程馨+張成江+施澤明+倪師軍
基金項目:國家自然科學(xué)基金項目(41272100)
摘要:為探究磷礦資源采選對礦區(qū)周圍水體天然放射性核素的影響,以貴州開陽磷礦洋水礦區(qū)洋水河為研究對象,測試和分析了河水及表層沉積物中鈾和釷的質(zhì)量濃度、質(zhì)量分?jǐn)?shù)和分布特征,并運(yùn)用潛在生態(tài)危害指數(shù)法對沉積物中的鈾進(jìn)行生態(tài)風(fēng)險評價。結(jié)果表明:受磷礦資源采選活動影響,洋水河河水中鈾的平均質(zhì)量濃度(0958 44 ng·mL-1)明顯高于中國部分河水中鈾的平均質(zhì)量濃度,釷在河水中的質(zhì)量濃度極低,接近于0,釷不易富集在河水中而鈾易于富集;礦井冷卻水中鈾的質(zhì)量濃度為2.87 ng·mL-1,是河水中鈾平均質(zhì)量濃度的2.99倍,表層沉積物中鈾平均質(zhì)量分?jǐn)?shù)為4.95×10-6,是中國水系沉積物背景平均值的2.24倍,釷的平均質(zhì)量分?jǐn)?shù)為5.43×10-6,低于中國水系沉積物元素背景平均值,釷和鈾在沉積物中均有富集且富集程度相當(dāng);沉積物中鈾的平均污染指數(shù)和潛在生態(tài)危害指數(shù)分別為1.06和530,總體上屬于中等污染水平,其潛在生態(tài)風(fēng)險程度為中等。
關(guān)鍵詞:放射性核素;影響評價;潛在生態(tài)危害指數(shù)法;河水;開陽磷礦;貴州
中圖分類號:P641.3;X522文獻(xiàn)標(biāo)志碼:A
Impact Assessment of the Exploitation of Kaiyang Phosphate Deposit
on the Radionuclide of Yangshui River in Guizhou
CHENG Xin, ZHANG Chengjiang, SHI Zeming, NI Shijun
(Sichuan Province Key Laboratory of Geological Nuclear Technology, Chengdu University of Technology, Chengdu 610059, Sichuan, China)
Abstract: In order to find the effect of phosphorite resource exploitation on the natural radionuclide of water around the mining area, taking Yangshui River of Kaiyang phosphate deposit in Guizhou as the research target, the mass concentrations, mass fractions and distribution characteristics of uranium and thorium from water and surface sediment were measured and analyzed, and the ecological risk of uranium in the sediment was assessed by potential ecological risk index method. The results show that because of phosphorite resource exploitation, average mass concentration of uranium (0958 44 ng·mL-1) from water in Yangshui River is obviously higher than that in part rivers of China, and the mass concentration of thorium is extremely low (approximately zero), and the uranium is rich in river water but thorium is not; mass concentration of uranium (2.87 ng·mL-1) from cooling water in mine is 2.99 times more than that from river water; mass fraction of uranium (4.95×10-6) is 2.24 times more than the average background value of stream sediment in China, and mass fraction of thorium (5.43×10-6) is lower than the average background value of stream sediment in China, and uranium and thorium are equivalently rich in the sediment; average pollution index and potential ecological risk index of uranium in the sediment are 1.06 and 5.30, so that the pollution level is medium, and the potential ecological risk is moderate.
Key words: radionuclide; impact assessment; potential ecological risk index method; river water; Kaiyang phosphate deposit; Guizhou
0引言
磷礦石常與天然放射性核素鈾、釷共生或伴生,磷礦石中鈾的品位一般為0.005%~0.030%,沉積型磷塊巖要高些[1],個別超過0050%。近年來,隨著中國人口的快速增長和科學(xué)技術(shù)的高速發(fā)展,2003~2007年中國磷礦石產(chǎn)量增長了82.54%,磷礦資源的開采量逐年攀升,加之磷礦資源開采過程中存在諸多不利于環(huán)境的因素,伴生或共生于其中的天然放射性核素隨著礦山“三廢”進(jìn)入礦區(qū)周圍水體,給水體和生態(tài)環(huán)境帶來深遠(yuǎn)影響[2]。
