(xiàn)(圖3中(e)~(g)).變形結(jié)果如圖1所示,其中圖1(a)和圖1(b)中的實(shí)線分別為變形前后的骨架曲線,圖1(b)中的虛線為變形前的骨架曲線;圖1(c)和圖1(d)分別為變形前后的控制單元與骨架曲線;圖1(e)和圖1(f)分別為變形前后的有限元模型.
1)骨架曲線的定義.根據(jù)對(duì)給定有限元模型M的形狀與拓?fù)浞治鼋Y(jié)果,在側(cè)視圖工作平面內(nèi),定義對(duì)應(yīng)的平面骨架曲線S.
2)控制單元與控制體的生成.根據(jù)定義的骨架曲線和模型信息,在側(cè)視圖平面內(nèi),生成包圍車(chē)身結(jié)構(gòu)的平面控制單元,E={V,F(xiàn)},其中V為E的頂點(diǎn),F(xiàn)為E的拓?fù)湫畔?沿垂直側(cè)視圖平面方向做張量積,生成與控制單元對(duì)應(yīng)的空間控制體模型C.
3)約束關(guān)系的建立.設(shè)骨架曲線的影響距離為de,將在此范圍內(nèi)的平面控制單元頂點(diǎn)V作為約束點(diǎn),并以骨架曲線上最近采樣點(diǎn)的移動(dòng)標(biāo)架表示,從而建立平面控制單元E與骨架曲線S的約束關(guān)系K.
4)控制單元的微分坐標(biāo)表示.將平面控制單元頂點(diǎn)V用拉普拉斯微分坐標(biāo)[15]表示.
5)約束點(diǎn)位置更新.編輯骨架曲線S得到骨架曲線S′.并根據(jù)約束關(guān)系K,求解變形后約束點(diǎn)的全局坐標(biāo)p′.
6)平面控制單元的重建.根據(jù)平面控制單元頂點(diǎn)的微分坐標(biāo)與更新后的約束點(diǎn)位置p′,構(gòu)造并求解優(yōu)化問(wèn)題(如式(1)所示),重建變形后的平面控制單元頂點(diǎn)V′.再根據(jù)控制單元的拓?fù)湫畔,獲得編輯后的控制網(wǎng)格E′={V′,F(xiàn)}.
7)模型編輯的實(shí)現(xiàn).將給定有限元模型M嵌入初始控制體C內(nèi),結(jié)合文獻(xiàn) [9 ]所提出的體變形方法及變形后的控制體C′,求得變形后的內(nèi)嵌模型M′.
2算法實(shí)現(xiàn)
2.1約束關(guān)系的建立與約束點(diǎn)位置更新
為實(shí)現(xiàn)骨架驅(qū)動(dòng)的模型變形,需建立骨架曲線與平面控制單元的約束關(guān)系,并根據(jù)這一關(guān)系與編輯后的骨架曲線,更新控制單元約束點(diǎn)的全局坐標(biāo).
設(shè)定骨架曲線的影響距離為de.利用等弧長(zhǎng)參數(shù)化的方法對(duì)骨架曲線進(jìn)行采樣得到采樣點(diǎn)Sj=S(tj).計(jì)算平面控制單元頂點(diǎn)Vi與骨架曲線采樣點(diǎn)Sj的距離dij.若min{dij} lij=(aij,bij|Sj). 式中:aij與bij分別為Pij沿移動(dòng)標(biāo)架Bj=〈τj, nj|Sj〉的切方向τj,法方向nj的投影長(zhǎng)度. aij=(Pij-Sj)τj, bij=(Pij-Sj)nj. 從而建立了平面控制單元的頂點(diǎn)與骨架曲線之間的約束關(guān)系. 編輯骨架曲線,曲線采樣點(diǎn)Sj變?yōu)镾′j.保持Pij在S′j移動(dòng)標(biāo)架內(nèi)的局部坐標(biāo)值lij不變,則可求解編輯骨架曲線后所得的約束點(diǎn)全局坐標(biāo)值. P′ij=B′jBTj(Pij-Sj)+S′j. 其中:Bj與B′j分別為Sj與S′j對(duì)應(yīng)的移動(dòng)標(biāo)架.從而,約束點(diǎn)的坐標(biāo)位置得到更新(如圖4所示). 2.2平面控制單元的重建 由初始平面控制單元的微分坐標(biāo)以及更新的約束點(diǎn)坐標(biāo),可重建變形平面控制單元.本文采用文獻(xiàn) [15 ]所介紹的方法計(jì)算控制單元的拉普拉斯微分坐標(biāo),其表達(dá)網(wǎng)格頂點(diǎn)與一環(huán)域頂點(diǎn)平均位置的差異,建立了頂點(diǎn)之間的相對(duì)位置關(guān)系,且僅需求解一個(gè)線性方程組,因此可實(shí)現(xiàn)快速編輯更新.
