鄧繼華+邵旭東+彭建新
摘要:針對混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)同時存在的幾何非線性與收縮徐變問題,基于微分法導(dǎo)出了隨轉(zhuǎn)坐標系下平面梁在大轉(zhuǎn)動小應(yīng)變時的幾何非線性平衡方程,該方程已計入初應(yīng)變效應(yīng).結(jié)合初應(yīng)變法計算混凝土梁收縮徐變等效節(jié)點力有限元列式,利用節(jié)點力之間和節(jié)點位移之間全量及增量的關(guān)系,獲得結(jié)構(gòu)坐標系下平面梁單元幾何非線性分析中考慮收縮徐變效應(yīng)影響的實用算法,并給出了詳細的計算步驟.對某大跨徑混合梁斜拉橋混凝土橋塔進行了考慮混凝土徐變效應(yīng)的幾何非線性分析,計算結(jié)果表明本文提出的算法能較好解決上述問題,具有一定的工程應(yīng)用價值.
關(guān)鍵詞:混凝土平面梁;幾何非線性;收縮徐變;微分法;實用算法
中圖分類號:TU323 文獻標識碼:A
Abstract:As there are geometrical nonlinearity and concrete shrinkage and creep in longspan flexible structures such as concrete cablestayed bridges, so, based on differential method, the geometrical nonlinearity balance equation for large rotation displacement small strain analysis was deduced under corotational coordinate system, which considered the initial strain. Combining with finite element formula for equivalent nodal force of shrinkage and creep by using initial strain method, then, through building total and incremental relationships derived from differential equations of nodal displacements and forces, a practical algorithm for geometrical nonlinearity analysis of the plane beam considering concrete shrinkage and creep under global coordinate was obtained, and its calculation flowchart was also given. The geometrical nonlinearity analysis of the tower of longspan concrete cablestayed bridge with hybrid girder considering concrete creep was performed. The results demonstrate that the algorithm developed can solve the above mentioned problems and has some engineering application value.
Key words:concrete plane beam;geometrical nonlinearity;creep and shrinkage;differential method;practical algorithm
隨著結(jié)構(gòu)計算理論、高強材料及施工裝備的快速發(fā)展,混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)在跨度和高度上的記錄不斷被刷新,目前國內(nèi)已建成的蘇通長江大橋主跨為1 088 m(主梁為鋼結(jié)構(gòu)),塔高達300 m(塔為混凝土結(jié)構(gòu)).分析此類既有混凝土構(gòu)件又比較柔性的結(jié)構(gòu),同時考慮幾何非線性和收縮徐變是很有必要的\[1-2\],目前對幾何非線性平面梁單元已進行了大量研究\[3-5\],理論已經(jīng)很成熟,對混凝土結(jié)構(gòu)的收縮徐變效應(yīng)分析也有很多研究成果\[6-8\],但對混凝土柔性結(jié)構(gòu)同時考慮幾何非線性和收縮徐變效應(yīng)的研究文獻非常少,筆者僅找到兩篇文獻\[9-10\],文獻\[9\]介紹了幾何非線性結(jié)構(gòu)進行徐變效應(yīng)分析的原理和方法,提供了按施工階段進行幾何非線性結(jié)構(gòu)徐變分析的增量形式和分析步驟.但該文采用按齡期調(diào)整的有效彈性模量法來求解結(jié)構(gòu)的徐變問題,由于該方法既要形成結(jié)構(gòu)的彈性剛度矩陣,又要形成徐變剛度矩陣,在每一迭代步內(nèi)結(jié)構(gòu)的平衡方程還要求解兩次,這在計算量本來就很大的非線性計算中是很不合適的.同時該文算法是基于增量平衡,在進行下一個增量步(施工階段)等效荷載列陣計算時未考慮上一個增量步(施工階段)的殘余力,更沒考慮由于徐變變形而導(dǎo)致上一個增量步(施工階段)已經(jīng)平衡的構(gòu)形被打破在下一個增量步(施工階段)會產(chǎn)生新的不平衡力,因此隨著施工階段數(shù)的增多誤差會越來越大.文獻\[10\]從虛功增量方程出發(fā),建立了桿系結(jié)構(gòu)的非線性與混凝土收縮徐變效應(yīng)耦合分析的有限元方法.該文采用初應(yīng)變法來計算分階段施工混凝土結(jié)構(gòu)的徐變、基于全量平衡且考慮了由于徐變變形而導(dǎo)致上一個增量步(施工階段)已經(jīng)平衡的構(gòu)形被打破在下一個增量步(施工階段)會產(chǎn)生新的不平衡力問題.因此,從理論上講,相對于文獻\[9\]的算法而言,文獻\[10\]的算法無論在非線性計算效率還是精度方面均有提高.但仔細研究也會發(fā)現(xiàn)該文存在以下問題,該文建立的非線性平衡方程本質(zhì)上是基于U.L列式的增量平衡方程,即計算單元切線剛度矩陣是基于每一迭代步的增量.但為了考慮由于徐變變形而導(dǎo)致的平衡構(gòu)形被打破及提高計算精度對不平衡力計算又采用全量方法,顯然兩者不一致會導(dǎo)致各種狀態(tài)變量數(shù)增加從而使計算量增加的缺點.且該文是從張量分析出發(fā),推導(dǎo)過程也較復(fù)雜,較難為工程技術(shù)人員理解和應(yīng)用.鑒于此,本文在參考上述已有文獻的基礎(chǔ)上,首先基于微分法導(dǎo)出了隨轉(zhuǎn)坐標系下平面梁在大轉(zhuǎn)動小應(yīng)變時計入初應(yīng)變效應(yīng)的幾何非線性平衡方程,結(jié)合用初應(yīng)變法進行節(jié)段施工混凝土梁計算中收縮徐變等效節(jié)點力計算的有限元列式,再利用隨轉(zhuǎn)坐標系與結(jié)構(gòu)坐標系下節(jié)點力之間和節(jié)點位移之間全量及增量的關(guān)系,最終獲得結(jié)構(gòu)坐標系下平面梁單元幾何非線性分析中考慮收縮徐變效應(yīng)影響的實用算法,給出了詳細的計算步驟,最后對文獻\[10\]的算例1進行了比較分析.