放射性核素的毒性具有雙重性:放射毒性和化學(xué)毒性。近年來,中國曾對非鈾礦礦產(chǎn)資源開發(fā)利用過程中各環(huán)境介質(zhì)放射性核素的輻射危害進(jìn)行了大量研究。白麗娜等就白云鄂博稀土采礦和冶煉過程中,礦區(qū)局部氣象、土壤環(huán)境放射性水平及含放射性廢水對四道沙河流域及黃河、地下水飲用水源的污染狀況進(jìn)行了研究,認(rèn)為稀土工業(yè)廢水未經(jīng)治理直接進(jìn)入四道沙河造成流域水體污染的事實不容忽視[3];侯海燕等就鎳(鉬)礦開采和冶煉過程中礦區(qū)環(huán)境介質(zhì)的輻射水平進(jìn)行了評價[45];王文武就閩北某鈮鉭礦開采和冶煉中放射性核素對礦區(qū)土壤、水體放射性污染進(jìn)行了分析[6];李舟等對貴州某磷礦區(qū)氡及放射性水平進(jìn)行了評價;煤礦開采和利用過程造成環(huán)境介質(zhì)放射性污染的研究也有很多研究成果[7]。伴生放射性礦產(chǎn)資源開采過程中,放射性核素的污染研究成果可概括為2個方面:增加了礦區(qū)近地表環(huán)境介質(zhì)γ輻射水平,同時也增加了空氣氡濃度及其子體α潛能水平,進(jìn)而增加了礦區(qū)居民的外照射水平;增加了礦區(qū)土壤、水體中天然放射性核素的濃度,進(jìn)而增加了礦區(qū)居民對放射性核素的年攝入量。但是上述研究成果都集中在對天然放射性核素輻射毒性的研究方面,對其化學(xué)毒性的研究尚未引起足夠重視。鈾作為一種持久性污染物,通過各種途徑進(jìn)入水體,大部分都被固定在表層沉積物中,對水生動植物生存及人類健康造成長期潛在危害。因此,弄清楚磷礦資源開采過程中放射性核素在礦區(qū)周圍河流水體中的分布及其環(huán)境行為的潛在生態(tài)風(fēng)險,對人類健康和水生動植物生存具有重要的意義。
筆者以貴州開陽磷礦洋水礦區(qū)洋水河為研究對象,通過分析河水及表層沉積物中天然放射性核素鈾、釷的質(zhì)量濃度,探究磷礦資源開采對礦區(qū)周圍水體的放射性核素影響程度,同時采用潛在生態(tài)危害指數(shù)法對表層沉積物中天然放射性核素鈾的潛在生態(tài)危害進(jìn)行評價,為環(huán)境放射性安全管理提供基礎(chǔ)資料。
1研究區(qū)概況
開陽磷礦洋水礦區(qū)位于貴州省中部開陽縣金鐘鎮(zhèn)境內(nèi),是一個質(zhì)優(yōu)量大的特大型礦床,礦石中P2O5平均含量(質(zhì)量分?jǐn)?shù),下同)高達(dá)34.23%,現(xiàn)在每年能開采500×104 t磷礦石。研究區(qū)出露的地層有前震旦系板溪群、震旦系、寒武系、二疊系、三疊系,以震旦系、寒武系分布最廣,巖系為沉積巖,其中以白云巖為主,還有含砂質(zhì)泥巖和白云質(zhì)頁巖,氣候?qū)賮啛釒Ц咴箨懶詺夂颉5V區(qū)地勢切割強(qiáng)烈,由于背斜構(gòu)造和斷裂構(gòu)造的影響,開陽磷礦可自然分成6個礦段:沙壩土礦段、馬路坪礦段、牛趕沖礦段、兩岔河礦段、用沙壩礦段和極樂礦段。洋水河是研究區(qū)唯一的河流,流量為14 475.02~1 425 591.19 m3·d-1,河水由南向北流出礦區(qū),并與風(fēng)巖河交匯,最終匯入烏江,地表水系屬烏江水系。由于受到磷礦資源開采活動的影響,洋水河污染嚴(yán)重,污染源主要來源于境內(nèi)的幾座磷礦山及礦粉廠排出的“三廢”[8]。
2樣品采集與分析
2.1樣品采集
沿洋水河流向自上游未受或少受磷礦開采影響的河段開始,結(jié)合研究區(qū)地質(zhì)地貌特征和污染源分布特征,用平行法采集水體樣品:在采集水樣的同時采集該采樣點處的表層沉積物樣品。用聚乙烯瓶采集離河床有一定距離的流動水和直接排入洋水河的礦井冷卻水(濕法磷酸生產(chǎn)過程中產(chǎn)生的礦山廢水),同一采樣點采集2瓶水樣,用精密便攜式ORP 測量儀測量水樣的Ph值和Eh值,采集水樣前聚乙烯瓶用采樣點處的流動水清洗3次。用不銹鋼鏟采集表層沉積物樣品,用白色布樣袋盛裝,外套聚乙烯塑料袋,采樣點位置用GPS定位(圖1),所有樣品貼好標(biāo)簽運(yùn)回實驗室分析。
圖1采樣點分布
Fig.1Distribution of Sampling Sites
2.2樣品處理與分析
水樣中鈾、釷的質(zhì)量濃度用ICPMS直接測定;表層沉積物樣品在室溫條件下自然風(fēng)干,剔除礫石等,用瑪瑙研缽研細(xì)過200目(粒徑為0.071 mm)尼龍篩,裝入樣品袋,放入干燥器中待測。固體樣品中鈾、釷的總量主要采用 HNO3HF高壓密封消解,用ICPMS測定。為保證試驗測量的準(zhǔn)確性和可靠性,用空白樣校正儀器的零基準(zhǔn),用水系沉積物成分分析標(biāo)準(zhǔn)物質(zhì)GBW07309全程控制,同時選取20%的樣品做平行樣,平行樣之間的誤差控制在±5%以內(nèi),試驗中所需的酸均為微電子級,其他試劑均為優(yōu)級純,試驗所用水均為超純水。
2.3評價方法
采用Hakanson提出的潛在生態(tài)危害指數(shù)法[9]對洋水河表層沉積物中鈾的單因子污染指數(shù)和潛在生態(tài)風(fēng)險指數(shù)進(jìn)行定量評價。該方法加入了對環(huán)境和人類健康有重要影響的毒性系數(shù),主要評價重金屬污染程度對生態(tài)系統(tǒng)或人類健康的威脅程度。
單個重金屬的污染系數(shù)Cf為
Cf=CsCn(1)
單個重金屬的潛在生態(tài)危害系數(shù)Er為
Er=TrCf(2)
式中:Cs為實測值;Cn為背景參比值;Tr為重金屬的毒性響應(yīng)系數(shù)。