為保持控制單元各頂點(diǎn)間的相對(duì)位置關(guān)系,需最小化變形控制單元與初始控制單元頂點(diǎn)的微分坐標(biāo)差異,且變形控制單元的約束點(diǎn)應(yīng)滿足其與骨架曲線的約束關(guān)系.考慮插值通過(guò)約束點(diǎn)位置可能會(huì)造成較大網(wǎng)格單元扭曲,因此需構(gòu)造優(yōu)化問(wèn)題,如式(1)所示,擬合通過(guò)約束點(diǎn)位置,對(duì)變形控制單元進(jìn)行求解.
x*=argminx‖Lx-δ(x)‖2+
λ∑k∈K|xk-pk|2.(1)
式中:L為拉普拉斯系數(shù)矩陣;x為平面控制單元的頂點(diǎn)坐標(biāo);δ(x)為拉普拉斯微分坐標(biāo);λ為平衡參數(shù);pk為約束點(diǎn)的全局坐標(biāo);K為約束點(diǎn)集合.
該優(yōu)化問(wèn)題可轉(zhuǎn)化為:
L
λCKx=δ(x)
λp.(2)
最終可解得:
x*=(ATA)-1ATb.(3)
式中:A由L與λCK組成;CK為約束系數(shù)矩陣;b由δ(x)和λp組成.
最后,根據(jù)式(3)解得變形平面控制單元頂點(diǎn)的全局坐標(biāo).再根據(jù)文獻(xiàn) [9 ]提出的體變形方法生成對(duì)應(yīng)的控制體并重建變形后的有限元模型.
3數(shù)值實(shí)例
為驗(yàn)證本方法有效性,將上述有限元模型變形方法集成到自主研發(fā)的CAD/CAE集成軟件平臺(tái)DCiPMeshMorpher模塊內(nèi) [9 ],在配置內(nèi)存為2.99 GB、處理器型號(hào)為2.10 Hz Intel(R) Core(TM)2 Duo CPU的計(jì)算機(jī)上,應(yīng)用骨架曲線驅(qū)動(dòng)模型變形方法,對(duì)有限元模型I(某自主研發(fā)的純電動(dòng)微型車(chē)車(chē)架結(jié)構(gòu)有限元模型 [16 ])、模型Ⅱ(某乘用車(chē)白車(chē)身有限元模型 [9 ])進(jìn)行測(cè)試.有限元模型Ⅰ與Ⅱ的變形結(jié)果分別如圖5和圖6所示.其中編輯1,2分別改變了模型I的B柱與白車(chē)身前部,編輯3,4分別對(duì)模型Ⅱ的后風(fēng)窗窗框形狀做出了不同的改變,且編輯4還對(duì)模型Ⅱ的前風(fēng)窗窗框形狀進(jìn)行了修改.
編輯1的變形細(xì)節(jié)如圖7所示.圖8為圖7中骨架曲線變形前后的坐標(biāo)差異(B柱對(duì)應(yīng)骨架曲線采樣點(diǎn)編號(hào)為134~137與197~220).