4同時考慮幾何非線性與收縮徐變的計算
步驟
從前面的整個推導(dǎo)過程及幾何非線性、收縮徐變效應(yīng)單獨分析時的計算步驟,可知同時考慮幾何非線性和收縮徐變效應(yīng)時的基本計算原理為:將不平衡力(由總外荷載減去節(jié)點位移產(chǎn)生的結(jié)構(gòu)總抗力及收縮徐變等效節(jié)點力總量得到)作用下經(jīng)過幾何非線性分析得到的變形作為每一工況初始瞬時彈性變形,徐變變形與之成線性關(guān)系,將上一階段的收縮徐變變形作為下一階段的初應(yīng)變,計算得到的等效節(jié)點力增量總是作用在單元隨轉(zhuǎn)坐標系中,因此在各階段的累加計算過程中無須考慮坐標系的轉(zhuǎn)換,可直接累加形成收縮徐變等效節(jié)點力總量,將收縮徐變等效節(jié)點力總量由結(jié)構(gòu)當(dāng)前構(gòu)形下的隨轉(zhuǎn)坐標轉(zhuǎn)換到結(jié)構(gòu)坐標系下就可參與不平衡力的計算.
6結(jié)論
1)基于隨轉(zhuǎn)坐標系有關(guān)理論及收縮徐變分析的初應(yīng)變法建立了同時考慮幾何非線性和收縮徐變效應(yīng)的非線性平衡方程,為混凝土斜拉橋等大跨柔性混凝土結(jié)構(gòu)分析打下了理論基礎(chǔ).
2)本文算法采用外荷載、由于節(jié)點位移而產(chǎn)生的結(jié)構(gòu)抗力、混凝土收縮徐變產(chǎn)生的等效節(jié)點力的全量來計算節(jié)點不平衡力,故能有效消除時步間誤差累積的問題.
3)算例表明,對于既有混凝土構(gòu)件又比較柔性的結(jié)構(gòu)進行幾何非線性和收縮徐變效應(yīng)藕合分析是很有必要的,只考慮幾何非線性或考慮線性和徐變共同作用的計算結(jié)果與之差別很大.
4)按本文算法,可以方便地對現(xiàn)有平面桿系程序進行改造,使之具有同時考慮幾何非線性和收縮徐變效應(yīng)的計算功能,使工程技術(shù)人員能更好地理解大跨柔性混凝土結(jié)構(gòu)的受力行為.
5)由于同時考慮幾何非線性與收縮徐變效應(yīng)共同作用的理論研究及結(jié)構(gòu)試驗極少,而工程實際的發(fā)展已經(jīng)要求開展這方面的理論研究及試驗驗證.
參考文獻
[1]MARU S,ASFAW M,SHARMA R K,et al. Effect of creep and shrinkage on RC frames with high beam stiffness\[J\].Journal of Structural Engineeirng, ASCE, 2003, 129(4):536-543.
[2]EDWARDS N P,BILLINGTON D P. FE analysis of tucker high school roof using nonlinear geometry and creep\[J\]. Journal of Structural Engineeirng,ASCE,1998, 124(9): 984-990.
[3]蔡松柏,沈蒲生.大轉(zhuǎn)動平面梁有限元分析的共旋坐標法\[J\].工程力學(xué),2006,23(增I): 69-72.
CAI Songbai, SHEN Pusheng. Corotational procedure for finite element analysis of plane beam element of large rotational displacement\[J\]. Engineering Mechanics, 2006, 23(z1): 69-72. (In Chinese)
[4]呂和祥, 朱菊芬, 馬莉穎. 大轉(zhuǎn)動梁的幾何非線性分析討論\[J\]. 計算結(jié)構(gòu)力學(xué)及其應(yīng)用, 1995,12(4):485-490.