不同研究對背景參比值的選擇各不相同。Hakanson提出以工業(yè)化以前全球沉積物核素的最高背景值為參比值[9]。為了更好地反映洋水河污染現(xiàn)狀,本研究以貴州省A層土壤背景值作為參比值[10],相對定量地反映洋水河污染程度。對于鈾的毒性響應(yīng)系數(shù),目前還沒有可以參考的鈾毒性響應(yīng)系數(shù),由于鈾的化學(xué)行為和生理毒性與其他核素(尤其是鉛)類似而受到廣泛關(guān)注[1115],而鉛的毒性響應(yīng)系數(shù)為5,所以本文定義鈾的毒性響應(yīng)系數(shù)為5。潛在生態(tài)危害指數(shù)法中重金屬污染指數(shù)和潛在生態(tài)危害指數(shù)的分級范圍與污染物的種類和數(shù)量有關(guān),本次研究僅涉及1種污染物,與潛在生態(tài)危害指數(shù)法所研究的8種污染物在種類和數(shù)量上并不一致,因此,需要對基于污染物種類和數(shù)量的潛在生態(tài)危害指數(shù)法評價指標(biāo)的分級標(biāo)準(zhǔn)進(jìn)行調(diào)整。單個重金屬的污染指數(shù)最低級上限值為參評污染物數(shù)目(1種),其余級別上限值依次加倍。Er最低級上限值由Cf最低級上限值(1種)與毒性響應(yīng)系數(shù)相乘得到,其余級別上限值依次加倍[1618],據(jù)此得到本研究各評價指標(biāo)的等級劃分標(biāo)準(zhǔn)(表1)。
表1評價指標(biāo)等級劃分標(biāo)準(zhǔn)
Tab.1Grade Standards for Evaluation Indexes
取值范圍等級劃分
Cf<1污染程度低
1≤Cf<2污染程度中等
2≤Cf<4污染程度較高
Cf≥4污染程度高
Er<5潛在生態(tài)風(fēng)險程度輕微
5≤Er <10潛在生態(tài)風(fēng)險程度中等
10≤Er <20潛在生態(tài)風(fēng)險程度較高
20≤Er <40潛在生態(tài)風(fēng)險程度高
Er≥40潛在生態(tài)風(fēng)險程度極高
3結(jié)果與討論
3.1河水中鈾、釷質(zhì)量濃度分布富集特征
河水樣品中鈾、釷質(zhì)量濃度測定結(jié)果見表2。河水中鈾的平均質(zhì)量濃度為0.958 44 ng·mL-1,范圍為1.763 2~0.691 2 ng·mL-1;釷在河水中的質(zhì)量濃度極低,接近于0,這主要是由于釷和鈾的物理化學(xué)性質(zhì)差異而造成的。鈾的化學(xué)性質(zhì)很活潑,在自然界中主要以U4+和U6+形式存在,在表生條件下鈾通常以U6+存在并形成UO2+2,其化合物多是易溶的;而釷只有Th4+,在地球表面條件下遷移能力較弱。在磷礦資源開采過程中,進(jìn)入近地表環(huán)境介質(zhì)的天然放射性核素鈾在長期風(fēng)化淋溶作用下大部分都遷移進(jìn)入水體,而釷則大部分留在原地,這使得河水中鈾的質(zhì)量濃度遠(yuǎn)遠(yuǎn)高于釷;與河水中鈾的質(zhì)量濃度相比,礦井冷卻水中鈾的質(zhì)量濃度為287 ng·mL-1,是河水中鈾平均質(zhì)量濃度的2.99倍,這說明磷礦資源采選過程中產(chǎn)生的礦山廢水是造成洋水河河水放射性核素污染的主要原因。磷礦工業(yè)廢水未經(jīng)處理直接排入洋水河造成流域放射性污染的事實不容忽視。
表2河水中鈾、釷質(zhì)量濃度
Tab.2Mass Concentrations of Uranium and Thorium in the River Water
樣品編號或來源ρ(Th)/(ng·mL-1)ρ(U)/(ng·mL-1)ρ(Th)/ρ(U)
P01—0.570 6—
P020.001 31.317 00.002 00
P030.000 21.763 20.000 10
P040.003 01.214 70.002 00
P050.001 81.122 70.002 00
P060.000 70.692 00.010 00
P070.000 10.538 80.000 10
P080.003 50.719 30.005 00
P090.001 30.691 20.001 90
礦井冷卻水0.000 12.870 00.000 03
注:“—”表示未檢出;ρ(·)為元素質(zhì)量濃度。
對表2進(jìn)一步分析發(fā)現(xiàn),河水中鈾質(zhì)量濃度總體上呈現(xiàn)上游高、下游低的趨勢,這可能與沿岸磷礦企業(yè)的分布有關(guān)。洋水河上游除了開陽磷礦洋水礦區(qū)之外,還密集分布著多家私營磷礦企業(yè)。洋水河是沿岸磷礦企業(yè)直接的納污水體,尤其是選礦廢水或礦井冷卻水等未經(jīng)處理就直接排入河水中,導(dǎo)致鈾在水體中富集;穿過洋水礦區(qū),河水中鈾的質(zhì)量濃度逐漸降低,一方面可能是河水中的鈾隨水流遷移過程中逐漸轉(zhuǎn)入到底泥中,使水體中鈾的質(zhì)量濃度降低,另一方面也可能是下游其他水體對洋水河河水的補(bǔ)給稀釋了鈾的質(zhì)量濃度。 河水中ρ(Th)/ρ(U)值遠(yuǎn)小于1,這說明放射性核素釷不易富集在河水中,而鈾易于在河水中富集,并且鈾會隨河水不斷遷移,進(jìn)而擴(kuò)大其污染范圍。
為了進(jìn)一步探討和對比磷礦資源開采對河水中放射性核素的影響程度,引用中國部分河水中鈾的平均質(zhì)量濃度及世界河水中鈾的平均質(zhì)量濃度(表3)跟本研究進(jìn)行對比。
表3中國部分河水及世界河水中鈾的平均質(zhì)量濃度
Tab.3Average Mass Concentrations of Uranium in Part Rivers ofChina and the Rivers Around the World 河水來源或標(biāo)準(zhǔn)鈾平均質(zhì)量濃度/(ng·mL-1)數(shù)據(jù)來源
洋水河河水0.89本文
烏江水0.66文獻(xiàn)[19]
長江水0.59文獻(xiàn)[20]
黃浦江水0.51文獻(xiàn)[21]
西安黑河河水0.38文獻(xiàn)[22]
珠江水0.69文獻(xiàn)[23]
中國河水1.66文獻(xiàn)[23]
世界河水0.31文獻(xiàn)[24]
中國露天水源鈾最大限制50.00文獻(xiàn)[25]