給定骨架曲線與控制單元,統(tǒng)計(jì)了編輯1中控制單元尺度與計(jì)算時(shí)間的關(guān)系,如表1所示.其中,計(jì)算時(shí)間為自改變骨架曲線形狀至獲得變形后的控制單元的運(yùn)行時(shí)間,包括了算法流程中的預(yù)處理與變形實(shí)現(xiàn)兩部分.由表1可知,隨著控制單元數(shù)目的增加,計(jì)算時(shí)間顯著增加.表2與表3分別列出了失效控制單元占總單元數(shù)的百分比與最差單元的質(zhì)量.表4顯示了變形有限元模型I中失效單元的個(gè)數(shù),其中有限元模型I共有133 045個(gè)單元.對(duì)于所有網(wǎng)格單元,其長(zhǎng)寬比、歪斜度與雅克比失效閾值分別為大于5、大于60以及小于0.7.
由表2和表3的結(jié)果對(duì)比可知,本文所提方法能夠獲得質(zhì)量穩(wěn)定的控制單元.兼顧計(jì)算效率與變形效果,文中其他編輯結(jié)果均采用尺度為45的控制單元.由表4可知,本方法能夠保持有限元模型的網(wǎng)格質(zhì)量.變形有限元模型的模態(tài)分析結(jié)果如圖9所示.由圖9可知,本文方法能實(shí)現(xiàn)有限元模型的有效重用.
4結(jié)論
本文提出了面向車(chē)身有限元的平面骨架驅(qū)動(dòng)體變形方法.根據(jù)輸入的有限元模型,定義具有結(jié)構(gòu)特征的骨架曲線以及控制單元,并建立“骨架曲線-控制單元-控制體-有限元模型”的層次結(jié)構(gòu).以骨架曲線驅(qū)動(dòng)模型變形,結(jié)合基于拉普拉斯坐標(biāo)的面變形方法與基于等參元的體變形方法,實(shí)現(xiàn)了便捷有效的整體有限元模型變形.并由數(shù)值實(shí)驗(yàn)可知,本方法能夠?qū)崿F(xiàn)有限元模型的有效重用.
然而,獲得較高質(zhì)量的平面控制單元需要一定程度的人工交互是本方法的局限之一.如何自動(dòng)高效地獲取高質(zhì)量平面控制單元,是亟待解決的問(wèn)題.將目前的平面骨架曲線推廣至三維空間,并實(shí)現(xiàn)骨架曲線驅(qū)動(dòng)空間曲面的變形設(shè)計(jì),進(jìn)而融合精確幾何分析也是未來(lái)的工作目標(biāo).最后,有效地管理具有結(jié)構(gòu)知識(shí)的骨架曲線也是值得深入探討的問(wèn)題.
參考文獻(xiàn)
[1]SHIMADA K. Current issues and trends in meshing and geometric processing for computational engineering analyses [J ].Journal of Computing and Information Science in Engineering,2011,11(2):021008.
[2]姚凌云, 于德介. 基于支持向量機(jī)響應(yīng)面的車(chē)身部件聲特性優(yōu)化 [J ]. 湖南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2008, 35(11): 21-25.
YAO Lingyun,YU Dejie.Optimization of the acoustic properties of vehicle body components based on support vector machine response surface method [J ].Journal of Hunan University:Natural Sciences,2008, 35(11): 21-25. (In Chinese)
[3]MENZEL S, SENDHOFF B. Representing the changefree form deformation for evolutionary design optimization [M ]//YU T, DAVIS L, BAYDAR C, et al. Evolutionary Computation in Practice. Berlin Heidelberg:Springer, 2008: 63-86.
[4]HOU W, ZHANG H, ZHANG W, et al. Rapid structural property evaluation system for car body advanced design [J ]. International Journal of Vehicle Design, 2011, 57(2): 242-253.
[5]ZIMMER H.SFE concept CAE design: a key enabler in virtual product & vehicle development [R ]. Lisbon, Portugal: The 3rd AUTOSIM Workshop, 2006.
[6]YI B, LIU Z, DUAN G, et al. Finite element method and sharp features enhanced laplacian for interactive shape design of mechanical parts [J ]. Journal of Computing and Information Science in Engineering,2014,14(2):021007.