LV Hexiang, ZHU Jufen, MA Liying. Discussion of analyzing of geometric nonlinear beams with large rotations\[J\]. Chinese Journal of Computational Mechanics, 1995, 12(4): 485-490. (In Chinese)
[5]鄧繼華,邵旭東. 基于U.L列式的帶剛臂平面梁元非線性分析\[J\]. 湖南大學(xué)學(xué)報:自然科學(xué)版, 2012,39(5):8-12.
DENG Jihua, SHAO Xudong. Nonlinear analysis of plane beam element with rigid arms based on U.L formulation\[J\]. Journal of Hunan University: Natural Sciences, 2012,39(5): 8-12. (In Chinese)
[6]TAYLOR R L,PISTER K S,GOUDREAU G L.Thermomechanical analysis of viscoeoelastic solids\[J\].Num Meth Eng ,1970(2):45-60.
[7]方志,黃立葵,周樂農(nóng).砼結(jié)構(gòu)徐變的灰色系統(tǒng)預(yù)測\[J\].湖南大學(xué)學(xué)報:自然科學(xué)版,1994,21(4):96-102.
FANG Zhi, HUANG Likui,ZHOU Lelong. Creep deformation prediction of concrete structure with grey system models\[J\]. Journal of Hunan University:Natural Sciences, 1994,21(4):96-102. (In Chinese)
參考文獻
[8]金成棣.混凝土徐變對超靜定結(jié)構(gòu)變形及內(nèi)力的影響——考慮分段加載齡期差異及延遲彈性影響\[J\].土木工程學(xué)報,1981,14(3):19-32.
JIN Chengdi. Analysis of deformation and stress redistribution of continuous structure due to creep of concrete—taking account of loading at different age and delayed elasticity of concrete\[J\].China Civil Engineering Journal, 1981,14(3):19-32. (In Chinese)
[9]占玉林,向天宇,趙人達. 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長沙交通學(xué)院學(xué)報,2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運營階段混凝土收縮徐變影響研究\[D\]. 長沙: 長沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計算的有限元方法與應(yīng)用\[J\].中國公路學(xué)報,2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場一致性的2D四邊形單元的共旋坐標法\[J\].工程力學(xué),2009,26(12):31-34.
[9]占玉林,向天宇,趙人達. 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長沙交通學(xué)院學(xué)報,2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運營階段混凝土收縮徐變影響研究\[D\]. 長沙: 長沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計算的有限元方法與應(yīng)用\[J\].中國公路學(xué)報,2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場一致性的2D四邊形單元的共旋坐標法\[J\].工程力學(xué),2009,26(12):31-34.
[9]占玉林,向天宇,趙人達. 幾何非線性結(jié)構(gòu)的徐變效應(yīng)分析\[J\]. 工程力學(xué),2006,23(7):45-48.
ZHAN Yulin,XIANG Tianyu,ZHAO Renda. Creep effect analysis of geometric nonlinear structures\[J\]. Engineering Mechanics, 2006, 23(7): 45-48. (In Chinese)
[10]陳常松,顏東煌,李學(xué)文. 混凝土收縮徐變分析的虛功增量方程及應(yīng)用\[J\]. 工程力學(xué),2010,27(10):139-144.
CHEN Changsong,YAN Donghuang,LI Xuewen.The incremental virtual work equation for concrete shrinkage and creep analysis and its applications\[J\]. Engineering Mechanics,2010,27(10): 139-144. (In Chinese)
[11]CRISFIELD M A. Nonlinear finite element analysis of solids and structures\[M\].Chichester: John Wiley & Sons Inc, 1997:26-45.
[12]李學(xué)文,姚康寧,顏東煌. 利用最小二乘法實現(xiàn)2004規(guī)范徐變系數(shù)的指數(shù)函數(shù)擬合\[J\]. 長沙交通學(xué)院學(xué)報,2006,22(3):21-24.
LI Xuewen,YAO Kangning,YAN Donghuang. Using least square method fitting the creep coefficient functions of concrete listed in the bridge criterion (JTG D62—2004) with exponential function model\[J\]. Journal of Changsha Communications University, 2006,22(3):21-24. (In Chinese)
[13]姚康寧.大跨度混凝土斜拉橋運營階段混凝土收縮徐變影響研究\[D\]. 長沙: 長沙理工大學(xué)土木與建筑學(xué)院, 2006:37-49.
YAO Kangning. The shrinkage and creep analysis of longspan concrete cablestayed bridges during operations\[D\]. Changsha: School of Civil Engineering and Architecture,Changsha University of Science and Technology, 2006: 37-49. (In Chinese)
[14]顏東煌,田仲初,李學(xué)文,等. 混凝土橋梁收縮徐變計算的有限元方法與應(yīng)用\[J\].中國公路學(xué)報,2004,17(2):55-58.
YAN Donghuang,TIAN Zhongchu,LI Xuewen,et al. Finite element method and application for the shrinkage and creep of concrete bridge\[J\].China Journal of Highway and Transport, 2004,17(2):55-58. (In Chinese)
[15]蔡松柏,沈蒲生,胡柏學(xué),等. 基于場一致性的2D四邊形單元的共旋坐標法\[J\].工程力學(xué),2009,26(12):31-34.