表3表明,洋水河河水中鈾的平均質(zhì)量濃度高于中國部分河水和世界河水中鈾的平均質(zhì)量濃度,這說明磷礦資源采選活動已造成放射性核素鈾在洋水河的富集,但其質(zhì)量濃度遠(yuǎn)低于中國露天水體中鈾最大限制質(zhì)量濃度。
3.2表層沉積物中鈾、釷含量分布富集特征
從表4、5可知,表層沉積物中釷的含量為(8.55~2.94)×10-6,平均為5.43×10-6,低于中國水系沉積物元素背景平均值(9.33×10-6),鈾的含量為(622~3.94)×10-6,平均為4.95×10-6,是中國水系沉積物背景平均值(2.21×10-6)的2.24倍。水系沉積物中放射性核素鈾和釷無明顯的變化規(guī)律,整體上呈現(xiàn)上游含量低、下游含量逐漸增高的趨勢,這說明放射性核素在隨水遷移過程中由于物理、化學(xué)和生物作用,從水體中逐漸轉(zhuǎn)入到沉積物中,并在沉積物中富集。放射性核素w(Th)/w(U)值接近于1,這說明釷和鈾在沉積物中均有富集,且富集程度相當(dāng)。通過與中國部分河水沉積物中釷、鈾質(zhì)量濃度的對比分析,洋水河表層沉積物中鈾含量高于石亭江、沱江、長江水系沉積物。沉積物作為水體的納
表4洋水河表層沉積物中鈾、釷含量
Tab.4Contents of Uranium and Thorium in the Surface Sediments of Yangshui River
樣品編號w(Th)/10-6w(U)/10-6w(Th)/w(U)
P012.944.490.65
P025.014.541.10
P035.414.741.21
P044.164.041.03
P056.035.741.05
P065.025.530.91
P075.034.811.05
P086.726.221.08
P098.594.401.95
注:w(·)為元素含量。
表5中國部分河水沉積物中鈾、釷平均含量
Tab.5Average Contents of Uranium and Thorium in the Sediment of Part Rivers, China
沉積物來源或推薦值w(Th)/10-6w(U)/10-6數(shù)據(jù)來源
洋水河水系5.434.95本文
綿遠(yuǎn)河水系3.205.68文獻(xiàn)[26]
石亭江水系4.603.64文獻(xiàn)[26]
沱江水系7.003.30文獻(xiàn)[26]
長江水系13.003.50文獻(xiàn)[27]
中國水系沉積物背景推薦值9.332.21文獻(xiàn)[28]
污受體,在一定程度上反映了流域水環(huán)境的污染程度,并可能會使其成為具有潛在危害的二次污染源,對水生動植物生存及人類健康造成長期潛在危害。
3.3河水沉積物體系中鈾、釷分布特征
在河水沉積物體系中,放射性核素鈾、釷在表層沉積物中的含量遠(yuǎn)遠(yuǎn)高于其在上覆水體中的質(zhì)量濃度,尤其是放射性核素釷在沉積物中的富集程度更為明顯,這也使得在表生環(huán)境中緊密共生的鈾和釷在河水這一界面上發(fā)生了鈾、釷分離,這主要是鈾和釷的物理、化學(xué)性質(zhì)不同所致。河水沉積物體系中,河水ρ(Th)和沉積物w(Th)比值(0.000 000 3 ng·mL-1)以及河水ρ(U)和沉積物w(U)比值(0.000 19 ng·mL-1)說明放射性核素鈾和釷都易于富集在沉積物中,相對而言鈾在河水中的溶解度較釷更大。
3.4表層沉積物中鈾的潛在生態(tài)危害評價
根據(jù)潛在生態(tài)危害指數(shù)法對洋水河表層沉積物中放射性核素鈾的評價結(jié)果見表6。
表6鈾的潛在生態(tài)危害指數(shù)
Tab.6Potential Ecological Risk Indexes of Uranium
元素CcCsCfEr
鈾4.694.951.065.30
表6表明,放射性核素鈾在洋水河表層沉積物中的平均污染指數(shù)為1.06,屬于中等污染水平,潛在生態(tài)危害指數(shù)為5.30,鈾的平均潛在生態(tài)風(fēng)險程度為中等。同時,由于研究區(qū)屬于放射性核素分布的高背景區(qū)(表7),再加上人類采礦活動導(dǎo)致放射性核素在礦區(qū)環(huán)境介質(zhì)中的進(jìn)一步富集,其潛在生態(tài)危害不容忽視。
表7中國部分地區(qū)土壤環(huán)境鈾、釷背景值
Tab.7Soil Environmental Background Values of
Uranium and Thorium in Part Regions of China
地區(qū)貴州云南四川陜西
鈾含量/10-64.691.222.872.66
釷含量/10-617.1915.4013.8412.47
注:數(shù)據(jù)引自文獻(xiàn)[10];中國土壤環(huán)境中鈾、釷的背景值分別為303×10-6和1380×10-6。
4結(jié)語
(1)受磷礦資源采選活動的影響,貴州開陽磷礦周圍的洋水河河水中天然放射性核素鈾的平均質(zhì)量濃度(0.889 6 ng·mL-1)明顯高于中國部分河水和世界河水中鈾的平均質(zhì)量濃度,尤其是礦井冷卻水未經(jīng)處理就直接排入洋水河是造成河水放射性核素污染的直接原因。釷在河水中的質(zhì)量濃度極低,接近于0,釷不易富集在河水中而鈾易于富集。
(2)洋水河水體中天然放射性核素鈾和釷的整體分布規(guī)律除了受自身物理、化學(xué)性質(zhì)的影響外,還與沿岸磷礦企業(yè)分布的密集程度有關(guān)。沿岸磷礦企業(yè)的密集程度決定著水體中放射性核素質(zhì)量濃度的高低。
(3)通過與中國部分河水中鈾、釷平均含量對比分析,洋水河表層沉積物中鈾平均含量高于中國部分河水沉積物中鈾的平均含量,是中國水系沉積物背景值的2.24倍,有可能使其成為具有潛在危害的二次污染源。就富集程度而言,鈾和釷在表層沉積物中均有富集且富集程度相當(dāng)。
(4)在河水沉積物體系中,天然放射性核素鈾和釷在沉積物中的含量明顯高于其在上覆水體中的質(zhì)量濃度,其在沉積物中的富集程度高于在河水中的富集程度。