[7]方劍光, 高云凱, 王婧人,等,基于網(wǎng)格變形技術(shù)的白車(chē)身多目標(biāo)形狀優(yōu)化 [J ].機(jī)械工程學(xué)報(bào),2012,48(24): 119-126.
FANG Jianguang,GAO Yunkai,WANG Jingren,et al. Multiobjective shape optimization of bodyinwhite based on mesh morphing technology [J ]. Chinese Journal of Mechanical Engineering,2012,48(24):119-126. (In Chinese)
[8]WANG S, HOU T, LI S, et al. Hierarchical feature subspace for structurepreserving deformation [J ]. ComputerAided Design,2013,45(2):545-550.
[9]劉明增, 李寶軍, 王長(zhǎng)生,等.基于等參變換的車(chē)身有限元模型自由變形設(shè)計(jì) [J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012, 43(4): 15-19.
LIU Mingzeng,LI Baojun,WANG Zhangsheng,et al.Free form deformation design for autobody finite element model based on isoparametric transformation [J ]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(4):15-19.(In Chinese)
[10]HOJJAT M, STAVROPOULOU E, BLETZINGER K U. The vertex morphing method for nodebased shape optimization [J ].Computer Methods in Applied Mechanics and Engineering,2014,268(1):494-513.
[11]MITRA N, WAND M, ZHANG H, et al. Structureaware shape processing [R ]. Hong Kong: ACM, 2013.
[12]GAL R,SORKINE O,MITRA N,et al.iWIRES: an analyzeandedit approach to shape manipulation [J ].ACM Transactions on Graphics (TOG),ACM, 2009, 28(3):33.
[13]ZHENG Y, FU H, COHENOR D, et al. Componentwise controllers for structurepreserving shape manipulation [J ].Computer Graphics Forum,2011,30(2): 563-572.
[14]MUNDO D, HADJIT R, DONDERS S, et al. Simplified modelling of joints and beamlike structures for BIW optimization in a concept phase of the vehicle design process [J ].Finite Elements in Analysis and Design,2009, 45(6):456-462.
[15]SORKINE O. Differential representations for mesh processing [J ]. Computer Graphics Forum,2006,25(4): 789-807.
[16]JIN C, HE H, LI B, et al. Modal analysis of a body in white based on sensitivity analysis [C ]//ARAI T. Mechatronics and Automation (ICMA), 2012 International Conference on. Chengdu China:IEEE, 2012: 1297-1301.
[5]ZIMMER H.SFE concept CAE design: a key enabler in virtual product & vehicle development [R ]. Lisbon, Portugal: The 3rd AUTOSIM Workshop, 2006.
[6]YI B, LIU Z, DUAN G, et al. Finite element method and sharp features enhanced laplacian for interactive shape design of mechanical parts [J ]. Journal of Computing and Information Science in Engineering,2014,14(2):021007.
[7]方劍光, 高云凱, 王婧人,等,基于網(wǎng)格變形技術(shù)的白車(chē)身多目標(biāo)形狀優(yōu)化 [J ].機(jī)械工程學(xué)報(bào),2012,48(24): 119-126.
FANG Jianguang,GAO Yunkai,WANG Jingren,et al. Multiobjective shape optimization of bodyinwhite based on mesh morphing technology [J ]. Chinese Journal of Mechanical Engineering,2012,48(24):119-126. (In Chinese)
[8]WANG S, HOU T, LI S, et al. Hierarchical feature subspace for structurepreserving deformation [J ]. ComputerAided Design,2013,45(2):545-550.
[9]劉明增, 李寶軍, 王長(zhǎng)生,等.基于等參變換的車(chē)身有限元模型自由變形設(shè)計(jì) [J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012, 43(4): 15-19.
LIU Mingzeng,LI Baojun,WANG Zhangsheng,et al.Free form deformation design for autobody finite element model based on isoparametric transformation [J ]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(4):15-19.(In Chinese)
[10]HOJJAT M, STAVROPOULOU E, BLETZINGER K U. The vertex morphing method for nodebased shape optimization [J ].Computer Methods in Applied Mechanics and Engineering,2014,268(1):494-513.