(5)潛在生態(tài)危害指數(shù)法表明,洋水河表層沉積物中天然放射性核素鈾的平均污染指數(shù)屬于中等污染水平,平均潛在生態(tài)風(fēng)險程度為中等。
參考文獻(xiàn):
References:
[1]KHATER A E M,HIGGY R H,PIMPL M.Radiological Impacts of Natural Radioactivity in AbuTartor Phosphate Deposits,Egypt[J].Journal of Environmental Radioactivity,2001,55(3):255267.
[2]施澤明,倪師軍,張成江,等.沱江流域磷礦開采和加工過程中放射性環(huán)境問題探討[J].地球科學(xué)進(jìn)展,2012,27(10):11341139.
SHI Zeming,NI Shijun,ZHANG Chengjiang,et al.Discussion on Radioactively Environmental Problems During Phosphorite Mining and Processing in Tuojiang Area[J].Advances in Earth Science,2012,27(10):11341139.
[3]白麗娜,張利成,王靈秀.包頭稀土生產(chǎn)帶來的放射性環(huán)境污染及防治措施[J].稀土,2001,22(1):7678.
BAI Lina,ZHANG Licheng,WANG Lingxiu.Radioactive Environmental Pollution Caused by Rare Earth Production in Baotou and Its Prevention Measures[J].Chinese Rare Earths,2001,22(1):7678.
[4]侯海燕,郭喜莊.湯家坪鉬礦區(qū)天然放射性核素評價[J].湘潭師范學(xué)院學(xué)報:自然科學(xué)版,2009,31(3):2024.
HOU Haiyan,GUO Xizhuang.Evaluation of Natural Radionuclides in Tangjiaping Molybdenum Deposit[J].Journal of Xiangtan Normal University:Natural Science Edition,2009,31(3):2024.
[5]肖擁軍,馬光鼐,聶宇翰.鎳(鉬)礦開采放射性污染的特點和防治措施[J].價值工程,2010,29(10):105106.
XIAO Yongjun,MA Guangnai,NIE Yuhan.The Characteristics of Radioactive Contamination in Nickel(Molybdenum) Mining and Its Prevention Measures[J].Value Engineering,2010,29(10):105106.
[6]王文武.南平鉭鈮礦環(huán)境γ輻射監(jiān)測[J].福建分析測試,2006,15(1):3436.
WANG Wenwu.Environmental Gamma Radiation Monitoring to the Nanping Tantalum Niobium Mine[J].Fujian Analysis and Testing,2006,15(1):3436.
[7]李舟,楊忠,魏濤,等.貴州省某磷礦區(qū)氡氣及放射性水平的評價[J].中國輻射衛(wèi)生,2006,15(3):262263.
LI Zhou,YANG Zhong,WEI Tao,et al.Evaluation of Radon and Radioactivity Level in Phosphorite Area in Guizhou[J].Chinese Journal of Radiological Health,2006,15(3):262263.
[8]湯賢勇.開陽磷礦洋水礦區(qū)礦山開采與環(huán)境綜合治理[J].貴州地質(zhì),2001,18(1):6467.
TANG Xianyong.Mine Exploitation and Environment Synthetic Treatment at Yangshui Field in Kaiyang Phosphorite of Guizhou[J].Guizhou Geology,2001,18(1):6467.
[9] HAKANSON L.An Ecological Risk Index for Aquatic Pollution Control:A Sedimentological Approach[J].Water Research,1980,14(8):9751001.
[10]國家環(huán)境保護(hù)局.中國土壤元素背景值[M].北京:中國環(huán)境科學(xué)出版社,1990.
State Environmental Protection Agency.Background Values of Soil Elements in China[M].Beijing:China Environmental Science Press,1990.
[11]李月芳,姚檀棟,田立德,等.青藏高原天然水體中鈾含量的區(qū)域分布特征[J].地球化學(xué),2003,32(5):445452.
LI Yuefang,YAO Tandong,TIAN Lide,et al.Spatial Variation of Uranium Contents in Natural Waters of the QinghaiXizang Plateau[J].Geochimica,2003,32(5):445452.
[12]PAPASTEFANOU C.Radiological Impact from Atmospheric Releases of 238U and 226Ra from Phosphate Rock Processing Plants[J].Journal of Environmental Radioactivity,2001,54(1):7583.
[13]HERRANZ M,ABELAIRAS A,LEGARDA F.Uranium Contents in Raw Waters from Biscay(Spain)[J].Applied Radiation and Isotopes,1999,51(2):203208.
[14]宋昊,施澤明,倪師軍,等.鈾在地表水中的主要遷移形式及其沉淀條件的模擬計算:以四川沱江流域綿遠(yuǎn)河為例[J].環(huán)境化學(xué),2014,33(1):100107.
SONG Hao,SHI Zeming,NI Shijun,et al.Simulation Calculation for Migration Modes of Uranium in Surface Water and Its Precipitation Condition:A Case Study of Mianyuan River in Tuojiang Valley[J].Environmental Chemistry,2014,33(1):100107.
[15]李杰,施澤明,倪師軍,等.西南某地粘土對U吸附的動態(tài)模擬實驗研究[J].地球與環(huán)境,2012,40(4):618622.
LI Jie,SHI Zeming,NI Shijun,et al.Dynamic Simulation Experimental Research on Adsorption of Uranium on Clay Somewhere in Southwest China[J].Earth and Environment,2012,40(4):618622.
[16]李如忠,潘成榮,徐晶晶,等.基于Monte Carlo模擬的潛在生態(tài)危害指數(shù)模型及其應(yīng)用[J].環(huán)境科學(xué)研究,2012,25(12):13361343.
LI Ruzhong,PAN Chengrong,XU Jingjing,et al.Application of Potential Ecological Risk Assessment Model Based on Monte Carlo Simulation[J].Research of Environmental Sciences,2012,25(12):13361343.
[17]侯千,馬建華,王曉云,等.開封市幼兒園土壤重金屬生物活性及潛在生態(tài)風(fēng)險[J].環(huán)境科學(xué),2011,32(6):17641771.
HOU Qian,MA Jianhua,WANG Xiaoyun,et al.Bioavailability and Potential Ecological Risk of Soil Heavy Metals in Kindergartens,Kaifeng City[J].Environmental Science,2011,32(6):17641771.
[18]FERNANDEZ J A,CARBALLEIRA A.Evaluation of Contamination,by Different Elements,in Terrestrial Mosses[J].Archives of Environmental Contamination and Toxicology,2001,40(4):461468.
[19]韓貴琳,劉叢強(qiáng),王中良,等.貴州喀斯特地區(qū)烏江河水中鈾的地球化學(xué)研究[J].地質(zhì)地球化學(xué),1999,27(4):6671.
HAN Guilin,LIU Congqiang,WANG Zhongliang,et al.Hydrogeochemical Characteristics of U in the Karst River,Guizhou,China[J].Geologygeochemistry,1999,27(4):6671.
[20]吳錦海,汪銘俠,王力,等.1986~1997年上海天然水源中鈾含量監(jiān)測分析[J].中華放射醫(yī)學(xué)與防護(hù)雜志,1999,19(5):361362.
WU Jinhai,WANG Mingxia,WANG Li,et al.Monitoring Analysis of Uranium Content in Natural Water from 1986 to 1997 in Shanghai[J].Chinese Journal of Radiological Medicine and Protection,1999,19(5):361362.
[21]吳錦海,王力,王鳳仙.天然水源中微量鈾釷含量與攝入量研究[J].廣東微量元素科學(xué),1997,4(11):5657.
WU Jinhai,WANG Li,WANG Fengxian.Study on the Content of Uranium and Thorium in Natural Water[J].Guangdong Trace Elements Science,1997,4(11):5657.
[22]周春林,尚愛國,李天柁,等.西安市生活水源水體中天然鈾含量調(diào)查[J].輻射防護(hù)通訊,2001,21(2):2830.
ZHOU Chunlin,SHANG Aiguo,LI Tiantuo,et al.Investigation on Natural Uranium Concentrations in the Drinking Water Sources in Xian City[J].Radiation Protection Bulletin,2001,21(2):2830.
[23]全國環(huán)境天然放射性水平調(diào)查總結(jié)報告編寫小組.全國水體中天然放射性核素濃度調(diào)查(1983~1990年)[J].輻射防護(hù),1992,12(2):143163.
The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China.Survey of Natural Radioactivity Level of the Waters in China(19831990)[J].Radiation Protection,1992,12(2):143163.
[24]PALMER M R,EDMOND J M.Uranium in River Water[J].Geochimica et Cosmochimica Acta,1993,57(20):49474955.
[25]胡曉峰,盧龍.華南某鈾礦山周圍水環(huán)境的水質(zhì)調(diào)查研究[J].江西化工,2008(3):170172.
HU Xiaofeng,LU Long.Research of Water Environment Around a Uraniummine in South China[J].Jiangxi Chemical Industry,2008(3):170172.
[26]王磊,唐文春,秦兵,等.四川龍門山地區(qū)磷礦、煤礦開采對水系沉積物Cd等元素影響調(diào)查[J].地質(zhì)科技情報,2007,26(6):3641.
WANG Lei,TANG Wenchun,QIN Bing,et al.The Survey of Cd and Other Elements in River Sediments Affected by Phosphorite Deposit and Coal Mine in the Area of Longmenshan Mountain,Sichuan Province[J].Geological Science and Technology Information,2007,26(6):3641.
[27]張立城,余中盛,章申,等.水環(huán)境化學(xué)元素研究[M].北京:中國環(huán)境科學(xué)出版社,1996.
ZHANG Licheng,YU Zhongsheng,ZHANG Shen,et al.Study on Chemical Elements of Water Environment[M].Beijing:China Environmental Science Press,1996.
[28]林才浩,尤愛珍.福建省水系沉積物元素含量本底值[J].福建環(huán)境,1995,12(3):2223.