[11]MITRA N, WAND M, ZHANG H, et al. Structureaware shape processing [R ]. Hong Kong: ACM, 2013.
[12]GAL R,SORKINE O,MITRA N,et al.iWIRES: an analyzeandedit approach to shape manipulation [J ].ACM Transactions on Graphics (TOG),ACM, 2009, 28(3):33.
[13]ZHENG Y, FU H, COHENOR D, et al. Componentwise controllers for structurepreserving shape manipulation [J ].Computer Graphics Forum,2011,30(2): 563-572.
[14]MUNDO D, HADJIT R, DONDERS S, et al. Simplified modelling of joints and beamlike structures for BIW optimization in a concept phase of the vehicle design process [J ].Finite Elements in Analysis and Design,2009, 45(6):456-462.
[15]SORKINE O. Differential representations for mesh processing [J ]. Computer Graphics Forum,2006,25(4): 789-807.
[16]JIN C, HE H, LI B, et al. Modal analysis of a body in white based on sensitivity analysis [C ]//ARAI T. Mechatronics and Automation (ICMA), 2012 International Conference on. Chengdu China:IEEE, 2012: 1297-1301.
[5]ZIMMER H.SFE concept CAE design: a key enabler in virtual product & vehicle development [R ]. Lisbon, Portugal: The 3rd AUTOSIM Workshop, 2006.
[6]YI B, LIU Z, DUAN G, et al. Finite element method and sharp features enhanced laplacian for interactive shape design of mechanical parts [J ]. Journal of Computing and Information Science in Engineering,2014,14(2):021007.
[7]方劍光, 高云凱, 王婧人,等,基于網(wǎng)格變形技術(shù)的白車(chē)身多目標(biāo)形狀優(yōu)化 [J ].機(jī)械工程學(xué)報(bào),2012,48(24): 119-126.
FANG Jianguang,GAO Yunkai,WANG Jingren,et al. Multiobjective shape optimization of bodyinwhite based on mesh morphing technology [J ]. Chinese Journal of Mechanical Engineering,2012,48(24):119-126. (In Chinese)
[8]WANG S, HOU T, LI S, et al. Hierarchical feature subspace for structurepreserving deformation [J ]. ComputerAided Design,2013,45(2):545-550.
[9]劉明增, 李寶軍, 王長(zhǎng)生,等.基于等參變換的車(chē)身有限元模型自由變形設(shè)計(jì) [J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012, 43(4): 15-19.
LIU Mingzeng,LI Baojun,WANG Zhangsheng,et al.Free form deformation design for autobody finite element model based on isoparametric transformation [J ]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(4):15-19.(In Chinese)
[10]HOJJAT M, STAVROPOULOU E, BLETZINGER K U. The vertex morphing method for nodebased shape optimization [J ].Computer Methods in Applied Mechanics and Engineering,2014,268(1):494-513.
[11]MITRA N, WAND M, ZHANG H, et al. Structureaware shape processing [R ]. Hong Kong: ACM, 2013.
[12]GAL R,SORKINE O,MITRA N,et al.iWIRES: an analyzeandedit approach to shape manipulation [J ].ACM Transactions on Graphics (TOG),ACM, 2009, 28(3):33.
[13]ZHENG Y, FU H, COHENOR D, et al. Componentwise controllers for structurepreserving shape manipulation [J ].Computer Graphics Forum,2011,30(2): 563-572.
[14]MUNDO D, HADJIT R, DONDERS S, et al. Simplified modelling of joints and beamlike structures for BIW optimization in a concept phase of the vehicle design process [J ].Finite Elements in Analysis and Design,2009, 45(6):456-462.
[15]SORKINE O. Differential representations for mesh processing [J ]. Computer Graphics Forum,2006,25(4): 789-807.
[16]JIN C, HE H, LI B, et al. Modal analysis of a body in white based on sensitivity analysis [C ]//ARAI T. Mechatronics and Automation (ICMA), 2012 International Conference on. Chengdu China:IEEE, 2012: 1297-1301.