LIN Caihao,YOU Aizhen.Background Values of Elements from Stream Sediment in Fujian Province[J].Fujian Environment,1995,12(3):2223.
[14]宋昊,施澤明,倪師軍,等.鈾在地表水中的主要遷移形式及其沉淀條件的模擬計算:以四川沱江流域綿遠(yuǎn)河為例[J].環(huán)境化學(xué),2014,33(1):100107.
SONG Hao,SHI Zeming,NI Shijun,et al.Simulation Calculation for Migration Modes of Uranium in Surface Water and Its Precipitation Condition:A Case Study of Mianyuan River in Tuojiang Valley[J].Environmental Chemistry,2014,33(1):100107.
[15]李杰,施澤明,倪師軍,等.西南某地粘土對U吸附的動態(tài)模擬實驗研究[J].地球與環(huán)境,2012,40(4):618622.
LI Jie,SHI Zeming,NI Shijun,et al.Dynamic Simulation Experimental Research on Adsorption of Uranium on Clay Somewhere in Southwest China[J].Earth and Environment,2012,40(4):618622.
[16]李如忠,潘成榮,徐晶晶,等.基于Monte Carlo模擬的潛在生態(tài)危害指數(shù)模型及其應(yīng)用[J].環(huán)境科學(xué)研究,2012,25(12):13361343.
LI Ruzhong,PAN Chengrong,XU Jingjing,et al.Application of Potential Ecological Risk Assessment Model Based on Monte Carlo Simulation[J].Research of Environmental Sciences,2012,25(12):13361343.
[17]侯千,馬建華,王曉云,等.開封市幼兒園土壤重金屬生物活性及潛在生態(tài)風(fēng)險[J].環(huán)境科學(xué),2011,32(6):17641771.
HOU Qian,MA Jianhua,WANG Xiaoyun,et al.Bioavailability and Potential Ecological Risk of Soil Heavy Metals in Kindergartens,Kaifeng City[J].Environmental Science,2011,32(6):17641771.
[18]FERNANDEZ J A,CARBALLEIRA A.Evaluation of Contamination,by Different Elements,in Terrestrial Mosses[J].Archives of Environmental Contamination and Toxicology,2001,40(4):461468.
[19]韓貴琳,劉叢強(qiáng),王中良,等.貴州喀斯特地區(qū)烏江河水中鈾的地球化學(xué)研究[J].地質(zhì)地球化學(xué),1999,27(4):6671.
HAN Guilin,LIU Congqiang,WANG Zhongliang,et al.Hydrogeochemical Characteristics of U in the Karst River,Guizhou,China[J].Geologygeochemistry,1999,27(4):6671.
[20]吳錦海,汪銘俠,王力,等.1986~1997年上海天然水源中鈾含量監(jiān)測分析[J].中華放射醫(yī)學(xué)與防護(hù)雜志,1999,19(5):361362.
WU Jinhai,WANG Mingxia,WANG Li,et al.Monitoring Analysis of Uranium Content in Natural Water from 1986 to 1997 in Shanghai[J].Chinese Journal of Radiological Medicine and Protection,1999,19(5):361362.
[21]吳錦海,王力,王鳳仙.天然水源中微量鈾釷含量與攝入量研究[J].廣東微量元素科學(xué),1997,4(11):5657.
WU Jinhai,WANG Li,WANG Fengxian.Study on the Content of Uranium and Thorium in Natural Water[J].Guangdong Trace Elements Science,1997,4(11):5657.
[22]周春林,尚愛國,李天柁,等.西安市生活水源水體中天然鈾含量調(diào)查[J].輻射防護(hù)通訊,2001,21(2):2830.
ZHOU Chunlin,SHANG Aiguo,LI Tiantuo,et al.Investigation on Natural Uranium Concentrations in the Drinking Water Sources in Xian City[J].Radiation Protection Bulletin,2001,21(2):2830.
[23]全國環(huán)境天然放射性水平調(diào)查總結(jié)報告編寫小組.全國水體中天然放射性核素濃度調(diào)查(1983~1990年)[J].輻射防護(hù),1992,12(2):143163.
The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China.Survey of Natural Radioactivity Level of the Waters in China(19831990)[J].Radiation Protection,1992,12(2):143163.
[24]PALMER M R,EDMOND J M.Uranium in River Water[J].Geochimica et Cosmochimica Acta,1993,57(20):49474955.
[25]胡曉峰,盧龍.華南某鈾礦山周圍水環(huán)境的水質(zhì)調(diào)查研究[J].江西化工,2008(3):170172.
HU Xiaofeng,LU Long.Research of Water Environment Around a Uraniummine in South China[J].Jiangxi Chemical Industry,2008(3):170172.
[26]王磊,唐文春,秦兵,等.四川龍門山地區(qū)磷礦、煤礦開采對水系沉積物Cd等元素影響調(diào)查[J].地質(zhì)科技情報,2007,26(6):3641.
WANG Lei,TANG Wenchun,QIN Bing,et al.The Survey of Cd and Other Elements in River Sediments Affected by Phosphorite Deposit and Coal Mine in the Area of Longmenshan Mountain,Sichuan Province[J].Geological Science and Technology Information,2007,26(6):3641.
[27]張立城,余中盛,章申,等.水環(huán)境化學(xué)元素研究[M].北京:中國環(huán)境科學(xué)出版社,1996.
ZHANG Licheng,YU Zhongsheng,ZHANG Shen,et al.Study on Chemical Elements of Water Environment[M].Beijing:China Environmental Science Press,1996.
[28]林才浩,尤愛珍.福建省水系沉積物元素含量本底值[J].福建環(huán)境,1995,12(3):2223.
LIN Caihao,YOU Aizhen.Background Values of Elements from Stream Sediment in Fujian Province[J].Fujian Environment,1995,12(3):2223.
[14]宋昊,施澤明,倪師軍,等.鈾在地表水中的主要遷移形式及其沉淀條件的模擬計算:以四川沱江流域綿遠(yuǎn)河為例[J].環(huán)境化學(xué),2014,33(1):100107.
SONG Hao,SHI Zeming,NI Shijun,et al.Simulation Calculation for Migration Modes of Uranium in Surface Water and Its Precipitation Condition:A Case Study of Mianyuan River in Tuojiang Valley[J].Environmental Chemistry,2014,33(1):100107.
[15]李杰,施澤明,倪師軍,等.西南某地粘土對U吸附的動態(tài)模擬實驗研究[J].地球與環(huán)境,2012,40(4):618622.
LI Jie,SHI Zeming,NI Shijun,et al.Dynamic Simulation Experimental Research on Adsorption of Uranium on Clay Somewhere in Southwest China[J].Earth and Environment,2012,40(4):618622.
[16]李如忠,潘成榮,徐晶晶,等.基于Monte Carlo模擬的潛在生態(tài)危害指數(shù)模型及其應(yīng)用[J].環(huán)境科學(xué)研究,2012,25(12):13361343.
LI Ruzhong,PAN Chengrong,XU Jingjing,et al.Application of Potential Ecological Risk Assessment Model Based on Monte Carlo Simulation[J].Research of Environmental Sciences,2012,25(12):13361343.
[17]侯千,馬建華,王曉云,等.開封市幼兒園土壤重金屬生物活性及潛在生態(tài)風(fēng)險[J].環(huán)境科學(xué),2011,32(6):17641771.
HOU Qian,MA Jianhua,WANG Xiaoyun,et al.Bioavailability and Potential Ecological Risk of Soil Heavy Metals in Kindergartens,Kaifeng City[J].Environmental Science,2011,32(6):17641771.
[18]FERNANDEZ J A,CARBALLEIRA A.Evaluation of Contamination,by Different Elements,in Terrestrial Mosses[J].Archives of Environmental Contamination and Toxicology,2001,40(4):461468.
[19]韓貴琳,劉叢強(qiáng),王中良,等.貴州喀斯特地區(qū)烏江河水中鈾的地球化學(xué)研究[J].地質(zhì)地球化學(xué),1999,27(4):6671.
HAN Guilin,LIU Congqiang,WANG Zhongliang,et al.Hydrogeochemical Characteristics of U in the Karst River,Guizhou,China[J].Geologygeochemistry,1999,27(4):6671.
[20]吳錦海,汪銘俠,王力,等.1986~1997年上海天然水源中鈾含量監(jiān)測分析[J].中華放射醫(yī)學(xué)與防護(hù)雜志,1999,19(5):361362.
WU Jinhai,WANG Mingxia,WANG Li,et al.Monitoring Analysis of Uranium Content in Natural Water from 1986 to 1997 in Shanghai[J].Chinese Journal of Radiological Medicine and Protection,1999,19(5):361362.
[21]吳錦海,王力,王鳳仙.天然水源中微量鈾釷含量與攝入量研究[J].廣東微量元素科學(xué),1997,4(11):5657.
WU Jinhai,WANG Li,WANG Fengxian.Study on the Content of Uranium and Thorium in Natural Water[J].Guangdong Trace Elements Science,1997,4(11):5657.
[22]周春林,尚愛國,李天柁,等.西安市生活水源水體中天然鈾含量調(diào)查[J].輻射防護(hù)通訊,2001,21(2):2830.
ZHOU Chunlin,SHANG Aiguo,LI Tiantuo,et al.Investigation on Natural Uranium Concentrations in the Drinking Water Sources in Xian City[J].Radiation Protection Bulletin,2001,21(2):2830.
[23]全國環(huán)境天然放射性水平調(diào)查總結(jié)報告編寫小組.全國水體中天然放射性核素濃度調(diào)查(1983~1990年)[J].輻射防護(hù),1992,12(2):143163.
The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China.Survey of Natural Radioactivity Level of the Waters in China(19831990)[J].Radiation Protection,1992,12(2):143163.
[24]PALMER M R,EDMOND J M.Uranium in River Water[J].Geochimica et Cosmochimica Acta,1993,57(20):49474955.
[25]胡曉峰,盧龍.華南某鈾礦山周圍水環(huán)境的水質(zhì)調(diào)查研究[J].江西化工,2008(3):170172.
HU Xiaofeng,LU Long.Research of Water Environment Around a Uraniummine in South China[J].Jiangxi Chemical Industry,2008(3):170172.
[26]王磊,唐文春,秦兵,等.四川龍門山地區(qū)磷礦、煤礦開采對水系沉積物Cd等元素影響調(diào)查[J].地質(zhì)科技情報,2007,26(6):3641.
WANG Lei,TANG Wenchun,QIN Bing,et al.The Survey of Cd and Other Elements in River Sediments Affected by Phosphorite Deposit and Coal Mine in the Area of Longmenshan Mountain,Sichuan Province[J].Geological Science and Technology Information,2007,26(6):3641.
[27]張立城,余中盛,章申,等.水環(huán)境化學(xué)元素研究[M].北京:中國環(huán)境科學(xué)出版社,1996.
ZHANG Licheng,YU Zhongsheng,ZHANG Shen,et al.Study on Chemical Elements of Water Environment[M].Beijing:China Environmental Science Press,1996.
[28]林才浩,尤愛珍.福建省水系沉積物元素含量本底值[J].福建環(huán)境,1995,12(3):2223.
LIN Caihao,YOU Aizhen.Background Values of Elements from Stream Sediment in Fujian Province[J].Fujian Environment,1995,12(3):2223.